Simple Summary
In this review, the authors re-evaluate the fifth edition of the World Health Organization Classification of Central Nervous System tumors in light of recent advances in epigenetic tools and evidence of the critical nature of endogenous retroviruses in tumorigenesis. The data systematically presented herein demonstrates that tumors with histopathologic heterogeneity and dichotomous clinical behaviors more often harbor chromatin remodeling defects and/or associated aberrant endogenous retrovirus expression. The authors believe these observations warrant further investigation as they could potentially lead to a deeper understanding of tumor biology and more translationally relevant tumor stratification.
Abstract
Originally approved in 1979, a specific grading classification for central nervous system (CNS) tumors was devised by the World Health Organization (WHO) in an effort to guide cancer treatment and better understand prognosis. These “blue books” have since undergone several iterations based on tumor location, advancements in histopathology, and most recently, diagnostic molecular pathology in its fifth edition. As new research methods have evolved to elucidate complex molecular mechanisms of tumorigenesis, a need to update and integrate these findings into the WHO grading scheme has become apparent. Epigenetic tools represent an area of burgeoning interest that encompasses all non-Mendelian inherited genetic features affecting gene expression, including but not limited to chromatin remodeling complexes, DNA methylation, and histone regulating enzymes. The SWItch/Sucrose non-fermenting (SWI/SNF) chromatin remodeling complex is the largest mammalian family of chromatin remodeling proteins and is estimated to be altered in 20–25% of all human malignancies; however, the ways in which it contributes to tumorigenesis are not fully understood. We recently discovered that CNS tumors with SWI/SNF mutations have revealed an oncogenic role for endogenous retroviruses (ERVs), remnants of exogenous retroviruses that integrated into the germline and are inherited like Mendelian genes, several of which retain open reading frames for proteins whose expression putatively contributes to tumor formation. Herein, we analyzed the latest WHO classification scheme for all CNS tumors with documented SWI/SNF mutations and/or aberrant ERV expression, and we summarize this information to highlight potential research opportunities that could be integrated into the grading scheme to better delineate diagnostic criteria and therapeutic targets.
1. Introduction
The World Health Organization (WHO) periodically releases specialty-specific updates to a systematic classification of pathologies to guide clinical practice. These periodic updates are released with the intent of bridging the gap between new basic scientific and clinical discoveries and patient care. The last update for neuro-oncology was released in 2021, bringing us to the fifth edition. These WHO classification schemes have a long and rich history, reflecting the evolution of our understanding of the biological nature of tumors and the development of new diagnostic and therapeutic tools.
The evolution of the WHO classification over time has paralleled the concomitant advances in diagnostic technology. In 1952, the first WHO classification guide for tumors of all organ systems was released, and tumor stratification was based on anatomic site, histopathologic morphology, and a resulting “grade” of malignancy from which to infer prognosis [1]. Although subsequent schemas have been released and updated based on advances in our understanding of tumor biology, this initial framework has continued to be the enduring foundation of the WHO classification. In the 1970s, the WHO classification was updated to include further histopathologic distinctions reflecting a deeper understanding of tumor biology gained through immunohistochemistry and electron microscopy [1]. For the next several decades, these techniques remained the cornerstone for tumor classification, with second and third editions released in 1979 and 2000, respectively. The first edition of the classification scheme specific for central nervous system (CNS) tumors, henceforth known as the “blue books”, however, was published in 1979 by an international committee of expert neuropathologists and neuro-oncologists after a decade of contentious review [1]. With the advent of molecular biology and the ongoing attempts to formulate prognostically meaningful grades, a fourth edition was released in 2016. This edition elaborated on the first examples of standardized molecular profiling in CNS tumors, including the variant status of isocitrate dehydrogenase 1 and 2 (IDH1/2) and the methylation status of 0(6)-methylguanine-DNA methyltransferase (MGMT) [2,3].
The most recent edition (WHO CNS 5) of the schema, which was released in 2021, saw the largest translational shift of focus in tumor classification in several decades. While this recent classification still hinges on the foundational morphologic framework, additional critical criteria for diagnosing and categorizing tumors have been updated to include epigenetic mechanisms that reflect cellular diversity and heterogenous behaviors previously unrecognized in many of these tumor types [4,5].
