Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. DNA Extraction from Peripheral Blood
2.4. DNA Extraction from Paraffin-Embeded Slides
2.5. NRF2 and KEAP1 Sequencing
- Forward primer: 5′-TTGCAGGTATGAGCCAGAGC-3′;
- Reverse primer: 5′-GATGGTAGGGGGTGTTCCTG-3′.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tornatore, L.; Thotakura, A.K.; Bennett, J.; Moretti, M.; Franzoso, G. The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends Cell Biol. 2012, 22, 557–566. [Google Scholar] [CrossRef]
- Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef] [PubMed]
- Antoun, N.B.; Chioni, A.-M. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int. J. Mol. Sci. 2023, 24, 12222. [Google Scholar] [CrossRef] [PubMed]
- Smolková, K.; Mikó, E.; Kovács, T.; Leguina-Ruzzi, A.; Sipos, A.; Bai, P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxidants Redox Signal. 2020, 33, 966–997. [Google Scholar] [CrossRef]
- Chen, C.-H. Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense, 1st ed.; Springer Nature: Cham, Switzerland, 2020; pp. 71–80. [Google Scholar] [CrossRef]
- Almeida, M.; Soares, M.; Ramalhinho, A.C.; Moutinho, J.F.; Breitenfeld, L.; Pereira, L. The prognostic value of NRF2 in breast cancer patients: A systematic review with meta-analysis. Breast Cancer Res. Treat. 2020, 179, 523–532. [Google Scholar] [CrossRef]
- Almeida, M.; Soares, M.; Ramalhinho, A.C.; Moutinho, J.F.; Breitenfeld, L. Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1, NRF2 and GSTM1 genetic polymorphisms. Mol. Biol. Rep. 2019, 46, 3213–3224. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Cheung, M.-C.; Moi, P.; Chan, K.; Kan, Y.W. Chromosomal localization of the human NF-E2 family of bZIP transcription factors by fluorescence in situ hybridization. Hum. Genet. 1995, 95, 265–269. [Google Scholar] [CrossRef]
- Teshiba, R.; Tajiri, T.; Sumitomo, K.; Masumoto, K.; Taguchi, T.; Yamamoto, K. Identification of a KEAP1 Germline Mutation in a Family with Multinodular Goitre. PLoS ONE 2013, 8, e65141. [Google Scholar] [CrossRef]
- Panieri, E.; Telkoparan-Akillilar, P.; Suzen, S.; Saso, L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules 2020, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-Y.; Lee, D.-Y.; Chun, K.-S.; Kim, E.-H. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism. Int. J. Mol. Sci. 2021, 22, 4376. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, J.M.; Tengström, M.; Winqvist, R.; Jukkola-Vuorinen, A.; Pylkäs, K.; Kosma, V.-M.; Soini, Y.; Mannermaa, A. KEAP1 Genetic Polymorphisms Associate with Breast Cancer Risk and Survival Outcomes. Clin. Cancer Res. 2015, 21, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, L.A.; Fazio, V.M. Keap1/Nrf2 impairing revised: Are we missing the single nucleotide polymorphisms? J. Thorac. Dis. 2016, 8, E1752–E1754. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, J.M.; Tengström, M.; Kosma, V.-M.; Kinnula, V.L.; Mannermaa, A.; Soini, Y. Genetic Polymorphisms and Protein Expression of NRF2 and Sulfiredoxin Predict Survival Outcomes in Breast Cancer. Cancer Res. 2012, 72, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, Y.; Mitsuda, Y.; Tsuruta, Y.; Hamajima, N.; Niwa, T. Polymorphism of Nrf2, an Antioxidative Gene, is Associated with Blood Pressure and Cardiovascular Mortality in Hemodialysis Patients. Int. J. Med Sci. 2014, 11, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Vogrinc, D.; Kramberger, M.G.; Emeršič, A.; Čučnik, S.; Goričar, K.; Dolžan, V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer’s Disease and Dementia. Antioxidants 2023, 12, 316. [Google Scholar] [CrossRef] [PubMed]
