A Systematic Review of Phase II/III Trials of Hypofractionated versus Conventionally Fractionated Radiation Therapy in Stage III Non-Small Cell Lung Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Phase II Trials
3.2. Randomized Phase II Trials
3.3. Randomized Phase III Trials
4. Discussion
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Exp Lung Cancer/
- Radiotherapy/
- (radiotherapy or radiat *).mp
- 2 or 3
- 1 and 4
- Hypofractionat *
- 5 and 6
- randomized controlled trial.pt.
- controlled clinical trial.pt
- randomized.ab.
- randomly.ab
- trial.ab.
- phase 2.ab
- phase II.ab
- or/8–14
- 7 and 15
- Limit 18 to yr = “1990-”
- key:
- Exp = Explode
- Mp = title, original title, abstract, subject heading, name of substance, registry word, unique identifier
- Pt = publication type
- ab = abstract
Phase II Trials | Sample Size | Intervention | Primary Endpoint | Secondary Endpoint |
---|---|---|---|---|
Thoracic radiotherapy plus durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy (TRADE-hypo). (NCT04351256) [39] | 88 | 55 Gy/20 daily fractions/5 days a week |
|
|
Hypofractionated 3-dimensional radiation therapy in treating patients with newly diagnosed stage I, stage II, or stage III non-small cell lung cancer. ICORG 99–09. (NCT 00955175) [40] | 60 | Group 1: 72 Gy/24 daily fractions/5 days a week Group 2: 66 Gy/22 daily fractions/5 days a week Group 3: 60 Gy/20 daily fractions/5 days a week |
|
|
Comparing hypo-fractionated intensity-modulated radiation therapy to standard-fractionated IMRT along with chemotherapy and immunotherapy for non-small cell lung cancer. (NCT04992780) [41] | 50 | Hypofractionation: 62.5 Gy in 25 daily fractions/5 days a week Standard fractionation: 60 Gy in 30 daily fractions/5 days a week |
|
|
Personalized Accelerated ChEmoRadiation (PACER) for Lung Cancer: Protocol for a Bayesian Optimal Phase I/II Trial NCT06080061 [42] | 45 | 60 to 66 Gy in 30, 25, or 20 fractions depending on the ability to meet constraints to key organs at ris, including the lungs, heart, and esophagus. | High-grade pulmonary, esophageal, and cardiac toxicity | Local control, progression-free survival, overall survival, feasibility of automated treatment planning workflow |
Phase III Trials | Sample Size | Intervention | Primary Endpoint | Secondary Endpoint |
---|---|---|---|---|
Hypofractionated versus conventionally fractionated concurrent chemoradiation for unresectable stage III NSCLC. (NCT03331575) [38] | 480 | Hypofractionated radiotherapy: 60.5 Gy in 22 daily fractions/5 days a week with concurrent chemotherapy Conventional radiotherapy: 60 Gy in 30 daily fractions/5 days a week with concurrent chemotherapy |
|
|
References
- Daly, M.E.; Singh, N.; Ismaila, N.; Antonoff, M.B.; Arenberg, D.A.; Bradley, J.; David, E.; Detterbeck, F.; Früh, M.; Gubens, M.A.; et al. Management of stage III non-small-cell lung cancer: ASCO guideline. J. Clin. Oncol. 2022, 40, 1356–1384. [Google Scholar] [CrossRef] [PubMed]
- Bezjak, A.; Temin, S.; Franklin, G.; Giaccone, G.; Govindan, R.; Johnson, M.L.; Rimner, A.; Schneider, B.J.; Strawn, J.; Azzoli, C.G. Definitive and adjuvant radiotherapy in locally advanced non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline endorsement of the American Society for Radiation Oncology evidence-based clinical practice guideline. J. Clin. Oncol. 2015, 33, 2100–2105. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.A.; Pajak, T.F.; Rubin, P.; Simpson, J.R.; Mohiuddin, M.; Brady, L.W.; Perez-Tamayo, R.; Rotman, M. Long-term observations of the patterns of failure in patients with unresectable non-oat cell carcinoma of the lung treated with definitive radiotherapy. Report by the Radiation Therapy Oncology Group. Cancer 1987, 59, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.A.; Stanley, K.; Rubin, P.; Kramer, S.; Brady, L.; Perez-Tamayo, R.; Brown, G.S.; Concannon, J.; Rotman, M.; Seydel, H.G. A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 1980, 45, 2744–2753. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Socinski, M.A.; Morris, D.E.; Halle, J.S.; Moore, D.T.; Hensing, T.A.; Limentani, S.A.; Fraser, R.; Tynan, M.; Mears, A.; Rivera, M.P.; et al. Induction and concurrent chemotherapy with high-dose thoracic conformal radiation therapy in unresectable stage IIIA and IIIB non-small-cell lung cancer: A dose-escalation phase I trial. J. Clin. Oncol. 2004, 22, 4341–4350. [Google Scholar] [CrossRef] [PubMed]
- van Diessen, J.; De Ruysscher, D.; Sonke, J.J.; Damen, E.; Sikorska, K.; Reymen, B.; van Elmpt, W.; Westman, G.; Fredberg Persson, G.; Dieleman, E.; et al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiother. Oncol. 2019, 131, 166–173. [Google Scholar] [CrossRef] [PubMed]
- van Elmpt, W.; De Ruysscher, D.; van der Salm, A.; Lakeman, A.; van der Stoep, J.; Emans, D.; Damen, E.; Öllers, M.; Sonke, J.J.; Belderbos, J. The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother. Oncol. 2012, 104, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.D.; Azarnia, N.; Byhardt, R.W.; Shin, K.H.; Emami, B.; Perez, C.A. N2 (clinical) non-small cell carcinoma of the lung: Prospective trials of radiation therapy with total doses 60 Gy by the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Puckett, L.L.; Titi, M.; Kujundzic, K.; Dawes, S.L.; Gore, E.M.; Katsoulakis, E.; Park, J.H.; Solanki, A.A.; Kapoor, R.; Kelly, M.; et al. Consensus quality measures and dose constraints for lung cancer from the Veterans Affairs radiation oncology quality surveillance program and ASTRO expert panel. Pract. Radiat. Oncol. 2023, 13, 413–428. [Google Scholar] [CrossRef] [PubMed]
- Prewett, S.L.; Aslam, S.; Williams, M.V.; Gilligan, D. The management of lung cancer: A UK survey of oncologists. Clin. Oncol. 2012, 24, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Machtay, M.; Bae, K.; Movsas, B.; Paulus, R.; Gore, E.M.; Komaki, R.; Albain, K.; Sause, W.T.; Curran, W.J. Higher biologically effective dose of radiotherapy is associated with improved outcomes for locally advanced non-small cell lung carcinoma treated with chemoradiation: An analysis of the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 425–434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Higgins, J.P.T.; Vist, G.E.; Glasziou, P.; Akl, E.A.; Skoetz, N.; Guyatt, G.H. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; version 6.4 (updated August 2023); John Wiley & Sons: Chichester, UK, 2023; Available online: https://www.training.cochrane.org/handbook (accessed on 15 July 2024).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiu, B.; Xiong, M.; Luo, Y.; Li, Q.; Chen, N.; Chen, L.; Guo, S.; Wang, B.; Huang, X.; Lin, M.; et al. Hypofractionated intensity modulated radiation therapy with concurrent chemotherapy in locally advanced non-small cell lung cancer: A Phase II prospective clinical trial (GASTO1011). Pract. Radiat. Oncol. 2021, 11, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Qiu, B.; Xiong, M.; Liu, Y.; Peng, K.; Luo, Y.; Wang, D.; Liu, F.; Chen, N.; Guo, J.; et al. Hypofractionated radiotherapy followed by hypofractionated boost with weekly concurrent chemotherapy for unresectable stage III non-small cell lung cancer: Results of a prospective phase II study (GASTO-1049). Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Thirion, P.G.; Dunne, M.T.; Fleming, C.; Fitzpatrick, D.; O’Shea, C.M.; Finn, M.A.; O’Sullivan, S.; Booth, C.; Collins, C.D.; et al. A phase II toxicity end point trial (ICORG 99-09) of accelerated dose-escalated hypofractionated radiation in non-small cell lung cancer. Clin. Oncol. 