The paradigm shift in the most recent WHO classification focused on epigenetic mechanisms, which may be grouped into four categories [5]. Those four categories include DNA methylation, histone modification, non-coding RNA molecules, and chromatin remodeling. In reviewing the most recent schema, we found that there appeared to be a tendency of tumors with chromatin remodeling defects, especially the SWItch/sucrose non-fermentable (SWI/SNF) complex, to have increased cellular diversity, a predilection for younger populations or a bi-modal age distribution, and dichotomous clinical behavior in CNS tumors [5]. SWI/SNF deficiency leads to significant changes in the epigenetic control of the genome and can allow for the continual expression of developmental genes post-development or lead to the reactivation and expression of developmental genes in a differentiated cell [6,7]. Epigenetic modifications of DNA in cancer, or heritable changes in gene expression that are not attributable to alterations in DNA sequence, have emerged as a new potential source of novel biomarkers for early cancer detection, prognosis, and presented an opportunity for the development of targeted treatments [8]. Loss of function (LOF) of the SWI/SNF complex can provide opportunities for the development of additional treatments that take advantage of the synthetic lethality that occurs when the perturbation of two genes simultaneously results in loss of viability; however, the disruption of only one of the genes results in survival [9]. Further, we have recently shown that LOF of SWI/SNF proteins can lead to the activation of endogenous retroviruses (ERVs) such as human endogenous retrovirus K (HERV-K, sub-type HML-2) [10]. Normally, ERV expression is tightly spatially and temporally controlled during development, and its expression is significantly downregulated as cells differentiate and mature; therefore, ERV expression provides an excellent target for tumor treatment [10,11,12,13,14,15,16,17]. Potential mechanisms that allow for aberrant expression of ERVs, such as LOF of the SWI/SNF complex, provide a unique opportunity for a combinatorial approach to the treatment of tumors with few targeted treatment options. For example, tumors such as atypical teratoid rhabdoid tumors (AT/RT) and glioblastoma (GBM) have a heterogeneous histopathologic composition that may not be easily encompassed under one categorical term, as is reflected in their clinical behavior and prognosis. To date, we have grouped tumors together that may not belong together solely based on appearance, anatomic location, or presumed cell of origin; however, the clinical behavior of these tumors suggests nuanced distinctions that we can now appreciate with epigenetic profiling.
In our previous work, we evaluated AT/RT, which is a tumor with a loss of function (LOF) of SWI/SNF-related matrix-associated, actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), a core subunit of the SWI/SNF complex, that has a bi-modal age distribution and an aggressive histopathologic appearance but a seemingly unpredictable prognosis [18]. While overall AT/RT has a dismal prognosis, there have been limited reports of groups of long-term survivors with this tumor, suggesting that a subset of these tumors may behave differently than the typical course [18]. In our study of AT/RT patient-derived tumor cell lines and patient tumor tissue, we found that the expression of human endogenous retrovirus K (HERV-K, sub-type HML-2) was facilitated by the LOF of SMARCB1 and that the expression of HML-2 proteins was critical for tumorigenesis and the maintenance of pluripotency [10]. Expression of ERV proteins has been detected in many tumor types, where possible pathogenic mechanisms include activation of the long terminal repeat element into an oncogene with downstream targets such as MYC and vesicular release of viral particles to neighboring cells to maintain pluripotency [10,11,15]. The precise role of ERV proteins in CNS tumorigenesis, however, represents a critical area of active investigation, with additional exploration required for validation. In light of these preliminary mechanistic findings, ERVs have also recently been explored as a potential therapeutic target for difficult-to-treat tumors [10,19,20]. Our finding of HML-2 activation in AT/RT tumors subsequently prompted us to investigate other primary CNS tumors to evaluate the relationship between defects in chromatin remodeling and endogenous retroviruses for their putative role in tumorigenesis and their potential to further stratify existing classification schemas and better predict tumor behavior.
2. Materials and Methods
The 5th edition of the WHO Classification of CNS Tumors (WHO CNS 5) was utilized to systematically identify all primary non-syndromic CNS tumors and to build a database mirroring the classification scheme by tumor categories and subcategories [4,5]. Two authors independently screened each tumor entity for the inclusion of epigenetic mutations documented in the classification. All genes implicated in the tumorigenesis of each tumor were analyzed via the National Library of Medicine for relevant epigenetic function and/or interaction. A subsequent database search in PubMed for human and/or non-human endogenous retrovirus expression in each entity followed. A third author resolved potential discrepancies. Data abstraction additionally included the WHO grade, specific type of known SWI/SNF defect, alternative genetic and/or epigenetic alterations involved in tumorigenesis, and subtype of endogenous retrovirus expressed if previously studied. This process was iteratively completed for each tumor type and is summarized in Supplementary Table S1. Data were excluded if no primary literature, including mechanistic proof of epigenetic alteration or ERV expression, could be retrieved or if implicated genes were only indirectly associated with epigenetic pathways of interest, thereby removing the potential for inferral bias. The authors qualitatively reviewed the data for histopathologic and clinical trends among various tumor groups, including those with SWI/SNF defects, ERV expression, both SWI/SNF defects and ERV expression, genetic and/or epigenetic variants with direct SWI/SNF interaction, and tumors without either characteristic.