- Fiala, C.; Diamandis, E.P. Mutations in normal tissues—Some diagnostic and clinical implications. BMC Med. 2020, 18, 283. [Google Scholar] [CrossRef]
- Euhus, D.M.; Cler, L.; Shivapurkar, N.; Milchgrub, S.; Peters, G.N.; Leitch, A.M.; Heda, S.; Gazdar, A.F. Loss of heterozygosity in benign breast epithelium in relation to breast cancer risk. JNCI J. Natl. Cancer Inst. 2002, 94, 858–860. [Google Scholar] [CrossRef]
- Zhang, L.; Vijg, J. Somatic Mutagenesis in Mammals and Its Implications for Human Disease and Aging. Annu. Rev. Genet. 2018, 52, 397–419. [Google Scholar] [CrossRef]
- Akiyama, M.; Kyoizumi, S.; Hirai, Y.; Kusunoki, Y.; Iwamoto, K.S.; Nakamura, N. Mutation frequency in human blood cells increases with age. Mutat. Res. 1995, 338, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, K.B.; Yeager, M.; Zhou, W.; Wacholder, S.; Wang, Z.; Rodriguez-Santiago, B.; Hutchinson, A.; Deng, X.; Liu, C.; Horner, M.-J.; et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 2012, 44, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; El-Sayed, M.E.; Lee, A.H.S.; Elston, C.W.; Grainge, M.J.; Hodi, Z.; Blamey, R.W.; Ellis, I.O. Prognostic Significance of Nottingham Histologic Grade in Invasive Breast Carcinoma. J. Clin. Oncol. 2008, 26, 3153–3158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Acs, B.; Robertson, S.; Liu, B.; Solorzano, L.; Wählby, C.; Hartman, J.; Rantalainen, M. Improved breast cancer histological grading using deep learning. Ann. Oncol. 2021, 33, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, D.P.; Southwick, H.W.; Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953, 6, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, E.; Thorn, G.J.; Ross-Adams, H.; Jones, L.J.; Chelala, C. Field cancerization in breast cancer. J. Pathol. 2022, 257, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, M. The microcosmos of intratumor heterogeneity: The space-time of cancer evolution. Oncogene 2019, 39, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Curtius, K.; Wright, N.A.; Graham, T.A. An evolutionary perspective on field cancerization. Nat. Rev. Cancer 2018, 18, 19–32. [Google Scholar] [CrossRef]
- Dakubo, G.D.; Jakupciak, J.P.; A Birch-Machin, M.; Parr, R.L. Clinical implications and utility of field cancerization. Cancer Cell Int. 2007, 7, 2. [Google Scholar] [CrossRef]
Parameter | n (%) |
---|---|
Controls | |
Total | 23 (100) |
Age | |
Mean | 52.70 |
Minimum | 24 |
Maximum | 87 |
Breast Cancer Patients | |
Total | 63 (100) |
Age | |
Mean | 65.08 |
Minimum | 36 |
Maximum | 95 |
ER status | |
Positive | 63 (100) |
Negative | 0 |
PR status | |
Positive | 48 (76.2) |
Negative | 14 (22.2) |
Missing | 1 (1.6) |
HER2 status | |
Positive | 8 (12.7) |
Negative | 54 (85.7) |
Missing | 1 (1.6) |
Histological Grade | |
1 | 12 (19) |
2 | 36 (57.1) |
3 | 15 (23.8) |
SNP | Controls n (%) | HWE | Cases n (%) | HWE | OR (95% CI) 1 | p-Value |
---|---|---|---|---|---|---|
23 (100) | 63 (100) | |||||
NRF2 | ||||||
rs35652124 | ||||||
