Immunoglobulin Replacement Therapy: Insights into Multiple Myeloma Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pharmacokinetics of Ig Formulations
2.1. Intravenous Immunoglobulins (IVIG)
2.2. Subcutaneous Immunoglobulins (SCIG)
2.3. Facilitated Subcutaneous Immunoglobulins (fSCIG)
2.4. Intramuscular Immunoglobulins (IMIG)
3. Immune-Mediated Effect of IgRT
4. Multiple Myeloma (MM) and Secondary Hypogammaglobulinemia
5. Clinical Evidence of IgRT Efficacy in MM
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Justiz Vaillant, A.A.; Jamal, Z.; Patel, P.; Ramphul, K. Immunoglobulin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ermakov, E.A.; Nevinsky, G.A.; Buneva, V.N. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int. J. Mol. Sci. 2020, 21, 5392. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W.; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef]
- Bodey, G.P. Managing Infections in the Immunocompromised Patient. Clin. Infect. Dis. 2005, 40, S239. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; van der Burgh, A.C.; Peeters, R.P.; van Hagen, P.M.; Dalm, V.A.S.H.; Chaker, L. Determinants of Serum Immunoglobulin Levels: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 664526. [Google Scholar] [CrossRef] [PubMed]
- Jolles, S.; Michallet, M.; Agostini, C.; Albert, M.H.; Edgar, D.; Ria, R.; Trentin, L.; Lévy, V. Treating Secondary Antibody Deficiency in Patients with Haematological Malignancy: European Expert Consensus. Eur. J. Haematol. 2021, 106, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.E.; Bhatnagar, N.K.; Hostoffer, R.W. Hypogammaglobulinemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Otani, I.M.; Lehman, H.K.; Jongco, A.M.; Tsao, L.R.; Azar, A.E.; Tarrant, T.K.; Engel, E.; Walter, J.E.; Truong, T.Q.; Khan, D.A.; et al. Practical Guidance for the Diagnosis and Management of Secondary Hypogammaglobulinemia: A Work Group Report of the AAAAI Primary Immunodeficiency and Altered Immune Response Committees. J. Allergy Clin. Immunol. 2022, 149, 1525–1560. [Google Scholar] [CrossRef]
- Agarwal, S.; Cunningham-Rundles, C. Treatment of Hypogammaglobulinemia in Adults: A Scoring System to Guide Decisions on Immunoglobulin Replacement. J. Allergy Clin. Immunol. 2013, 131, 1699–1701. [Google Scholar] [CrossRef]
- Danieli, M.G.; Antonelli, E.; Auria, S.; Buti, E.; Shoenfeld, Y. Low-dose intravenous immunoglobulin (IVIg) in different immune-mediated conditions. Autoimmun. Rev. 2023, 22, 103451. [Google Scholar] [CrossRef]
- Arumugham, V.B.; Rayi, A. Intravenous Immunoglobulin (IVIG). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sil, A.; Basu, S.; Joshi, V.; Pilania, R.K.; Siniah, S.; Suri, D.; Rawat, A.; Singh, S. Immunoglobulin Replacement Therapies in Inborn Errors of Immunity: A Review. Front. Pediatr. 2024, 12, 1368755. [Google Scholar] [CrossRef]
- Conti, F.; Moratti, M.; Leonardi, L.; Catelli, A.; Bortolamedi, E.; Filice, E.; Fetta, A.; Fabi, M.; Facchini, E.; Cantarini, M.E.; et al. Anti-Inflammatory and Immunomodulatory Effect of High-Dose Immunoglobulins in Children: From Approved Indications to Off-Label Use. Cells 2023, 12, 2417. [Google Scholar] [CrossRef]