5. Discussion
We have previously noticed, based on our translational experience, that some CNS tumors that are currently grouped together in the WHO classification schema do not exhibit uniform clinical behavior [5]. Based on these observations, we hypothesized that there may be additional biological criteria that could better stratify these tumors and explain our and others’ clinical observations. Further, based on our previous work in one such example of a rare CNS tumor with a high degree of heterogeneity and dichotomous clinical behavior, AT/RT, we believed that chromatin remodeling defects may further define these tumors and their relationship to endogenous retroviruses, which we have shown to be critical for tumorigenesis [10].
Based on the above, we were spurred to investigate the role of SWI/SNF mutations in a systematic fashion using WHO criteria [5]. We used the 2021 WHO classification schema as a guide for non-syndromic tumors of the CNS and correlated these tumors with SWI/SNF mutations and ERV involvement based on a systematic literature review. Further, we expanded our search to include related mutations as reported in the WHO classification, which we suspected could interact with the SWI/SNF complex as reported in the literature.
We found that approximately 20% of all tumors contained within the classification schema bear SWI/SNF LOF mutations. All the tumors in the WHO classification reported to have these LOF mutations may include both heritable first-hit mutations and sporadic mutations acquired later in life. We found that the rate of SWI/SNF LOF mutations in the tumors we evaluated aligns with the rate in general malignancy, and these mutations occur predominantly in tumor types that are not restricted by cell lineage, i.e., they occur before cells have been fated. Our observation of SWI/SNF defects and ERV expression in developmental tumors that affect young age groups, including those with bimodal age of distribution, supports our hypothesis about the timing of mutation acquisition in the SWI/SNF chromatin remodeling complex.
Most tumors with SWI/SNF mutations were high grade (75%) by the WHO grading system, grades III or IV, or they occurred in low-grade tumors exhibiting rare high-grade histopathologic features including anaplasia and cell de-differentiation [5]. Tumors with ERV expression followed many of the same themes as those with SWI/SNF LOF mutations across multiple cell lineages. While there is less evidence in the literature regarding ERVs in primary CNS tumors, there are multiple key examples of tumors with both SWI/SNF LOF mutations and ERV expression that can be used to elucidate the mechanisms of tumorigenesis that involve those pathways.
Thus far in our investigation, we have identified six primary CNS tumors across four categories of tumor types that bear both SWI/SNF LOF mutations and ERV involvement, and most of them (5/6 or 83.3%) are high grade by WHO criteria and/or feature a malignant phenotype by histopathology alone. The exception to this group is schwannomas, which are not typically considered malignant tumors and rarely harbor high-grade features. While schwannomas clinically and histopathologically do not appear consistent with the other malignant tumors in this category, they do in fact have SWI/SNF LOF and ERV expression. Further, the study of familial schwannomatosis was critical in the discovery of the role of SWI/SNF LOF in tumorigenesis. It is important to note that schwannomas are dynamic tumors that can transition to MPNST with different clinical characteristics and potentially a different underlying biology that may be more reminiscent of other malignant tumors in this same category [179]. It is possible that ERV expression plays a critical role in this malignant transformation and represents an interesting area for future investigation. In summary, there are several examples of CNS tumors with involvement of both LOF mutations in the SWI/SNF complex and ERV expression; however, we have identified many additional tumors with LOF of the SWI/SNF complex or ERV involvement that should be investigated in the future.
Our findings, guided by the WHO classification schema, have revealed that the current framework, which emphasizes the key importance of cell of origin, histopathologic description, and anatomic organization of the CNS, is an important foundation for understanding tumor behavior and clinical prognosis. However, the dichotomous biological and clinical behaviors of many CNS tumors suggest that our current framework is insufficient. Through epigenetic studies, we and other authors have found that CNS tumors currently grouped within the same categories may have different pathophysiologies based on epigenetic regulation that correlate more closely with clinical observations. Thus, epigenetic tools provide additional information that may be leveraged to better stratify these tumors. This may lead to better prognostication and intervention.
