Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. DNA Extraction from Peripheral Blood
2.4. DNA Extraction from Paraffin-Embeded Slides
2.5. NRF2 and KEAP1 Sequencing
- Forward primer: 5′-TTGCAGGTATGAGCCAGAGC-3′;
- Reverse primer: 5′-GATGGTAGGGGGTGTTCCTG-3′.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tornatore, L.; Thotakura, A.K.; Bennett, J.; Moretti, M.; Franzoso, G. The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends Cell Biol. 2012, 22, 557–566. [Google Scholar] [CrossRef]
- Smolarz, B.; Nowak, A.Z.; Romanowicz, H. Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers 2022, 14, 2569. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef] [PubMed]
- Antoun, N.B.; Chioni, A.-M. Dysregulated Signalling Pathways Driving Anticancer Drug Resistance. Int. J. Mol. Sci. 2023, 24, 12222. [Google Scholar] [CrossRef] [PubMed]
- Smolková, K.; Mikó, E.; Kovács, T.; Leguina-Ruzzi, A.; Sipos, A.; Bai, P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxidants Redox Signal. 2020, 33, 966–997. [Google Scholar] [CrossRef]
- Chen, C.-H. Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense, 1st ed.; Springer Nature: Cham, Switzerland, 2020; pp. 71–80. [Google Scholar] [CrossRef]
- Almeida, M.; Soares, M.; Ramalhinho, A.C.; Moutinho, J.F.; Breitenfeld, L.; Pereira, L. The prognostic value of NRF2 in breast cancer patients: A systematic review with meta-analysis. Breast Cancer Res. Treat. 2020, 179, 523–532. [Google Scholar] [CrossRef]
- Almeida, M.; Soares, M.; Ramalhinho, A.C.; Moutinho, J.F.; Breitenfeld, L. Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1, NRF2 and GSTM1 genetic polymorphisms. Mol. Biol. Rep. 2019, 46, 3213–3224. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Cheung, M.-C.; Moi, P.; Chan, K.; Kan, Y.W. Chromosomal localization of the human NF-E2 family of bZIP transcription factors by fluorescence in situ hybridization. Hum. Genet. 1995, 95, 265–269. [Google Scholar] [CrossRef]
- Teshiba, R.; Tajiri, T.; Sumitomo, K.; Masumoto, K.; Taguchi, T.; Yamamoto, K. Identification of a KEAP1 Germline Mutation in a Family with Multinodular Goitre. PLoS ONE 2013, 8, e65141. [Google Scholar] [CrossRef]
- Panieri, E.; Telkoparan-Akillilar, P.; Suzen, S.; Saso, L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules 2020, 10, 791. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-Y.; Lee, D.-Y.; Chun, K.-S.; Kim, E.-H. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism. Int. J. Mol. Sci. 2021, 22, 4376. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, J.M.; Tengström, M.; Winqvist, R.; Jukkola-Vuorinen, A.; Pylkäs, K.; Kosma, V.-M.; Soini, Y.; Mannermaa, A. KEAP1 Genetic Polymorphisms Associate with Breast Cancer Risk and Survival Outcomes. Clin. Cancer Res. 2015, 21, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Muscarella, L.A.; Fazio, V.M. Keap1/Nrf2 impairing revised: Are we missing the single nucleotide polymorphisms? J. Thorac. Dis. 2016, 8, E1752–E1754. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, J.M.; Tengström, M.; Kosma, V.-M.; Kinnula, V.L.; Mannermaa, A.; Soini, Y. Genetic Polymorphisms and Protein Expression of NRF2 and Sulfiredoxin Predict Survival Outcomes in Breast Cancer. Cancer Res. 2012, 72, 5537–5546. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, Y.; Mitsuda, Y.; Tsuruta, Y.; Hamajima, N.; Niwa, T. Polymorphism of Nrf2, an Antioxidative Gene, is Associated with Blood Pressure and Cardiovascular Mortality in Hemodialysis Patients. Int. J. Med Sci. 2014, 11, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Vogrinc, D.; Kramberger, M.G.; Emeršič, A.; Čučnik, S.; Goričar, K.; Dolžan, V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer’s Disease and Dementia. Antioxidants 2023, 12, 316. [Google Scholar] [CrossRef] [PubMed]