- Schwab, I.; Nimmerjahn, F. Intravenous Immunoglobulin Therapy: How Does IgG Modulate the Immune System? Nat. Rev. Immunol. 2013, 13, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.H.O.; Enk, A.H. High-Dose Intravenous Immunoglobulin in Skin Autoimmune Disease. Front. Immunol. 2019, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Velikova, T.; Sekulovski, M.; Bogdanova, S.; Vasilev, G.; Peshevska-Sekulovska, M.; Miteva, D.; Georgiev, T. Intravenous Immunoglobulins as Immunomodulators in Autoimmune Diseases and Reproductive Medicine. Antibodies 2023, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Werth, V.P.; Aggarwal, R.; Charles-Schoeman, C.; Schessl, J.; Levine, T.; Kopasz, N.; Worm, M.; Bata-Csörgő, Z. Efficacy of Intravenous Immunoglobulins (IVIg) in Improving Skin Symptoms in Patients with Dermatomyositis: A Post-Hoc Analysis of the ProDERM Study. EClinicalMedicine 2023, 64, 102234. [Google Scholar] [CrossRef]
- Novaretti, M.C.; Dinardo, C.L. Immunoglobulin: Production, Mechanisms of Action and Formulations. Rev. Bras. Hematol. Hemoter. 2011, 33, 377–382. [Google Scholar] [CrossRef]
- Pitiot, A.; Heuzé-Vourc’h, N.; Sécher, T. Alternative Routes of Administration for Therapeutic Antibodies-State of the Art. Antibodies 2022, 11, 56. [Google Scholar] [CrossRef]
- von Achenbach, C.; Hevia Hernandez, G.; von Gunten, S. The Choice between Intravenous and Subcutaneous Immunoglobulins: Aspects for Consideration. Pharmacology 2022, 107, 556–563. [Google Scholar] [CrossRef]
- Melamed, I.R.; Borte, M.; Trawnicek, L.; Kobayashi, A.L.; Kobayashi, R.H.; Knutsen, A.; Gupta, S.; Smits, W.; Pituch-Noworolska, A.; Strach, M.; et al. Pharmacokinetics of a Novel Human Intravenous Immunoglobulin 10% in Patients with Primary Immunodeficiency Diseases: Analysis of a Phase III, Multicentre, Prospective, Open-Label Study. Eur. J. Pharm. Sci. 2018, 118, 80–86. [Google Scholar] [CrossRef]
- Bonilla, F.A. Pharmacokinetics of Immunoglobulin Administered via Intravenous or Subcutaneous Routes. Immunol. Allergy Clin. N. Am. 2008, 28, 803–819. [Google Scholar] [CrossRef]
- Gratwohl, A.; Doran, J.E.; Bachmann, P.; Scherz, R.; Späth, P.; Baumgartner, C.; Perret, B.; Berger, C.; Nissen, C.; Tichelli, A.; et al. Serum Concentrations of Immunoglobulins and of Antibody Isotypes in Bone Marrow Transplant Recipients Treated with High Doses of Polyspecific Immunoglobulin or with Cytomegalovirus Hyperimmune Globulin. Bone Marrow Transplant. 1991, 8, 275–282. [Google Scholar]
- Guo, Y.; Tian, X.; Wang, X.; Xiao, Z. Adverse Effects of Immunoglobulin Therapy. Front. Immunol. 2018, 9, 1299. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Rojavin, M.; Kiessling, P.; Zenker, O. Pharmacokinetics of Subcutaneous Immunoglobulin and Their Use in Dosing of Replacement Therapy in Patients with Primary Immunodeficiencies. Clin. Immunol. 2011, 139, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Waniewski, J.; Gardulf, A.; Hammarstrom, L. Bioavailability of Gamma-Globulin After Subcutaneous Infusions in Patients with Common Variable Immunodeficiency. J. Clin. Immunol. 1994, 14, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.N.; Griffiths, B.; Mollison, D.; Mollison, P.L. Uptake of IgG After Intramuscular and Subcutaneous Injection. Lancet 1972, 1, 1208–1212. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, R.; Gardulf, A.; Hansen, S.; Leibl, H.; Engl, W.; Lindén, M.; Müller, A.; Hammarström, L. Rapid Subcutaneous Immunoglobulin Administration Every Second Week Results in High and Stable Serum Immunoglobulin G Levels in Patients with Primary Antibody Deficiencies. Clin. Exp. Immunol. 2008, 152, 274–279. [Google Scholar] [CrossRef]
- Misbah, S.; Sturzenegger, M.H.; Borte, M.; Shapiro, R.S.; Wasserman, R.L.; Berger, M.; Ochs, H.D. Subcutaneous immunoglobulin: Opportunities and outlook. Clin Exp Immunol. 2009, 158, 51–59. [Google Scholar] [CrossRef]
- Goyal, N.A.; Karam, C.; Sheikh, K.A.; Dimachkie, M.M. Subcutaneous Immunoglobulin Treatment for Chronic Inflammatory Demyelinating Polyneuropathy. Muscle Nerve 2021, 64, 243–254. [Google Scholar] [CrossRef]