Epigenetic mechanisms contribute to heritable changes in expression that are not due to differences in underlying DNA sequences, and these pathways mediate the expression of many developmental processes, including the expression of endogenous retroviruses. We and others have shown that when ERV expression is not tightly regulated throughout and after development, aberrant expression can lead to tumorigenesis. However, this pathway has not been extensively explored in the context of SWI/SNF LOF in CNS tumors. We have shown the importance of intersectional investigations that focus on the global regulation of developmental genes and their contribution to cell differentiation, tumorigenesis, and the maintenance of pluripotency. Finally, the present expansion of tumor variants in the WHO CNS 5 includes many rare tumors with too few cases to render prognostications based on present knowledge of histopathology and molecular profiling, thereby reinforcing the importance of defining, understanding, and applying epigenetic mechanisms of tumorigenesis to tumor classification. The proposed relationship between mammalian SWI/SNF chromatin remodeling proteins and ERV elements represents one potential pathway for further investigation.
Additional pathways for better understanding these mechanisms and their potential contribution to tumorigenesis must also include consideration for alterations in genes or alternative epigenetic pathways with known targets involved in tumor development and that directly interact with the SWI/SNF chromatin remodeling complex, as such alterations likely influence their mechanism of action. Genes encoding transcription factors such as Sox2 and OCT4, lineage-specific regulators such as SHH, WNT, and NOTCH, nuclear hormone receptors such as GR (glucocorticoid receptor), tumor suppressors such as RB1, and oncogenes such as MYC have been shown to interact with various subunits of the SWI/SNF complex [10,104,107,134,135,159,180]. For example, MYC binds to DNA sequences called E-boxes to recruit SWI/SNF subunits, as well as directly interacts with BRG1 to enhance its ability to remodel chromatin and activate gene expression [181]. Primary CNS tumors with MYC alterations include but are not limited to oligodendroglioma, adult and pediatric gliomas regardless of IDH status, central neurocytoma, spinal ependymoma, medulloblastoma, AT/RT, pineoblastoma, and diffuse large B-cell lymphoma [5]. Studies have also shown that important developmental signal transducers such as SHH directly interact with the SWI/SNF complex to regulate gene expression, specifically through the GLI family of transcription factors. Examples of tumors with this expression signature include medulloblastoma, choroid plexus carcinoma, AT/RT, and adamantinomatous craniopharyngioma [5]. MYC, TP53, and RB1 were the most frequent genetic mutations that have an established interaction with SWI/SNF in CNS tumors.
In addition to genes that interact with SWI/SNF, there are multiple epigenetic pathways that have a complex and dynamic relationship with chromatin remodeling. For example, the antagonistic relationship between the SWI/SNF complex and PRC is currently being exploited to develop therapeutic targets in SWI/SNF-deficient cancers. Alterations in PRC typically involve either direct mutations in core PRC2 subunits, such as EZH2, SUZ12, and EED, or point mutations in a histone site, such as H3K27M, which interacts with PRC2. These tumors include GBM, DMG, ependymoma, MPNST, anaplastic meningioma, and chondrosarcoma [5]. In addition to epigenetic mechanisms that involve direct histone modification and chromatin remodeling, the processing of small regulatory RNAs such as microRNAs involved in post-transcriptional regulation of gene expression also alters the SWI/SNF complex. One such example includes either the germline or sporadic mutation of DICER1, which is mediated by BAF155 to be recruited to genomic loci for processing precursor microRNAs into mature RNAs. CNS tumors with DICER1 mutations include pineoblastoma, primary intracranial sarcoma, and pituitary blastoma [5]. Notably, pineoblastoma and pituitary blastoma, which are recognized developmental tumors, occur in endocrine glands that are recognized as CNS border structures rather than true CNS parenchyma. Further, of the CNS tumors with non-SWI/SNF epigenetic alterations, several have documented aberrant ERV expression, such as Ewing’s sarcoma and primary B-cell lymphoma, both of which similarly arise from CNS border structures. Overall, this suggests to us that epigenetics may reveal a common theme in these tumors with dichotomous clinical behavior in these CNS border structures in that they may arise from cell lineages that have been developmentally arrested by the acquisition of defects in genetic mechanisms that are not inherited in Mendelian fashion. Further, as we have elaborated herein, many of these mechanisms may have common pathogenesis through the expression of ERVs. In addition, our review has revealed that many tumors with chromatin remodeling defects and ERV expression have overlapping histopathologic features such as syncytial appearance, which may reflect ERV biology and provide further support for stratification based on the existing WHO classification schema.