- Fiala, C.; Diamandis, E.P. Mutations in normal tissues—Some diagnostic and clinical implications. BMC Med. 2020, 18, 283. [Google Scholar] [CrossRef]
- Euhus, D.M.; Cler, L.; Shivapurkar, N.; Milchgrub, S.; Peters, G.N.; Leitch, A.M.; Heda, S.; Gazdar, A.F. Loss of heterozygosity in benign breast epithelium in relation to breast cancer risk. JNCI J. Natl. Cancer Inst. 2002, 94, 858–860. [Google Scholar] [CrossRef]
- Zhang, L.; Vijg, J. Somatic Mutagenesis in Mammals and Its Implications for Human Disease and Aging. Annu. Rev. Genet. 2018, 52, 397–419. [Google Scholar] [CrossRef]
- Akiyama, M.; Kyoizumi, S.; Hirai, Y.; Kusunoki, Y.; Iwamoto, K.S.; Nakamura, N. Mutation frequency in human blood cells increases with age. Mutat. Res. 1995, 338, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, K.B.; Yeager, M.; Zhou, W.; Wacholder, S.; Wang, Z.; Rodriguez-Santiago, B.; Hutchinson, A.; Deng, X.; Liu, C.; Horner, M.-J.; et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 2012, 44, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; El-Sayed, M.E.; Lee, A.H.S.; Elston, C.W.; Grainge, M.J.; Hodi, Z.; Blamey, R.W.; Ellis, I.O. Prognostic Significance of Nottingham Histologic Grade in Invasive Breast Carcinoma. J. Clin. Oncol. 2008, 26, 3153–3158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Acs, B.; Robertson, S.; Liu, B.; Solorzano, L.; Wählby, C.; Hartman, J.; Rantalainen, M. Improved breast cancer histological grading using deep learning. Ann. Oncol. 2021, 33, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, D.P.; Southwick, H.W.; Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 1953, 6, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, E.; Thorn, G.J.; Ross-Adams, H.; Jones, L.J.; Chelala, C. Field cancerization in breast cancer. J. Pathol. 2022, 257, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, M. The microcosmos of intratumor heterogeneity: The space-time of cancer evolution. Oncogene 2019, 39, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Curtius, K.; Wright, N.A.; Graham, T.A. An evolutionary perspective on field cancerization. Nat. Rev. Cancer 2018, 18, 19–32. [Google Scholar] [CrossRef]
- Dakubo, G.D.; Jakupciak, J.P.; A Birch-Machin, M.; Parr, R.L. Clinical implications and utility of field cancerization. Cancer Cell Int. 2007, 7, 2. [Google Scholar] [CrossRef]
Parameter | n (%) |
---|---|
Controls | |
Total | 23 (100) |
Age | |
Mean | 52.70 |
Minimum | 24 |
Maximum | 87 |
Breast Cancer Patients | |
Total | 63 (100) |
Age | |
Mean | 65.08 |
Minimum | 36 |
Maximum | 95 |
ER status | |
Positive | 63 (100) |
Negative | 0 |
PR status | |
Positive | 48 (76.2) |
Negative | 14 (22.2) |
Missing | 1 (1.6) |
HER2 status | |
Positive | 8 (12.7) |
Negative | 54 (85.7) |
Missing | 1 (1.6) |
Histological Grade | |
1 | 12 (19) |
2 | 36 (57.1) |
3 | 15 (23.8) |
SNP | Controls n (%) | HWE | Cases n (%) | HWE | OR (95% CI) 1 | p-Value |
---|---|---|---|---|---|---|
23 (100) | 63 (100) | |||||
NRF2 | ||||||
rs35652124 | ||||||
AA (wt) | 13 (56.52) | 0.895 | 33 (52.38) | 0.932 | Ref. | |
AG | 8 (34.78) | 26 (41.27) | 1.280 (0.462–3.550) | 0.634 | ||
GG | 2 (8.70) | 4 (6.35) | 0.788 (0.128–4.837) | 0.796 | ||