- Kobrynski, L. Subcutaneous Immunoglobulin Therapy: A New Option for Patients with Primary Immunodeficiency Diseases. Biologics 2012, 6, 277–287. [Google Scholar] [CrossRef]
- Ramzi, A.; Maya, S.; Balousha, N.; Sabet, H.; Samir, A.; Roshdy, M.R.; Aljarrah, G.; Saleh, S.; Kertam, A.; Serag, I.; et al. Subcutaneous Immunoglobulins (SCIG) for Chronic Inflammatory Demyelinating Polyneuropathy (CIDP): A Comprehensive Systematic Review of Clinical Studies and Meta-Analysis. Neurol. Sci. 2024, 1–18. [Google Scholar] [CrossRef]
- Ponsford, M.; Carne, E.; Kingdon, C.; Joyce, C.; Price, C.; Williams, C.; El-Shanawany, T.; Williams, P.; Jolles, S. Facilitated Subcutaneous Immunoglobulin (fSCIg) Therapy–Practical Considerations. Clin. Exp. Immunol. 2015, 182, 302–313. [Google Scholar] [CrossRef]
- Wasserman, R.L. Recombinant Human Hyaluronidase-Facilitated Subcutaneous Immunoglobulin Infusion in Primary Immunodeficiency Diseases. Immunotherapy 2017, 9, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Follman, K.; Freshwater, E.; Engler, F.; Yel, L. Population Pharmacokinetics of Immunoglobulin G after Intravenous, Subcutaneous, or Hyaluronidase-Facilitated Subcutaneous Administration in Immunoglobulin-Naive Patients with Primary Immunodeficiencies. Int. Immunopharmacol. 2024, 128, 111447. [Google Scholar] [CrossRef] [PubMed]
- Borte, M.; Hanitsch, L.G.; Mahlaoui, N.; Fasshauer, M.; Huscher, D.; Speletas, M.; Dimou, M.; Kamieniak, M.; Hermann, C.; Pittrow, D.; et al. Facilitated Subcutaneous Immunoglobulin Treatment in Patients with Immunodeficiencies: The FIGARO Study. J. Clin. Immunol. 2023, 43, 1259–1271. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Nagy, A.; Lindner, D.; Duff, K.; Garcia, E.; Ay, H.; Rondon, J.C.; Yel, L. Tolerability and Safety of Large-Volume Hyaluronidase-Facilitated Subcutaneous Immunoglobulin 10% Administered with or without Dose Ramp-Up: A Phase 1 Study in Healthy Participants. J. Clin. Immunol. 2024, 44, 148. [Google Scholar] [CrossRef]
- Polania Gutierrez, J.J.; Munakomi, S. Intramuscular Injection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Katragkou, A.; Roilides, E.; Walsh, T.J. Role of Immunoglobulin Therapy to Prevent and Treat Infections. In Management of Infections in the Immunocompromised Host; Springer: Cham, Switzerland, 2018; pp. 339–358. [Google Scholar] [CrossRef]
- Konikoff, F.; Halevy, J.; Theodor, E. Serum Creatine Kinase After Intramuscular Injections. Postgrad. Med. J. 1985, 61, 595–598. [Google Scholar] [CrossRef]
- Sambandam, S.N.; Rohinikumar, G.J.; Gul, A.; Mounasamy, V. Intramuscular injection abscess due to VRSA: A new health care challenge. Arch. Bone Jt. Surg. 2016, 4, 277. [Google Scholar]
- Jolles, S.; Chapel, H.; Litzman, J. When to Initiate Immunoglobulin Replacement Therapy (IGRT) in Antibody Deficiency: A Practical Approach. Clin. Exp. Immunol. 2017, 188, 333–341. [Google Scholar] [CrossRef]
- Marcotte, H.; Hammarström, L. Passive Immunization: Toward Magic Bullets. In Mucosal Immunology; Academic Press: Cambridge, MA, USA, 2015; pp. 1403–1434. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Suzuki, M.; Kato, C.; Kato, A. Therapeutic Antibodies: Their Mechanisms of Action and the Pathological Findings They Induce in Toxicity Studies. J. Toxicol. Pathol. 2015, 28, 133–139. [Google Scholar] [CrossRef]
- Zahavi, D.; AlDeghaither, D.; O’Connell, A.; Weiner, L.M. Enhancing Antibody-Dependent Cell-Mediated Cytotoxicity: A Strategy for Improving Antibody-Based Immunotherapy. Antibody Ther. 2018, 1, 7–12. [Google Scholar] [CrossRef]
- Wieland, A.; Ahmed, R. Fc Receptors in Antimicrobial Protection. Curr. Top. Microbiol. Immunol. 2019, 423, 119–150. [Google Scholar] [CrossRef] [PubMed]