6. Conclusions and Future Directions
Our systematic review of the literature, guided by the most recent WHO CNS classification schema, has highlighted the need to marry our current framework based on histopathologic morphology with the insights evolved by the use of new technologies in epigenetic investigations. We have elaborated on trends between chromatin remodeling defects and expression of ERVs in tumors with a high degree of heterogeneity and dichotomous clinical behavior, suggesting that prognostication and intervention in these tumors may benefit from further translational stratification. In the future, we believe the field should focus on understanding the mechanistic relationship between ERVs and epigenetic pathways, with an emphasis on the SWI/SNF complex. This work may also potentially be applied to tumors outside of the CNS, which follow the concepts we have outlined above, particularly sinonasal cancers recently stratified by SMARCA4 mutations and primary tumors with SWI/SNF deficiencies that frequently metastasize to the CNS. We believe this review will be a useful resource in guiding the use of epigenetic tools in the next iteration of the WHO classification schema.
Supplementary Materials
The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cancers15092511/s1.
Author Contributions
D.D.D., J.S.R. and T.T.D.-O. contributed to the study conception and design; D.D.D. and T.T.D.-O. performed material preparation, data collection, and analysis; D.D.D., J.S.R. and T.T.D.-O. wrote the first draft of the manuscript; all authors commented on subsequent versions of the manuscript; T.T.D.-O. supervised the study. All authors have read and agreed to the published version of the manuscript.
Funding
This work was supported, in part, by the Intramural Program of NCI and NINDS, NIH.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Conflicts of Interest
The authors declare no conflict of interest.
References
- Scheithauer, B.W. Development of the WHO classification of tumors of the central nervous system: A historical perspective. Brain Pathol. 2009, 19, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Villa, C.; Miquel, C.; Mosses, D.; Bernier, M.; Di Stefano, A.L. The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med. 2018, 47, e187–e200. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. World Health Organization Classification of Tumours of the Central Nervous System, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Mittal, P.; Roberts, C.W.M. The SWI/SNF complex in cancer—Biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 2020, 17, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Wanior, M.; Kramer, A.; Knapp, S.; Joerger, A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 2021, 40, 3637–3654. [Google Scholar] [CrossRef]
- Hamilton, J.P. Epigenetics: Principles and practice. Dig. Dis. 2011, 29, 130–135. [Google Scholar] [CrossRef]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef]
- Doucet-O’Hare, T.T.; DiSanza, B.L.; DeMarino, C.; Atkinson, A.L.; Rosenblum, J.S.; Henderson, L.J.; Johnson, K.R.; Kowalak, J.; Garcia-Montojo, M.; Allen, S.J.; et al. SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci. Rep. 2021, 11, 12893. [Google Scholar] [CrossRef]
- Garcia-Montojo, M.; Doucet-O’Hare, T.; Henderson, L.; Nath, A. Human endogenous retrovirus-K (HML-2): A comprehensive review. Crit. Rev. Microbiol. 2018, 44, 715–738. [Google Scholar] [CrossRef]
- Wang, T.; Medynets, M.; Johnson, K.R.; Doucet-O’Hare, T.T.; DiSanza, B.; Li, W.; Xu, Y.; Bagnell, A.; Tyagi, R.; Sampson, K.; et al. Regulation of stem cell function and neuronal differentiation by HERV-K via mTOR pathway. Proc. Natl. Acad. Sci. USA 2020, 117, 17842–17853. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Doucet-O’Hare, T.T.; Henderson, L.; Abrams, R.P.M.; Nath, A. Retroviral Elements in Human Evolution and Neural Development. J. Exp. Neurol. 2021, 2, 1–9. [Google Scholar] [PubMed]