2018, 30, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, T.; Matsuura, K.; Kashiwado, K.; Kagemoto, M. Phase II Study: The outcome of hypofractionated involved-field radiation therapy with concurrent chemotherapy for the treatment of locally advanced non-small cell lung cancer. Pract. Radiat. Oncol. 2021, 11, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Casas, F.; Viñolas, N.; Ferrer, F.; Agustí, C.; Sanchez, M.; Maria Gimferrer, J.; Lomeña, F.; Campayo, M.; Jeremic, B. Long-term results of a phase II trial of induction paclitaxel-carboplatin followed by concurrent radiation therapy and weekly paclitaxel and consolidation paclitaxel-carboplatin in stage III non-small cell lung cancer. J. Thorac. Oncol. 2011, 6, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.C.; Luterstein, E.; Neilsen, B.K.; Goldman, J.W.; Garon, E.B.; Lee, J.M.; Felix, C.; Cao, M.; Tenn, S.E.; Low, D.A.; et al. Accelerated hypofractionated chemoradiation followed by stereotactic ablative radiotherapy boost for locally advanced, unresectable non-small cell lung cancer: A nonrandomized controlled trial. JAMA Oncol. 2024, 10, 352–359. [Google Scholar] [CrossRef]
- Ren, X.C.; Wang, Q.Y.; Zhang, R.; Chen, X.J.; Wang, N.; Liu, Y.E.; Zong, J.; Guo, Z.J.; Wang, D.Y.; Lin, Q. Accelerated hypofractionated three-dimensional conformal radiation therapy (3 Gy/fraction) combined with concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer: Preliminary results of an early terminated phase II trial. BMC Cancer 2016, 16, 288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoppe, B.S.; Nichols, R.C.; Flampouri, S.; Pankuch, M.; Morris, C.G.; Pham, D.C.; Mohindra, P.; Hartsell, W.F.; Mohammed, N.; Chon, B.H.; et al. Chemoradiation with hypofractionated proton therapy in stage II-III non-small cell lung cancer: A Proton Collaborative Group phase 2 trial. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Cooke, S.A.; de Ruysscher, D.; Reymen, B.; Lambrecht, M.; Fredberg Persson, G.; Faivre-Finn, C.; Dieleman, E.M.T.; Lewensohn, R.; van Diessen, J.N.A.; Sikorska, K.; et al. 18F-FDG-PET guided vs whole tumour radiotherapy dose escalation in patients with locally advanced non-small cell lung cancer (PET-Boost): Results from a randomised clinical trial. Radiother. Oncol. 2023, 181, 109492. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J.; Khan, I.; McMenemin, R.; O’Rourke, N.; McNee, S.; Kelly, V.; Peedell, C.; Snee, M. SOCCAR: A randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III non-small cell lung cancer and good performance status. Eur. J. Cancer. 2014, 50, 2939–2949. [Google Scholar] [CrossRef] [PubMed]
- Walraven, I.; van den Heuvel, M.; van Diessen, J.; Schaake, E.; Uyterlinde, W.; Aerts, J.; Koppe, F.; Codrington, H.; Kunst, P.; Dieleman, E.; et al. Long-term follow-up of patients with locally advanced non-small cell lung cancer receiving concurrent hypofractionated chemoradiotherapy with or without cetuximab. Radiother. Oncol. 2016, 118, 442–446. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.M.; Uyterlinde, W.; Vincent, A.D.; de Jong, J.; Aerts, J.; Koppe, F.; Knegjens, J.; Codrington, H.; Kunst, P.W.; Dieleman, E.; et al. Additional weekly cetuximab to concurrent chemoradiotherapy in locally advanced non-small cell lung carcinoma: Efficacy and safety outcomes of a randomized, multi-center phase II study investigating. Radiother. Oncol. 2014, 110, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Belderbos, J.; Uitterhoeve, L.; van Zandwijk, N.; Belderbos, H.; Rodrigus, P.; van de Vaart, P.; Price, A.; van Walree, N.; Legrand, C.; Dussenne, S.; et al. Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972-22973). Eur. J. Cancer 2007, 43, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, P.; Zhang-Velten, E.; Court, L.; Westover, K.; Yan, Y.; Lin, M.H.; Xiong, Z.; Patel, M.; Rivera, D.; Chang, J.; et al. Accelerated hypofractionated image-guided vs conventional radiotherapy for patients with stage II/III non-small cell lung cancer and poor performance status: A randomized clinical trial. JAMA Oncol. 2021, 7, 1497–1505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, Y.H.; Ahn, S.J.; Moon, S.H.; Kim, J.H.; Kim, Y.C.; Oh, I.J.; Park, C.K.; Jeong, J.U.; Yoon, M.S.; Song, J.Y.; et al. Randomized, multicenter, phase 3 study of accelerated fraction radiation therapy with concomitant boost to the gross tumor volume compared with conventional fractionation in concurrent chemoradiation in patients with unresectable stage III non-small cell lung cancer: The Korean Radiation Oncology Group 09-03 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Salazar, O.M.; Slawson, R.G.; Poussin-Rosillo, H.; Amin, P.P.; Sewchand, W.; Strohl, R.A. A prospective randomized trial comparing once-a-week vs daily radiation therapy for locally-advanced, non-metastatic, lung cancer: A preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Slawson, R.G.; Salazar, O.M.; Poussin-Rosillo, H.; Amin, P.P.; Strohl, R.; Sewchand, W. Once-a-week vs conventional daily radiation treatment for lung cancer: Final report. Int. J. Radiat. Oncol. Biol. Phys. 1988, 15, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.M.; Leung, S.W.; Wang, C.J.; Chen, H.C.; Fang, F.M.; Huang, E.Y.; Hsu, H.C.; Yeh, S.A.; Hsiung, C.Y.; Huang, D.T. Concomitant boost radiation therapy for inoperable non-small-cell lung cancer: Preliminary report of a prospective randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Kaster, T.S.; Yaremko, B.; Palma, D.A.; Rodrigues, G.B. Radical-intent hypofractionated radiotherapy for locally advanced non-small-cell lung cancer: A systematic review of the literature. Clin. Lung Cancer 2015, 16, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.S.; Vashisht, G.; McMenemin, R.; Atherton, P.; McDonald, F.; Simmons, T.; Bradshaw, A.; Kovarik, J.; Turnbull, H.; Dodd, L.; et al. Hypofractionated concomitant chemoradiation in inoperable locally advanced non-small cell lung cancer: A report on 100 patients and a systematic Review. Clin. Oncol. 2019, 31, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Hypofractionated, vs. Conventionally Fractionated Concurrent CRT for Unresectable Stage III NSCLC (HCFCCUSN). Clinical-Trials.gov identifier: NCT03331575. Updated 6 November 2017. Available online: https://clinicaltrials.gov/study/NCT03331575 (accessed on 21 September 2024).
- Thoracic radiotherapy plus durvalumab in elderly and/or frail NSCLC stage III patients unfit for chemotherapy (TRADE-hypo). ClinicalTrials.gov identifier: NCT04351256. Updated 30 August 2024. Available online: https://clinicaltrials.gov/study/NCT04351256 (accessed on 21 September 2024).
- Hypofractionated 3-Dimensional Radiation Therapy in Treating Patients With Newly Diagnosed Stage I, Stage II, or Stage III Non-Small Cell Lung Cancer. ICORG 99-09. ClinicalTrials.gov identifier: NCT00955175. Updated 17 February 2016. Available online: https://clinicaltrials.gov/study/NCT00955175 (accessed on 21 September 2024).
- Comparing Hypo-fractionated Intensity- Modulated Radiation Therapy to Standard- Fractionated IMRT Along With Chemo-therapy and Immunotherapy for Non-Small Cell Lung Cancer. ClinicalTrials.gov identifier: NCT04992780. Updated 7 December 2023. Available online: https://clinicaltrials.gov/study/NCT04992780 (accessed on 21 September 2024).
- Personalized Accelerated ChEmoRadiation (PACER) for Lung Cancer. ClinicalTrials.gov identifier: NCT06080061. Updated 3 July 2024. Available online: https://clinicaltrials.gov/study/NCT06080061 (accessed on 21 September 2024).