- Nordahl, E.A.; Rydengård, V.; Nyberg, P.; Nitsche, D.P.; Mörgelin, M.; Malmsten, M.; Björck, L.; Schmidtchen, A. Activation of the Complement System Generates Antibacterial Peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 16879–16884. [Google Scholar] [CrossRef] [PubMed]
- Warnatz, K.; Denz, A.; Dräger, R.; Braun, M.; Groth, C.; Wolff-Vorbeck, G.; Eibel, H.; Schlesier, M.; Peter, H.H. Severe Deficiency of Switched Memory B Cells (CD27(+)IgM(-)IgD(-)) in Subgroups of Patients with Common Variable Immunodeficiency: A New Approach to Classify a Heterogeneous Disease. Blood 2002, 99, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Paquin-Proulx, D.; Sandberg, J.K. Persistent Immune Activation in CVID and the Role of IVIg in Its Suppression. Front. Immunol. 2014, 5, 637. [Google Scholar] [CrossRef]
- Bayry, J.; Lacroix-Desmazes, S.; Kazatchkine, M.D.; Galicier, L.; Lepelletier, Y.; Webster, D.; Lévy, Y.; Eibl, M.M.; Oksenhendler, E.; Hermine, O.; et al. Common Variable Immunodeficiency is Associated with Defective Functions of Dendritic Cells. Blood 2004, 104, 2441–2443. [Google Scholar] [CrossRef]
- Bayry, J.; Fournier, E.M.; Maddur, M.S.; Vani, J.; Wootla, B.; Sibéril, S.; Dimitrov, J.D.; Lacroix-Desmazes, S.; Berdah, M.; Crabol, Y.; et al. Intravenous Immunoglobulin Induces Proliferation and Immunoglobulin Synthesis from B Cells of Patients with Common Variable Immunodeficiency: A Mechanism Underlying the Beneficial Effect of IVIg in Primary Immunodeficiencies. J. Autoimmun. 2011, 36, 9–15. [Google Scholar] [CrossRef]
- Elluru, S.R.; Vani, J.; Delignat, S.; Bloch, M.F.; Lacroix-Desmazes, S.; Kazatchkine, M.D.; Kaveri, S.V.; Bayry, J. Modulation of Human Dendritic Cell Maturation and Function by Natural IgG Antibodies. Autoimmun. Rev. 2008, 7, 487–490. [Google Scholar] [CrossRef]
- Paquin-Proulx, D.; Santos, B.A.; Carvalho, K.I.; Toledo-Barros, M.; Barreto de Oliveira, A.K.; Kokron, C.M.; Kalil, J.; Moll, M.; Kallas, E.G.; Sandberg, J.K. IVIg immune reconstitution treatment alleviates the state of persistent immune activation and suppressed CD4 T cell counts in CVID. PLoS ONE 2013, 8, e75199. [Google Scholar] [CrossRef]
- Perreau, M.; Vigano, S.; Bellanger, F.; Pellaton, C.; Buss, G.; Comte, D.; Roger, T.; Lacabaratz, C.; Bart, P.A.; Levy, Y.; et al. Exhaustion of Bacteria-Specific CD4 T Cells and Microbial Translocation in Common Variable Immunodeficiency Disorders. J. Exp. Med. 2014, 211, 2033–2045. [Google Scholar] [CrossRef]
- Simón-Fuentes, M.; Sánchez-Ramón, S.; Fernández-Paredes, L.; Alonso, B.; Guevara-Hoyer, K.; Vega, M.A.; Corbí, A.L.; Domínguez-Soto, Á. Intravenous Immunoglobulins Promote an Expansion of Monocytic Myeloid-Derived Suppressor Cells (MDSC) in CVID Patients. J. Clin. Immunol. 2022, 42, 1093–1105. [Google Scholar] [CrossRef]
- Saltarella, I.; Desantis, V.; Melaccio, A.; Solimando, A.G.; Lamanuzzi, A.; Ria, R.; Storlazzi, C.T.; Mariggiò, M.A.; Vacca, A.; Frassanito, M.A. Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Tate, J.R. The Paraprotein—An Enduring Biomarker. Clin. Biochem. Rev. 2019, 40, 5–22. [Google Scholar] [PubMed]
- Korde, N.; Kristinsson, S.Y.; Landgren, O. Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM): Novel Biological Insights and Development of Early Treatment Strategies. Blood 2011, 117, 5573–5581. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.Y.; Carbone, J.; Jolles, S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front. Immunol. 2019, 10, 33. [Google Scholar] [CrossRef]