rs6706649 | ||||||
GG (wt) | 19 (82.61) | 0.293 | 50 (79.37) | 0.961 | Ref. | |
GA | 3 (13.04) | 12 (19.05) | 1.520 (0.386–5.988) | 0.547 | ||
AA | 1 (4.35) | 1 (1.59) | 0.380 (0.023–6.386) | 0.486 | ||
rs6721961 | ||||||
CC (wt) | 18 (78.26) | 0.843 | 48 (76.19) | 1 | Ref. | |
CA | 5 (21.74) | 14 (22.22) | 1.050 (0.331–3.336) | 0.934 | ||
AA | 0 | 1 (1.59) | NA | 0.541 | ||
KEAP1 | ||||||
rs1048290 | ||||||
CC (wt) | 8 (34.78) | 0.901 | 18 (28.57) | 0.417 | Ref. | |
CG | 12 (52.17) | 36 (57.14) | 1.333 (0.463–3.843) | 0.594 | ||
GG | 3 (13.04) | 9 (14.29) | 1.333 (0.283–6.279) | 0.715 |
SNP | Blood n (%) | HWE | Surrounding Tissue n (%) | HWE | Tumour Tissue n (%) | HWE |
---|---|---|---|---|---|---|
21 (100) | 21 (100) | 21 (100) | ||||
NRF2 | ||||||
rs35652124 | ||||||
AA (wt) | 11 (52.39) | 0.884 | 14 (66.67) | 0.094 | 12 (57.14) | 0.974 |
AG | 9 (42.85) | 4 (19.05) | 8 (38.09) | |||
GG | 1 (4.76) | 3 (14.29) | 1 (4.76) | |||
rs6706649 | ||||||
GG (wt) | 19 (90.48) | 0.974 | 15 (71.43) | <0.001 * | 16 (76.19) | 0.595 |
GA | 2 (9.52) | 1 (4.76) | 4 (19.05) | |||
AA | 0 | 5 (23.81) | 1 (4.76) | |||
rs6721961 | ||||||
CC (wt) | 17 (80.95) | 0.890 | 19 (90.48) | 0.974 | 18 (85.71) | 0.940 |
CA | 4 (19.05) | 2 (9.52) | 3 (14.29) | |||
AA | 0 | 0 | 0 | |||
KEAP1 | 16 (100) | 16 (100) | 16 (100) | |||
rs1048290 | ||||||
CC (wt) | 5 (31.25) | 0.802 | 7 (43.75) | 0.807 | 5 (31.25) | 0.802 |
CG | 9 (56.25) | 8 (50) | 9 (56.25) | |||
GG | 2 (12.5) | 1 (6.25) | 2 (12.5) |
Blood n (%) | Surrounding Tissue n (%) | p-Value OR (95% CI) | Surrounding Tissue n (%) | Tumour Tissue n (%) | p-Value OR (95% CI) | Blood n (%) | Tumour Tissue n (%) | p-Value OR (95% CI) 1 | |
---|---|---|---|---|---|---|---|---|---|
NRF2 | |||||||||
rs35652124 | |||||||||
A | 31 (36.9) | 32 (38.1) | 0.801 0.881 (0.328–2.367) | 32 (38.1) | 32 (38.1) | >0.999 1 (0.366–2.730) | 31 (36.9) | 32 (38.1) | 0.801 0.881 (0.328–2.367) |
G | 11 (13.1) | 10 (11.9) | 10 (11.9) | 10 (11.9) | 11 (13.1) | 10 (11.9) | |||
rs6706649 | |||||||||
G | 40 (47.6) | 31 (36.9) | 0.007 * 7.097 (1.465–34.384) | 31 (36.9) | 36 (42.9) | 0.175 0.470 (0.156–1.418) | 40 (47.6) | 36 (42.9) | 0.137 3.333 (0.632–17.574) |
A | 2 (2.4) | 11 (13.1) | 11 (13.1) | 6 (7.1) | 2 (2.4) | 6 (7.1) | |||
rs6721961 | |||||||||
C | 38 (45.2) | 40 (47.6) | 0.397 0.475 (0.082–2.746) | 40 (47.6) | 39 (46.4) | 0.645 1.538 (0.244–9.714) | 38 (45.2) | 39 (46.4) | 0.693 0.731 (0.153–3.485) |
A | 4 (4.8) | 2 (2.4) | 2 (2.4) | 3 (3.6) | 4 (4.8) | 3 (3.6) | |||
KEAP1 | |||||||||
rs1048290 | |||||||||
C | 19 (29.7) | 22 (34.4) | 0.434 0.664 (0.238–1.857) | 22 (34.4) | 19 (29.7) | 0.434 1.505 (0.539–4.207) | 19 (29.7) | 19 (29.7) | >0.999 1 (0.369–2.712) |
G | 13 (20.3) | 10 (15.6) | 10 (15.6) | 13 (20.3) | 13 (20.3) | 13 (20.3) |
Type of Tissue | Genotypes Frequency n (%) | p-Value | |||
---|---|---|---|---|---|
NRF2—rs35652124 | |||||
AA | AG | GG | |||
Blood | 11 (52.40) | 9 (42.90) | 1 (4.80) | Ref. | |
Surrounding Tissue | 14 (66.70) | 4 (19) | 3 (14.30) | 0.023 * | Ref. |
Tumour Tissue | 12 (57.10) | 8 (38.10) | 1 (4.80) | 0.950 | 0.041 * |
NRF2—rs6706649 | |||||
GG | GA | AA | |||
Blood | 19 (90.5) | 2 (9.5) | 0 | Ref. | |
Surrounding Tissue | 15 (71.4) | 1 (4.8) | 5 (23.8) | 0.055 | Ref. |
Tumour Tissue | 16 (76.2) | 4 (19) | 1 (4.80) | 0.382 | 0.105 |
NRF2—rs6721961 | |||||
CC | CA | AA | |||
Blood | 17 (81) | 4 (19) | 0 | Ref. | |
Surrounding Tissue | 19 (90.5) | 2 (9.5) | 0 | 0.378 | Ref. |