Phase II Trials | Sample Size | Hypofractionated Radiation Therapy | Chemotherapy | Survival | Toxicity |
---|---|---|---|---|---|
Qiu 2021 [18] (single centre) | 89 (all stage III) | 51 Gy in 3 Gy daily fractions 3 week break 15–18 Gy in 3 Gy daily fractions boost BED10: 85.8–89.7 tBED10: 81.2–84.7 | Weekly docetaxel and nedaplatin during radiation. Adjuvant systemic therapy not reported. | Median OS: 27 months | Esophagus: Grade 3 acute esophagitis: 16.9%. No grades 4–5 esophagitis. Lung: Grade 3 pneumonitis: 7.9%. No grades 4–5 pneumonitis. |
Zhou 2023 [19] (single centre) | 75 (all stage III) | 40 Gy in 4 Gy daily fractions then 24–28 Gy in 4 Gy daily fractions boost BED10: 84.8–89.6 tBED10: 85.1–89.6 | Weekly docetaxel and nedaplatin during radiation. Adjuvant systemic therapy not reported. | OS: 1 year 94.7% | Esophagus: Grade 2 acute radiation esophagitis: 26.7%. Grade 3 acute radiation esophagitis: 5.3%. No grades 4–5 esophagitis. Lung: Grade 2 acute pneumonitis: 17.3%. No grades 3–5 acute pneumonitis. |
Cagney [20] 2018 (multicentre) | 49 Stage I-II (35%) Stage III (65%) | 60 Gy in 3 Gy daily fractions BED10: 78 tBED10: 76.3 or 66 Gy in 3 Gy daily fractions BED10: 85.8 tBED10: 83.6 or 72 Gy in 3 Gy daily fractions BED10: 93.6 tBED10: 91.1 | Induction chemotherapy allowed, but no concurrent chemotherapy. Adjuvant systemic therapy not reported. | Median OS: 13.6 months | Esophagus: Grade 5 esophageal toxicity: 4%. Lung: Grades 2 or higher pneumonitis: 12%. |
Katsuta [21] 2021 (single centre) | 36 (all stage III); (Closed early due to slow accrual) | 60–70 Gy in 2.5 daily fractions BED10: 75–87.5 tBED10: 72.5–84.7 | Concurrent platinum-based doublet chemotherapy with radiation. No patient received adjuvant durvalumab. | 1 year OS: 88.9% | Esophagus: Grade 3 esophagitis: 2.8%. No grades 4–5 esophagitis. Lung: Grade 3 pneumonitis: 8.3%. No grades 4–5 pneumonitis. |
Casas [22] 2011 (single centre) | 32 (all stage III) | 61.64 Gy (1.8 Gy large fields and boost 0.88 Gy) in 23 daily fractions BED10: 78.2 tBED10: 75.7 | Neoadjuvant paclitaxel and carboplatin with concurrent weekly paclitaxel and radiation. 2 cycles of adjuvant paclitaxel and carboplatin. | Median OS: 16.9 months | Esophagus: Grade 2 esophagitis: 28.1%. Grade 3 esophagitis: 6.2%. No grades 4–5 esophagitis. Lung: No grades 3–4 lung toxicity. Grade 5 lung toxicity: 3.1%. |
Wu [23] 2024 (single centre) | 28 Stage II (64%) Stage III (36%) | 40 Gy in 4 Gy daily fractions then: Adaptive SBRT boost to residual PET avid disease: 25 Gy in 5 Gy daily fractions (low) BED10: 82.9 tBED10: 82.2 OR 30 Gy in 5 Gy daily fractions (intermediate) BED10: 84.2 tBED10: 83.1 OR 35 Gy in 5 Gy daily fractions (high) BED10: 90.4 tBED10: 89.2 | Concurrent weekly carboplatin and paclitaxel. Adjuvant systemic therapy at the discretion of the treating physician. | Overall median: 25.9 months Low dose: 15.3 months Intermediate dose: 42.5 months High dose: Not reached | Esophagus: Grades 3 or higher esophageal toxicity: Low dose: 4% Intermediate dose: 0% High dose: 0% Lung: Grades 3 or higher lung toxicity: Low dose: 4% Intermediate dose: 0% High dose: 7% (2 patients grade 5) |
Ren [24] 2016 (single centre) | 12 (all stage III) Closed early due to slow accrual | 69 Gy in 3 Gy daily fractions BED10: 89.7 tBED10: 87.2 | Concurrent viorelbine and carboplatin OR Concurrent paclitaxel and cisplatin Adjuvant systemic therapy not reported | 1 year OS: 78.6% | Esophagus: Grade 3 radiation esophagitis: 42%. No grades 4–5 esophagitis. Lung: Grade 3 radiation pneumonitis: 17%. No grades 4–5 pneumonitis. |