- Allegra, A.; Tonacci, A.; Musolino, C.; Pioggia, G.; Gangemi, S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front. Immunol. 2021, 12, 738915. [Google Scholar] [CrossRef]
- Giralt, S.; Jolles, S.; Kerre, T.; Lazarus, H.M.; Mustafa, S.S.; Papanicolaou, G.A.; Ria, R.; Vinh, D.C.; Wingard, J.R. Recommendations for Management of Secondary Antibody Deficiency in Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23, 719–732. [Google Scholar] [CrossRef]
- Jolles, S.; Borrell, R.; Zouwail, S.; Heaps, A.; Sharp, H.; Moody, M.; Selwood, C.; Williams, P.; Phillips, C.; Hood, K.; et al. Calculated globulin (CG) as a screening test for antibody deficiency. Clin. Exp. Immunol. 2014, 177, 671–678. [Google Scholar] [CrossRef]
- Liu, L.; Shurin, M.R.; Wheeler, S.E. A novel approach to remove interference of therapeutic monoclonal antibody with serum protein electrophoresis. Clin. Biochem. 2020, 75, 40–47. [Google Scholar] [CrossRef]
- Lopes, R.; Caetano, J.; Ferreira, B.; Barahona, F.; Carneiro, E.A.; João, C. The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers 2021, 13, 625. [Google Scholar] [CrossRef]
- Vacca, A.; Ria, R.; Reale, A.; Ribatti, D. Angiogenesis in Multiple Myeloma. Chem. Immunol. Allergy 2014, 99, 180–196. [Google Scholar] [CrossRef]
- Moser-Katz, T.; Joseph, N.S.; Dhodapkar, M.V.; Lee, K.P.; Boise, L.H. Game of Bones: How Myeloma Manipulates Its Microenvironment. Front. Oncol. 2020, 10, 625199. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.M.; Avigan, D.E. Immune Dysregulation in Multiple Myeloma: The Current and Future Role of Cell-Based Immunotherapy. Int. J. Hematol. 2023, 117, 652–659. [Google Scholar] [CrossRef]
- Bailur, J.K.; McCachren, S.S.; Doxie, D.B.; Shrestha, M.; Pendleton, K.; Nooka, A.K.; Neparidze, N.; Parker, T.L.; Bar, N.; Kaufman, J.L.; et al. Early Alterations in Stem-Like/Resident T Cells, Innate and Myeloid Cells in the Bone Marrow in Preneoplastic Gammopathy. JCI Insight. 2019, 5, e127807. [Google Scholar] [CrossRef] [PubMed]
- Zelle-Rieser, C.; Thangavadivel, S.; Biedermann, R.; Brunner, A.; Stoitzner, P.; Willenbacher, E.; Greil, R.; Jöhrer, K. T Cells in Multiple Myeloma Display Features of Exhaustion and Senescence at the Tumor Site. J. Hematol. Oncol. 2016, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Tirier, S.M.; Mallm, J.P.; Steiger, S.; Poos, A.M.; Awwad, M.H.S.; Giesen, N.; Casiraghi, N.; Susak, H.; Bauer, K.; Baumann, A.; et al. Subclone-Specific Microenvironmental Impact and Drug Response in Refractory Multiple Myeloma Revealed by Single-Cell Transcriptomics. Nat. Commun. 2021, 12, 6960. [Google Scholar] [CrossRef] [PubMed]
- Pittari, G.; Vago, L.; Festuccia, M.; Bonini, C.; Mudawi, D.; Giaccone, L.; Bruno, B. Restoring Natural Killer Cell Immunity Against Multiple Myeloma in the Era of New Drugs. Front. Immunol. 2017, 8, 1444. [Google Scholar] [CrossRef]
- Saltarella, I.; Link, A.; Lamanuzzi, A.; Reichen, C.; Robinson, J.; Altamura, C.; Melaccio, A.; Solimando, A.G.; Ria, R.; Mariggiò, M.A.; et al. Improvement of Daratumumab- or Elotuzumab-Mediated NK Cell Activity by the Bi-Specific 4-1BB Agonist, DARPin α-FAPx4-1BB: A Preclinical Study in Multiple Myeloma. Biomed. Pharmacother. 2024, 176, 116877. [Google Scholar] [CrossRef]
- Leone, P.; Solimando, A.G.; Malerba, E.; Fasano, R.; Buonavoglia, A.; Pappagallo, F.; De Re, V.; Argentiero, A.; Silvestris, N.; Vacca, A.; et al. Actors on the Scene: Immune Cells in the Myeloma Niche. Front. Oncol. 2020, 10, 599098. [Google Scholar] [CrossRef]
- Prabhala, R.H.; Pelluru, D.; Fulciniti, M.; Prabhala, H.K.; Nanjappa, P.; Song, W.; Pai, C.; Amin, S.; Tai, Y.; Richardson, P.G.; et al. Elevated IL-17 Produced by Th17 Cells Promotes Myeloma Cell Growth and Inhibits Immune Function in Multiple Myeloma. Blood 2010, 26, 5385–5392. [Google Scholar] [CrossRef]