AA (wt) | 13 (56.52) | 0.895 | 33 (52.38) | 0.932 | Ref. | |
AG | 8 (34.78) | 26 (41.27) | 1.280 (0.462–3.550) | 0.634 | ||
GG | 2 (8.70) | 4 (6.35) | 0.788 (0.128–4.837) | 0.796 | ||
rs6706649 | ||||||
GG (wt) | 19 (82.61) | 0.293 | 50 (79.37) | 0.961 | Ref. | |
GA | 3 (13.04) | 12 (19.05) | 1.520 (0.386–5.988) | 0.547 | ||
AA | 1 (4.35) | 1 (1.59) | 0.380 (0.023–6.386) | 0.486 | ||
rs6721961 | ||||||
CC (wt) | 18 (78.26) | 0.843 | 48 (76.19) | 1 | Ref. | |
CA | 5 (21.74) | 14 (22.22) | 1.050 (0.331–3.336) | 0.934 | ||
AA | 0 | 1 (1.59) | NA | 0.541 | ||
KEAP1 | ||||||
rs1048290 | ||||||
CC (wt) | 8 (34.78) | 0.901 | 18 (28.57) | 0.417 | Ref. | |
CG | 12 (52.17) | 36 (57.14) | 1.333 (0.463–3.843) | 0.594 | ||
GG | 3 (13.04) | 9 (14.29) | 1.333 (0.283–6.279) | 0.715 |
SNP | Blood n (%) | HWE | Surrounding Tissue n (%) | HWE | Tumour Tissue n (%) | HWE |
---|---|---|---|---|---|---|
21 (100) | 21 (100) | 21 (100) | ||||
NRF2 | ||||||
rs35652124 | ||||||
AA (wt) | 11 (52.39) | 0.884 | 14 (66.67) | 0.094 | 12 (57.14) | 0.974 |
AG | 9 (42.85) | 4 (19.05) | 8 (38.09) | |||
GG | 1 (4.76) | 3 (14.29) | 1 (4.76) | |||
rs6706649 | ||||||
GG (wt) | 19 (90.48) | 0.974 | 15 (71.43) | <0.001 * | 16 (76.19) | 0.595 |
GA | 2 (9.52) | 1 (4.76) | 4 (19.05) | |||
AA | 0 | 5 (23.81) | 1 (4.76) | |||
rs6721961 | ||||||
CC (wt) | 17 (80.95) | 0.890 | 19 (90.48) | 0.974 | 18 (85.71) | 0.940 |
CA | 4 (19.05) | 2 (9.52) | 3 (14.29) | |||
AA | 0 | 0 | 0 | |||
KEAP1 | 16 (100) | 16 (100) | 16 (100) | |||
rs1048290 | ||||||
CC (wt) | 5 (31.25) | 0.802 | 7 (43.75) | 0.807 | 5 (31.25) | 0.802 |
CG | 9 (56.25) | 8 (50) | 9 (56.25) | |||
GG | 2 (12.5) | 1 (6.25) | 2 (12.5) |
Blood n (%) | Surrounding Tissue n (%) | p-Value OR (95% CI) | Surrounding Tissue n (%) | Tumour Tissue n (%) | p-Value OR (95% CI) | Blood n (%) | Tumour Tissue n (%) | p-Value OR (95% CI) 1 | |
---|---|---|---|---|---|---|---|---|---|
NRF2 | |||||||||
rs35652124 | |||||||||
A | 31 (36.9) | 32 (38.1) | 0.801 0.881 (0.328–2.367) | 32 (38.1) | 32 (38.1) | >0.999 1 (0.366–2.730) | 31 (36.9) | 32 (38.1) | 0.801 0.881 (0.328–2.367) |
G | 11 (13.1) | 10 (11.9) | 10 (11.9) | 10 (11.9) | 11 (13.1) | 10 (11.9) | |||
rs6706649 | |||||||||
G | 40 (47.6) | 31 (36.9) | 0.007 * 7.097 (1.465–34.384) | 31 (36.9) | 36 (42.9) | 0.175 0.470 (0.156–1.418) | 40 (47.6) | 36 (42.9) | 0.137 3.333 (0.632–17.574) |
A | 2 (2.4) | 11 (13.1) | 11 (13.1) | 6 (7.1) | 2 (2.4) | 6 (7.1) | |||
rs6721961 | |||||||||
C | 38 (45.2) | 40 (47.6) | 0.397 0.475 (0.082–2.746) | 40 (47.6) | 39 (46.4) | 0.645 1.538 (0.244–9.714) | 38 (45.2) | 39 (46.4) | 0.693 0.731 (0.153–3.485) |
A | 4 (4.8) | 2 (2.4) | 2 (2.4) | 3 (3.6) | 4 (4.8) | 3 (3.6) | |||
KEAP1 | |||||||||
rs1048290 | |||||||||
C | 19 (29.7) | 22 (34.4) | 0.434 0.664 (0.238–1.857) | 22 (34.4) | 19 (29.7) | 0.434 1.505 (0.539–4.207) | 19 (29.7) | 19 (29.7) | >0.999 1 (0.369–2.712) |
G | 13 (20.3) | 10 (15.6) | 10 (15.6) | 13 (20.3) | 13 (20.3) | 13 (20.3) |
Type of Tissue | Genotypes Frequency n (%) | p-Value | |||
---|---|---|---|---|---|
NRF2—rs35652124 | |||||
AA | AG | GG | |||
Blood | 11 (52.40) | 9 (42.90) | 1 (4.80) | Ref. | |
Surrounding Tissue | 14 (66.70) | 4 (19) | 3 (14.30) | 0.023 * | Ref. |
Tumour Tissue | 12 (57.10) | 8 (38.10) | 1 (4.80) | 0.950 | 0.041 * |
NRF2—rs6706649 | |||||
GG | GA | AA | |||
Blood | 19 (90.5) | 2 (9.5) | 0 | Ref. | |