Hoppe [25] 2022 (multicentre) | 28 (Closed early due to slow accrual) Stage II (21%) Stage III (79%) | Protons: 60 Gy RBE at 2.5 Gy RBE daily fractions; 60 Gy RBE at 3 Gy RBE daily fractions; 60.01 Gy RBE at 3.53 Gy RBE daily fractions 60 Gy RBE at 4 Gy RBE daily fractions | Concurrent platinum-based doublet chemotherapy with radiation; Post-radiation chemotherapy or durvalumab optional. | 1 year OS: 89% | Esophagus: No grade 3 or higher esophagitis. Lung: Grade 3 or higher lung toxicity: 14%. |
Randomized Phase II Trials | Sample Size | Arm 1 | Arm 2 | Survival | Toxicity |
---|---|---|---|---|---|
Cooke [26] 2023 (multicentre) | 150 Stage II (12%) Stage III (88%) (Closed early due to slow accrual) | Dose escalation to whole primary tumor: Mean dose to PTV (IQR): 77 Gy (74.2–80.6 Gy) In 24 daily fractions; BED10: 97.5–107.7 tBED10: 95–105.2 Concurrent or sequential chemotherapy or radiation alone; Consolidation chemotherapy not allowed. | Dose escalation to PET subvolume Mean dose to PTV (IQR): 74.2 Gy (72.3–77.8 Gy) Mean dose to PET boost subvolume: 83.3 Gy (78–90.1 Gy) In 24 daily fractions; BED10: 103.3–123.8 tBED10: 100.9–121.3 Concurrent or sequential chemotherapy or radiation alone; Consolidation chemotherapy not allowed. | Median OS for both arms: 18 months | Overall acute grade 3 or higher for both arms: Dysphagia/ Esophagitis: 11% Dyspnea: 7% Radiation pneumonitis: 4% |
Maguire [27] 2014 (multicentre) | 130 All Stage III | 55 Gy in 20 daily fractions with concurrent cisplatinum and vinorelbine BED10: 70.1 tBED10: 68.5 | Neoadjuvant cisplatinum and vinorelbine; radiotherapy 55 Gy in 20 daily fractions to start 4 weeks after day 1 of the final cycle of chemotherapy BED10: 70.1 tBED10: 68.5 | Median OS: Arm 1: 24.3 months Arm 2: 18.4 months (NS) | Grade 3 or higher esophagitis: Arm 1: 8.8% Arm 2: 8.5% (NS) Grade 3 or higher pneumonitis: Arm 1: 3.1% Arm 2: 5.2% (NS) |
Walraven [28] 2016, van den Heuvel [29] 2014 (multicentre) | 102 Stage II (8%) Stage III (92%) | 66 Gy in 2.75 Gy daily fractions with concurrent cisplatin and no planned adjuvant systemic therapy BED10: 84.2 tBED10: 81.7 | 66 Gy in 2.75 Gy daily fractions with concurrent cisplatin and cetuximab and no planned adjuvant systemic therapy BED10: 84.2 tBED10: 81.7 | Median OS: Arm 1: 33 months Arm 2: 30 months (NS) | Late grade 3 or worse lung toxicity: Arm 1: 0% Arm 2: 4% Late grade 3 or worse esophageal toxicity: Arm 1: 6% Arm 2: 8% |
Randomized Phase III Trials | Sample Size | Arm 1 | Arm 2 | Survival | Toxicity |
---|---|---|---|---|---|
Belderbos [30] 2007 (multicentre) | 158 Stage I (2%) Stage II (4.5%) Stage III (93%) Unknown (0.5%) (Closed early due to slow accrual) | 66 Gy in 24 daily fractions (concurrent with cisplatin with no planned adjuvant systemic therapy) BED10: 84.2 tBED10: 81.7 | 2 cycles gemcitabine and cisplatin followed by 66 Gy in 24 daily fractions with no planned adjuvant systemic therapy BED10: 84.2 tBED10: 81.7 | Median OS: Arm 1: 16.5 months Arm 2: 16.2 months (NS) | Acute esophagitis grades 3–4: Arm 1: 14% Arm 2: 5% Late grade 3 esophagitis: Arm 1: 4% Arm 2: 3% Pneumonitis grades 3–4: Arm 1: 18% Arm 2: 14% |