- Braga, M.T.W.; Atanackovic, D.; Colleoni, G.W.B. The Role of Regulatory T Cells and TH17 Cells in Multiple Myeloma. Clin. DEV. Immunol. 2012, 2012, 293479. [Google Scholar] [CrossRef]
- Frassanito, M.A.; Ruggieri, S.; Desantis, V.; Di Marzo, L.; Leona, P.; Racanelli, V.; Fumarulo, R.; Dammacco, F.; Vacca, A. Myeloma cells act as tolerogenic antigen-presenting cells and induce regulatory T cells in vitro. Eur. J. Haematol. 2015, 1, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Blimark, C.; Holmberg, E.; Mellqvist, U.H.; Landgren, O.; Björkholm, M.; Hultcrantz, M.; Kjellander, C.; Turesson, I.; Kristinsson, S.Y. Multiple myeloma and infections: A population-based study on 9253 multiple myeloma patients. Haematologica 2015, 100, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Desantis, V.; Borrelli, P.; Panebianco, T.; Fusillo, A.; Bochicchio, D.; Solito, A.; Pappagallo, F.; Mascolo, A.; Ancona, A.; Cicco, S.; et al. Comprehensive analysis of clinical outcomes, infectious complications and microbiological data in newly diagnosed multiple myeloma patients: A retrospective observational study of 92 subjects. Clin. Exp. Med. 2024, 24, 137. [Google Scholar] [CrossRef] [PubMed]
- Heaney, J.L.J.; Campbell, J.P.; Iqbal, G.; Cairns, D.; Richter, A.; Child, J.A.; Gregory, W.; Jackson, G.; Kaiser, M.; Owen, R.; et al. Characterisation of immunoparesis in newly diagnosed myeloma and its impact on progression-free and overall survival in both old and recent myeloma trials. Leukemia 2018, 32, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Encinas, C.; Hernandez-Rivas, J.Á.; Oriol, A.; Rosiñol, L.; Blanchard, M.J.; Bellón, J.M.; García-Sanz, R.; de la Rubia, J.; de la Guía, A.L.; Jímenez-Ubieto, A.; et al. A simple score to predict early severe infections in patients with newly diagnosed multiple myeloma. Blood Cancer J. 2022, 12, 68. [Google Scholar] [CrossRef]
- Augustson, B.M.; Begum, G.; Dunn, J.A.; Barth, N.J.; Davies, F.; Morgan, G.; Behrens, J.; Smith, A.; Child, J.A.; Drayson, M.T. Early mortality after diagnosis of multiple myeloma: Analysis of patients entered onto the United kingdom medical research council trials between 1980 and 2002–medical research council adult leukaemia working party. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 9219–9226. [Google Scholar] [CrossRef]
- Chahin, M.; Branham, Z.; Fox, A.; Leurinda, C.; Keruakous, A.R. Clinical Considerations for Immunoparesis in Multiple Myeloma. Cancers 2022, 14, 2278. [Google Scholar] [CrossRef]
- Engelhardt, M.; Ihorst, G.; Singh, M.; Rieth, A.; Saba, G.; Pellan, M.; Lebioda, A. Real-World Evaluation of Health-Related Quality of Life in Patients With Multiple Myeloma from Germany. Clin. Lymphoma Myeloma Leuk. 2021, 21, e160–e175. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Chen, M.; Gu, J.; Huang, B.; Zheng, D.; Li, J. Health-related quality of life of patients with multiple myeloma: A real-world study in China. Cancer Med. 2020, 9, 7896–7913. [Google Scholar] [CrossRef]
- Vassilopoulos, S.; Vassilopoulos, A.; Kalligeros, M.; Shehadeh, F.; Mylonakis, E. Cumulative Incidence and Relative Risk of Infection in Patients With Multiple Myeloma Treated With Anti-CD38 Monoclonal Antibody-Based Regimens: A Systematic Review and Meta-analysis. Open Forum Infect. Dis. 2022, 9, ofac574. [Google Scholar] [CrossRef]