- Doucet-O’Hare, T.T.; Rosenblum, J.S.; Shah, A.H.; Gilbert, M.R.; Zhuang, Z. Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors. J. Pers. Med. 2021, 11, 1332. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.H.; Govindarajan, V.; Doucet-O’Hare, T.T.; Rivas, S.; Ampie, L.; DeMarino, C.; Banasavadi-Siddegowda, Y.K.; Zhang, Y.; Johnson, K.R.; Almsned, F.; et al. Differential expression of an endogenous retroviral element [HERV-K(HML-6)] is associated with reduced survival in glioblastoma patients. Sci. Rep. 2022, 12, 6902. [Google Scholar] [CrossRef]
- Steiner, J.P.; Bachani, M.; Malik, N.; DeMarino, C.; Li, W.; Sampson, K.; Lee, M.H.; Kowalak, J.; Bhaskar, M.; Doucet-O’Hare, T.; et al. Human Endogenous Retrovirus K Envelope in Spinal Fluid of Amyotrophic Lateral Sclerosis Is Toxic. Ann. Neurol. 2022, 92, 545–561. [Google Scholar] [CrossRef]
- Rivas, S.R.; Valdez, M.J.M.; Govindarajan, V.; Seetharam, D.; Doucet-O’Hare, T.T.; Heiss, J.D.; Shah, A.H. The Role of HERV-K in Cancer Stemness. Viruses 2022, 14, 2019. [Google Scholar] [CrossRef]
- Lafay-Cousin, L.; Fay-McClymont, T.; Johnston, D.; Fryer, C.; Scheinemann, K.; Fleming, A.; Hukin, J.; Janzen, L.; Guger, S.; Strother, D.; et al. Neurocognitive evaluation of long term survivors of atypical teratoid rhabdoid tumors (ATRT): The Canadian registry experience. Pediatr. Blood Cancer 2015, 62, 1265–1269. [Google Scholar] [CrossRef]
- Li, M.; Radvanyi, L.; Yin, B.; Rycaj, K.; Li, J.; Chivukula, R.; Lin, K.; Lu, Y.; Shen, J.; Chang, D.Z.; et al. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin. Cancer Res. 2017, 23, 5892–5911. [Google Scholar] [CrossRef]
- Zhou, F.; Li, M.; Wei, Y.; Lin, K.; Lu, Y.; Shen, J.; Johanning, G.L.; Wang-Johanning, F. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 2016, 7, 84093–84117. [Google Scholar] [CrossRef]
- Lin, B.; Kesserwan, C.; Quinn, E.A.; Einhaus, S.L.; Wright, K.D.; Azzato, E.M.; Orr, B.A.; Upadhyaya, S.A. Anaplastic Astrocytoma in a Child With Coffin-Siris Syndrome and a Germline SMARCE1 Mutation: A Case Report. J. Pediatr. Hematol. Oncol. 2020, 42, e177–e180. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research, N.; Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.E.; Mazor, T.; Hong, C.; Barnes, M.; Aihara, K.; McLean, C.Y.; Fouse, S.D.; Yamamoto, S.; Ueda, H.; Tatsuno, K.; et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 2014, 343, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Inagaki, A.; Silber, J.; Gorovets, D.; Zhang, J.; Kastenhuber, E.R.; Heguy, A.; Petrini, J.H.; Chan, T.A.; Huse, J.T. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 2012, 3, 1194–1203. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Gerges, N.; Korshunov, A.; Sabha, N.; Khuong-Quang, D.A.; Fontebasso, A.M.; Fleming, A.; Hadjadj, D.; Schwartzentruber, J.; Majewski, J.; et al. Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol. 2012, 124, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, C.A.; Li, W.; Reisenweber, S.; Thongthip, S.; Bruno, J.; de Lange, T.; De, S.; Petrini, J.H.; Sung, P.A.; Jasin, M.; et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 2012, 8, e1002772. [Google Scholar] [CrossRef]
- Yang, P.; Kollmeyer, T.M.; Buckner, K.; Bamlet, W.; Ballman, K.V.; Jenkins, R.B. Polymorphisms in GLTSCR1 and ERCC2 are associated with the development of oligodendrogliomas. Cancer 2005, 103, 2363–2372. [Google Scholar] [CrossRef]
- Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. Cell 2013, 155, 462–477. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Jia, X.; Song, W.; Wu, H.; Zhu, H.; Xuan, Z.; Du, Y.; Zhu, X.; Song, G.; et al. Targeting anillin inhibits tumorigenesis and tumor growth in hepatocellular carcinoma via impairing cytokinesis fidelity. Oncogene 2022, 41, 3118–3130. [Google Scholar] [CrossRef]