Iyengar [31] 2021 (multicentre) | 103 (after approximately half the target sample reached, planned interim analysis suggested futility in reaching primary endpoint, leading to study closure) Stage I (1%) Stage II (23%) Stage III (74%) Stage IV (2%) | 60 Gy in 15 daily fractions (all patients ineligible for concurrent chemoradiation; 8% received systemic therapy before radiation and 26% received systemic therapy after radiation) BED10: 84 tBED10: 83.3 | 60 Gy in 30 daily fractions (all patients ineligible for concurrent chemoradiation; 6.5% received systemic therapy before radiation and 37% received systemic therapy after radiation) BED10: 72 tBED10: 68.1 | 1 year OS: Arm 1 37.7% Arm 2 44.6% p = 0.29 | Grades 3–5 toxic effects attributable to radiation: Arm 1: 18 patients Arm 2: 19 patients (NS) |
Kim [32] 2023 (multicentre) | 303 (all stage III) | 60 Gy to GTV and 45 Gy to PTV in 25 daily fractions (concurrent weekly paclitaxel and cisplatin with no planned adjuvant systemic therapy) BED10: 74.4 tBED10: 71.8 | 60 Gy in 30 daily fractions (concurrent weekly paclitaxel and cisplatin with no planned adjuvant systemic therapy) BED10: 72 tBED10: 68.1 | Median OS: Arm 1: 27 months Arm 2: 26 months (NS) | No significant difference in grades 3 or higher radiation pneumonitis or radiation esophagitis; Cumulative 1 year grades 3 or higher esophagitis: Arm1: 2% Arm 2: 6% Cumulative 1 year grades 3 or higher pneumonitis: Arm 1: 3% Arm 2: 8% |
Salazar [33] 1986/Slawson [34] 1988 (single center) | 150 Stage III (97%); Stage IV (3%) | 60 Gy in 12 weekly fractions (5 Gy given once weekly) BED10: 90 tBED10: 77.3 (with no concurrent chemotherapy and no planned adjuvant systemic therapy) | 60 Gy in 30 daily fractions BED10: 72 tBED10: 68.1 (with no concurrent chemotherapy and no planned adjuvant systemic therapy) | 2 year survival Arm 1: 29% Arm 2: 23% (NS) | Moderate to severe acute radiation esophagitis: Arm 1: 4% Arm 2: 55% Symptomatic pneumonitis: Arm 1: 1 patient Arm 2: none |
Sun [35] 2000 (single center) | 97 Stage I (5%); Stage II (21%); Stage III (74%) | 65 Gy in 26 daily fractions (large field 1.8 Gy with concomitant boost 0.7 Gy) BED10: 81.3 tBED10: 78.6 | 70.8 Gy in 38 daily fractions BED10: 84 tBED10: 79.8 | Not reported | Acute grade 3 lung toxicity: Arm1: none Arm 2: 2 patients Acute grade 3 esophagitis: Arm 1: none Arm 2: none No treatment-related mortality |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsao, M.N.; Ung, Y.; Cheung, P.; Poon, I.; Louie, A.V. A Systematic Review of Phase II/III Trials of Hypofractionated versus Conventionally Fractionated Radiation Therapy in Stage III Non-Small Cell Lung Cancer Patients. Cancers 2024, 16, 3384. https://doi.org/10.3390/cancers16193384
Tsao MN, Ung Y, Cheung P, Poon I, Louie AV. A Systematic Review of Phase II/III Trials of Hypofractionated versus Conventionally Fractionated Radiation Therapy in Stage III Non-Small Cell Lung Cancer Patients. Cancers. 2024; 16(19):3384. https://doi.org/10.3390/cancers16193384
Chicago/Turabian StyleTsao, May N., Yee Ung, Patrick Cheung, Ian Poon, and Alexander V. Louie. 2024. "A Systematic Review of Phase II/III Trials of Hypofractionated versus Conventionally Fractionated Radiation Therapy in Stage III Non-Small Cell Lung Cancer Patients" Cancers 16, no. 19: 3384. https://doi.org/10.3390/cancers16193384
APA StyleTsao, M. N., Ung, Y., Cheung, P., Poon, I., & Louie, A. V. (2024). A Systematic Review of Phase II/III Trials of Hypofractionated versus Conventionally Fractionated Radiation Therapy in Stage III Non-Small Cell Lung Cancer Patients. Cancers, 16(19), 3384. https://doi.org/10.3390/cancers16193384