Tumour Tissue | 18 (85.7) | 3 (14.3) | 0 | 0.679 | 0.634 |
KEAP1—rs1048290 | |||||
CC | CG | GG | |||
Blood | 5 (31.3) | 9 (56.3) | 2 (12.5) | Ref. | |
Surrounding Tissue | 7 (43.8) | 8 (50) | 1 (6.3) | 0.696 | Ref. |
Tumour Tissue | 5 (31.3) | 9 (56.3) | 2 (12.5) | >0.999 | 0.696 |
Type of Tissue | Overall % in Each Histological Grade | p-Value | |||
---|---|---|---|---|---|
Blood | NRF2—rs35652124 | ||||
Histological Grade | AA | AG | GG | ||
1 | 3 (42.9) | 4 (57.1) | 0 | Ref. | |
2 | 6 (54.5) | 4 (36.4) | 1 (9.1) | 0.288 | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.390 | 0.307 |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 3 (42.9) | 2 (28.6) | 2 (28.6) | Ref. | |
2 | 9 (81.8) | 1 (9.1) | 1 (9.1) | 0.393 | Ref. |
3 | 2 (66.7) | 1 (9.1) | 0 | 0.188 | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 4 (57.1) | 3 (42.9) | 0 | Ref. | |
2 | 6 (54.5) | 4 (36.4) | 1 (9.1) | 0.809 | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.023 * | 0.307 |
Blood | NRF2—rs6706649 | ||||
Histological Grade | GG | GA | AA | ||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 11 (100) | 0 | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 5 (71.4) | 1 (14.3) | 1 (14.3) | Ref. | |
2 | 9 (81.8) | 0 | 2 (18.2) | 0.114 | Ref. |
3 | 1 (33.3) | 0 | 2 (66.7) | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 5 (71.4) | 1 (14.3) | 1 (14.3) | Ref. | |
2 | 9 (81.8) | 2 (18.2) | 0 | 0.002 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | 0.043 * | <0.001 * |
Blood | NRF2—rs6721961 | ||||
Histological Grade | CC | CA | AA | ||
1 | 5 (71.4) | 2 (28.6) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | |||||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 3 (100) | 0 | 0 | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | |||||
1 | 6 (85.7) | 1 (14.3) | 0 | Ref. | |
2 | 10 (90.9) | 1 (9.1) | 0 | <0.001 * | Ref. |
3 | 2 (66.7) | 1 (33.3) | 0 | <0.001 * | <0.001 * |
Blood | KEAP1—rs1048290 | ||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 4 (44.4) | 3 (33.3) | 22.2 | <0.001 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Surrounding Tissue | |||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 6 (66.7) | 2 (22.2) | 1 (11.1) | 0.029 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Tumour Tissue | |||||
Histological Grade | CC | CG | GG | ||
1 | 1 (16.7) | 5 (83.3) | 0 | Ref. | |
2 | 4 (44.4) | 3 (33.3) | 2 (22.2) | <0.001 * | Ref. |
3 | 0 | 1 (100) | 0 | <0.001 * | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, M.; Ferreira, C.L.; Tomé, R.M.; Fonseca-Moutinho, J.; Polónia, A.; Ramalhinho, A.C.; Breitenfeld, L. Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers 2024, 16, 2411. https://doi.org/10.3390/cancers16132411
Almeida M, Ferreira CL, Tomé RM, Fonseca-Moutinho J, Polónia A, Ramalhinho AC, Breitenfeld L. Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers. 2024; 16(13):2411. https://doi.org/10.3390/cancers16132411
Chicago/Turabian StyleAlmeida, Micaela, Catarina L. Ferreira, Rosa Maria Tomé, José Fonseca-Moutinho, António Polónia, Ana Cristina Ramalhinho, and Luiza Breitenfeld. 2024. "Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer" Cancers 16, no. 13: 2411. https://doi.org/10.3390/cancers16132411
APA StyleAlmeida, M., Ferreira, C. L., Tomé, R. M., Fonseca-Moutinho, J., Polónia, A., Ramalhinho, A. C., & Breitenfeld, L. (2024). Somatic Mutations in KEAP1-NRF2 Complex in Breast Cancer. Cancers, 16(13), 2411. https://doi.org/10.3390/cancers16132411