- Panditharatna, E.; Marques, J.G.; Wang, T.; Trissal, M.C.; Liu, I.; Jiang, L.; Beck, A.; Groves, A.; Dharia, N.V.; Li, D.; et al. BAF Complex Maintains Glioma Stem Cells in Pediatric H3K27M Glioma. Cancer Discov. 2022, 12, 2880–2905. [Google Scholar] [CrossRef]
- Mo, Y.; Duan, S.; Zhang, X.; Hua, X.; Zhou, H.; Wei, H.J.; Watanabe, J.; McQuillan, N.; Su, Z.; Gu, W.; et al. Epigenome Programming by H3.3K27M Mutation Creates a Dependence of Pediatric Glioma on SMARCA4. Cancer Discov. 2022, 12, 2906–2929. [Google Scholar] [CrossRef]
- Lucas, C.G.; Mueller, S.; Reddy, A.; Taylor, J.W.; Oberheim Bush, N.A.; Clarke, J.L.; Chang, S.M.; Gupta, N.; Berger, M.S.; Perry, A.; et al. Diffuse hemispheric glioma, H3 G34-mutant: Genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro Oncol. 2021, 23, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, J.; Korshunov, A.; Liu, X.Y.; Jones, D.T.; Pfaff, E.; Jacob, K.; Sturm, D.; Fontebasso, A.M.; Quang, D.A.; Tonjes, M.; et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Capper, D.; Reuss, D.; Schrimpf, D.; Ryzhova, M.; Hovestadt, V.; Sturm, D.; Meyer, J.; Jones, C.; Zheludkova, O.; et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol. 2016, 131, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, A.; Stichel, D.; Schrimpf, D.; Sahm, F.; Korshunov, A.; Reuss, D.E.; Koelsche, C.; Huang, K.; Wefers, A.K.; Hovestadt, V.; et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018, 136, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Vaubel, R.A.; Caron, A.A.; Yamada, S.; Decker, P.A.; Eckel Passow, J.E.; Rodriguez, F.J.; Nageswara Rao, A.A.; Lachance, D.; Parney, I.; Jenkins, R.; et al. Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol. 2018, 28, 172–182. [Google Scholar] [CrossRef]
- Phillips, J.J.; Gong, H.; Chen, K.; Joseph, N.M.; van Ziffle, J.; Bastian, B.C.; Grenert, J.P.; Kline, C.N.; Mueller, S.; Banerjee, A.; et al. The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol. 2019, 29, 85–96. [Google Scholar] [CrossRef]
- Vaubel, R.; Zschernack, V.; Tran, Q.T.; Jenkins, S.; Caron, A.; Milosevic, D.; Smadbeck, J.; Vasmatzis, G.; Kandels, D.; Gnekow, A.; et al. Biology and grading of pleomorphic xanthoastrocytoma-what have we learned about it? Brain Pathol. 2021, 31, 20–32. [Google Scholar] [CrossRef]
- Loh, J.K.; Lieu, A.S.; Chai, C.Y.; Howng, S.L. Malignant transformation of a desmoplastic infantile ganglioglioma. Pediatr. Neurol. 2011, 45, 135–137. [Google Scholar] [CrossRef]
- Phi, J.H.; Koh, E.J.; Kim, S.K.; Park, S.H.; Cho, B.K.; Wang, K.C. Desmoplastic infantile astrocytoma: Recurrence with malignant transformation into glioblastoma: A case report. Childs Nerv. Syst. 2011, 27, 2177–2181. [Google Scholar] [CrossRef]
- Wang, A.C.; Jones, D.T.W.; Abecassis, I.J.; Cole, B.L.; Leary, S.E.S.; Lockwood, C.M.; Chavez, L.; Capper, D.; Korshunov, A.; Fallah, A.; et al. Desmoplastic Infantile Ganglioglioma/Astrocytoma (DIG/DIA) Are Distinct Entities with Frequent BRAFV600 Mutations. Mol. Cancer Res. 2018, 16, 1491–1498. [Google Scholar] [CrossRef]
- Prakash, V.; Batanian, J.R.; Guzman, M.A.; Duncavage, E.J.; Geller, T.J. Malignant transformation of a desmoplastic infantile ganglioglioma in an infant carrier of a nonsynonymous TP53 mutation. Pediatr. Neurol. 2014, 51, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Buchhalter, I.; Morrissy, A.S.; Hovestadt, V.; Weischenfeldt, J.; Ehrenberger, T.; Grobner, S.; Segura-Wang, M.; Zichner, T.; Rudneva, V.A.; et al. The whole-genome landscape of medulloblastoma subtypes. Nature 2017, 547, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.P.; Coyle, B.; Walker, D.A.; Grabowska, A.M. In vitro models of medulloblastoma: Choosing the right tool for the job. J. Biotechnol. 2016, 236, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Versteege, I.; Sevenet, N.; Lange, J.; Rousseau-Merck, M.F.; Ambros, P.; Handgretinger, R.; Aurias, A.; Delattre, O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 1998, 394, 203–206. [Google Scholar] [CrossRef]