- Swan, D.; Murphy, P.; Glavey, S.; Quinn, J. Bispecific Antibodies in Multiple Myeloma: Opportunities to Enhance Efficacy and Improve Safety. Cancers 2023, 15, 1819. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.S. Steroid-induced secondary immune deficiency. Ann. Allergy Asthma Immunol. 2023, 130, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Valkovic, T.; Marcelic, L.; Valkovic, F. Invasive fungal infections in patients with multiple myeloma: A possible growing problem in hematology and infectious diseases. Ther. Adv. Infect. Dis. 2024, 11, 20499361241238518. [Google Scholar] [CrossRef] [PubMed]
- Chapel, H.M.; Lee, M.; Hargreaves, R.; Pamphilon, D.H.; Prentice, A.G. Randomised trial of intravenous immunoglobulin as prophylaxis against infection in plateau-phase multiple myeloma. The UK Group for Immunoglobulin Replacement Therapy in Multiple Myeloma. Lancet 1994, 343, 1059–1063. [Google Scholar] [CrossRef]
- Guerola, L.D.C.; Sacristán, A.A.G.; Portolés, A.; Jasso, M.; Guerra-Galán, T.; de la Fuente-Munoz, E.; Palacios-Ortega, M.; Fernández-Arquero, M.; Cuesta-Mínguez, C.; Rodríguez-Sanz, A.; et al. Economic impact of immunoglobulin replacement therapy in secondary immunodeficiency to hematological cancer: A single center observational study. Front. Immunol. 2024, 15, 1413231. [Google Scholar] [CrossRef]
- Blombery, P.; Prince, H.M.; Worth, L.J.; Main, J.; Yang, M.; Wood, E.M.; Westerman, D.A. Prophylactic intravenous immunoglobulin during autologous haemopoietic stem cell transplantation for multiple myeloma is not associated with reduced infectious complications. Ann. Hematol. 2011, 90, 1167–1172. [Google Scholar] [CrossRef]
- Girmenia, C.; Cavo, M.; Offidani, M.; Scaglione, F.; Corso, A.; Di Raimondo, F.; Musto, P.; Petrucci, M.T.; Barosi, G. Management of infectious complications in multiple myeloma patients: Expert panel consensus-based recommendations. Blood Rev. 2019, 34, 84–94. [Google Scholar] [CrossRef]
- Vacca, A.; Melaccio, A.; Sportelli, A.; Solimando, A.G.; Dammacco, F.; Ria, R. Subcutaneous immunoglobulins in patients with multiple myeloma and secondary hypogammaglobulinemia: A randomized trial. Clin. Immunol. 2018, 191, 110–115. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Hizentra Assessment Report; EMA/618177/20212021; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2021. [Google Scholar]
- European Medicines Agency (EMA). Guideline on core SmPC for Human Normal Immunoglobulin for Intravenous Administration (IVIg); EMA/CHMP/BPWP/94038/2007 Rev. 6.2021; European Medicines Agency (EMA): Amsterdam, The Netherlands, 2021. [Google Scholar]
- Wudhikarn, K.; Wills, B.; Lesokhin, A.M. Monoclonal antibodies in multiple myeloma: Current and emerging targets and mechanisms of action. Best practice & research. Clin. Haematol. 2020, 33, 101143. [Google Scholar] [CrossRef]
- Lim, K.J.F.; Quach, H. The Role of Intravenous Immunoglobulin (IVIG) in Reducing Infection Risk in Multiple Myeloma (MM) Patients Receiving Immune-Based Therapies: A Single Center. Blood 2023, 142 (Suppl. S1), 6671. [Google Scholar] [CrossRef]
- Frerichs, K.A.; Bosman, P.W.C.; van Velzen, J.F.; Fraaij, P.L.A.; Koopmans, M.P.G.; Rimmelzwaan, G.F.; Nijhof, I.S.; Bloem, A.C.; Mutis, T.; Zweegman, S.; et al. Effect of daratumumab on normal plasma cells, polyclonal immunoglobulin levels, and vaccination responses in extensively pre-treated multiple myeloma patients. Haematologica 2020, 105, e302–e306. [Google Scholar] [CrossRef] [PubMed]
- Lancman, G.; Sastow, D.; Aslanova, M.; Moshier, E.; Cho, H.J.; Jagannath, S.; Madduri, D.; Parekh, S.; Richard, S.; Richter, J.; et al. Effect of Intravenous Immunoglobulin on Infections in Multiple Myeloma (MM) Patients Receiving Daratumumab. Blood 2020, 136 (Suppl. S1), 6–7. [Google Scholar] [CrossRef]