Surrounding Tissue | 15 (71.4) | 1 (4.8) | 5 (23.8) | 0.055 | Ref. |
Tumour Tissue | 16 (76.2) | 4 (19) | 1 (4.80) | 0.382 | 0.105 |
NRF2—rs6721961 | |||||
CC | CA | AA | |||
Blood | 17 (81) | 4 (19) | 0 | Ref. | |
Surrounding Tissue | 19 (90.5) | 2 (9.5) | 0 | 0.378 | Ref. |
Tumour Tissue | 18 (85.7) | 3 (14.3) | 0 | 0.679 | 0.634 |
KEAP1—rs1048290 | |||||
CC | CG | GG | |||
Blood | 5 (31.3) | 9 (56.3) | 2 (12.5) | Ref. | |
Surrounding Tissue | 7 (43.8) | 8 (50) | 1 (6.3) | 0.696 | Ref. |
Tumour Tissue | 5 (31.3) | 9 (56.3) | 2 (12.5) | >0.999 | 0.696 |
Type of Tissue | Overall % in Each Histological Grade | p-Value | |||
---|---|---|---|---|---|
Blood | NRF2—rs35652124 | ||||
Histological Grade | AA | AG | GG | ||
1 | 3 (42.9) | 4 (57.1) | 0 | Ref. | |
2 | 6 (54.5) | 4 (36.4) | 1 (9.1) | 0.288 | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.390 | 0.307 |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 3 (42.9) | 2 (28.6) | 2 (28.6) | Ref. | |
2 | 9 (81.8) | 1 (9.1) | 1 (9.1) | 0.393 | Ref. |
3 | 2 (66.7) | 1 (9.1) | 0 | 0.188 | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 4 (57.1) | 3 (42.9) | 0 | Ref. | |
2 | 6 (54.5) | 4 (36.4) | 1 (9.1) | 0.809 | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.023 * | 0.307 |
Blood | NRF2—rs6706649 | ||||
Histological Grade | GG | GA | AA | ||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 11 (100) | 0 | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 5 (71.4) | 1 (14.3) | 1 (14.3) | Ref. | |
2 | 9 (81.8) | 0 | 2 (18.2) | 0.114 | Ref. |
3 | 1 (33.3) | 0 | 2 (66.7) | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 5 (71.4) | 1 (14.3) | 1 (14.3) | Ref. | |
2 | 9 (81.8) | 2 (18.2) | 0 | 0.002 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.043 * | <0.001 * |
Blood | NRF2—rs6721961 | ||||
Histological Grade | CC | CA | AA | ||
1 | 5 (71.4) | 2 (28.6) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 3 (100) | 0 | 0 | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Blood | KEAP1—rs1048290 | ||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 4 (44.4) | 3 (33.3) | 22.2 | <0.001 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 6 (66.7) | 2 (22.2) | 1 (11.1) | 0.029 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 4 (44.4) | 3 (33.3) | 2 (22.2) | <0.001 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, M.; Ferreira, C.L.; Tomé, R.M.; Fonseca-Moutinho, J.; Polónia, A.; Ramalhinho, A.C.; Breitenfeld, L. Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers 2024, 16, 2411. https://doi.org/10.3390/cancers16132411
Almeida M, Ferreira CL, Tomé RM, Fonseca-Moutinho J, Polónia A, Ramalhinho AC, Breitenfeld L. Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers. 2024; 16(13):2411. https://doi.org/10.3390/cancers16132411
Chicago/Turabian StyleAlmeida, Micaela, Catarina L. Ferreira, Rosa Maria Tomé, José Fonseca-Moutinho, António Polónia, Ana Cristina Ramalhinho, and Luiza Breitenfeld. 2024. "Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer" Cancers 16, no. 13: 2411. https://doi.org/10.3390/cancers16132411
APA StyleAlmeida, M., Ferreira, C. L., Tomé, R. M., Fonseca-Moutinho, J., Polónia, A., Ramalhinho, A. C., & Breitenfeld, L. (2024). Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers, 16(13), 2411. https://doi.org/10.3390/cancers16132411