- Geraldes, C.; Neves, M.; Chacim, S.; da Costa, F.L. Practical Considerations for the Daratumumab Management in Portuguese Routine Clinical Practice: Recommendations from an Expert Panel of Hematologists. Front. Oncol. 2022, 11, 817762. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Kastritis, E.; Maurer, M.S.; Zonder, J.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Bumma, N.; Kaufman, J.L.; et al. Daratumumab plus CyBorD for patients with newly diagnosed AL amyloidosis: Safety run-in results of ANDROMEDA. Blood 2020, 136, 71–80. [Google Scholar] [CrossRef]
- Vitkon, R.; Netanely, D.; Levi, S.; Ziv-Baran, T.; Ben-Yzak, R.; Katz, B.Z.; Benyamini, N.; Trestman, S.; Mittelman, M.; Cohen, Y.; et al. Daratumumab in combination with proteasome inhibitors, rapidly decreases polyclonal immunoglobulins and increases infection risk among relapsed multiple myeloma patients: A single center retrospective study. Ther. Adv. Hematol. 2022, 12, 20406207211035272. [Google Scholar] [CrossRef]
- Sim, B.Z.; Longhitano, A.; Er, J.; Harrison, S.J.; Slavin, M.A.; Teh, B.W. Infectious complications of bispecific antibody therapy in patients with multiple myeloma. Blood Cancer J. 2023, 13, 34. [Google Scholar] [CrossRef]
- Lancman, G.; Parsa, K.; Kotlarz, K.; Avery, L.; Lurie, A.; Lieberman-Cribbin, A.; Cho, H.J.; Parekh, S.S.; Richard, S.; Richter, J.; et al. IVIg Use Associated with Ten-Fold Reduction of Serious Infections in Multiple Myeloma Patients Treated with Anti-BCMA Bispecific Antibodies. Blood Cancer Discov. 2023, 4, 440–451. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Wonnaparhown, A.; Hilal, T.; Squire, J.; Freeman, C.; Fonseca, R. IgG replacement in multiple myeloma. Blood Cancer J. 2024, 14, 124. [Google Scholar] [CrossRef]
- Hill, J.A.; Giralt, S.; Torgerson, T.R.; Lazarus, H.M. CAR-T—And a side order of IgG, to go?—Immunoglobulin replacement in patients receiving CAR-T cell therapy. Blood Rev. 2019, 38, 100596. [Google Scholar] [CrossRef]
- Kampouri, E.; Walti, C.S.; Gauthier, J.; Hill, J.A. Managing hypogammaglobulinemia in patients treated with CAR-T-cell therapy: Key points for clinicians. Expert. Rev. Hematol. 2022, 15, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Jolles, S.; Giralt, S.; Kerre, T.; Lazarus, H.M.; Mustafa, S.S.; Ria, R.; Vinh, D.C. Agents contributing to secondary immunodeficiency development in patients with multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphoma: A systematic literature review. Front. Oncol. 2023, 13, 1098326. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saltarella, I.; Altamura, C.; Solimando, A.G.; D’Amore, S.; Ria, R.; Vacca, A.; Desaphy, J.-F.; Frassanito, M.A. Immunoglobulin Replacement Therapy: Insights into Multiple Myeloma Management. Cancers 2024, 16, 3190. https://doi.org/10.3390/cancers16183190
Saltarella I, Altamura C, Solimando AG, D’Amore S, Ria R, Vacca A, Desaphy J-F, Frassanito MA. Immunoglobulin Replacement Therapy: Insights into Multiple Myeloma Management. Cancers. 2024; 16(18):3190. https://doi.org/10.3390/cancers16183190
Chicago/Turabian StyleSaltarella, Ilaria, Concetta Altamura, Antonio Giovanni Solimando, Simona D’Amore, Roberto Ria, Angelo Vacca, Jean-François Desaphy, and Maria Antonia Frassanito. 2024. "Immunoglobulin Replacement Therapy: Insights into Multiple Myeloma Management" Cancers 16, no. 18: 3190. https://doi.org/10.3390/cancers16183190
APA StyleSaltarella, I., Altamura, C., Solimando, A. G., D’Amore, S., Ria, R., Vacca, A., Desaphy, J. -F., & Frassanito, M. A. (2024). Immunoglobulin Replacement Therapy: Insights into Multiple Myeloma Management. Cancers, 16(18), 3190. https://doi.org/10.3390/cancers16183190