- Biegel, J.A.; Zhou, J.Y.; Rorke, L.B.; Stenstrom, C.; Wainwright, L.M.; Fogelgren, B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999, 59, 74–79. [Google Scholar]
- Lee, R.S.; Stewart, C.; Carter, S.L.; Ambrogio, L.; Cibulskis, K.; Sougnez, C.; Lawrence, M.S.; Auclair, D.; Mora, J.; Golub, T.R.; et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Investig. 2012, 122, 2983–2988. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Isken, S.; Linge, A.; Eikmeier, K.; Jeibmann, A.; Oyen, F.; Nagel, I.; Richter, J.; Bartelheim, K.; Kordes, U.; et al. High-resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromoso. Cancer 2013, 52, 185–190. [Google Scholar] [CrossRef]
- Johann, P.D.; Erkek, S.; Zapatka, M.; Kerl, K.; Buchhalter, I.; Hovestadt, V.; Jones, D.T.W.; Sturm, D.; Hermann, C.; Segura Wang, M.; et al. Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell 2016, 29, 379–393. [Google Scholar] [CrossRef]
- Schneppenheim, R.; Fruhwald, M.C.; Gesk, S.; Hasselblatt, M.; Jeibmann, A.; Kordes, U.; Kreuz, M.; Leuschner, I.; Martin Subero, J.I.; Obser, T.; et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am. J. Hum. Genet. 2010, 86, 279–284. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Oyen, F.; Gesk, S.; Kordes, U.; Wrede, B.; Bergmann, M.; Schmid, H.; Fruhwald, M.C.; Schneppenheim, R.; Siebert, R.; et al. Cribriform neuroepithelial tumor (CRINET): A nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J. Neuropathol. Exp. Neurol. 2009, 68, 1249–1255. [Google Scholar] [CrossRef]
- Ferris, S.P.; Velazquez Vega, J.; Aboian, M.; Lee, J.C.; Van Ziffle, J.; Onodera, C.; Grenert, J.P.; Saunders, T.; Chen, Y.Y.; Banerjee, A.; et al. High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol. 2020, 30, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Wefers, A.; Bens, S.; Nemes, K.; Agaimy, A.; Oyen, F.; Vogelgesang, S.; Rodriguez, F.J.; Brett, F.M.; McLendon, R.; et al. Desmoplastic myxoid tumor, SMARCB1-mutant: Clinical, histopathological and molecular characterization of a pineal region tumor encountered in adolescents and adults. Acta Neuropathol. 2020, 139, 277–286. [Google Scholar] [CrossRef]
- Agnihotri, S.; Jalali, S.; Wilson, M.R.; Danesh, A.; Li, M.; Klironomos, G.; Krieger, J.R.; Mansouri, A.; Khan, O.; Mamatjan, Y.; et al. The genomic landscape of schwannoma. Nat. Genet. 2016, 48, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, A.; Xie, J.; Liu, Y.F.; Poplawski, A.B.; Gomes, A.R.; Madanecki, P.; Fu, C.; Crowley, M.R.; Crossman, D.K.; Armstrong, L.; et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat. Genet. 2014, 46, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Isidor, B.; Beetz, C.; Williams, S.G.; Bhaskar, S.S.; Richer, W.; O’Sullivan, J.; Anderson, B.; Daly, S.B.; Urquhart, J.E.; et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. Neurology 2015, 84, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Paganini, I.; Chang, V.Y.; Capone, G.L.; Vitte, J.; Benelli, M.; Barbetti, L.; Sestini, R.; Trevisson, E.; Hulsebos, T.J.; Giovannini, M.; et al. Expanding the mutational spectrum of LZTR1 in schwannomatosis. Eur. J. Hum. Genet. 2015, 23, 963–968. [Google Scholar] [CrossRef]
- Kehrer-Sawatzki, H.; Farschtschi, S.; Mautner, V.F.; Cooper, D.N. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum. Genet. 2017, 136, 129–148. [Google Scholar] [CrossRef]
- Maze, E.A.; Agit, B.; Reeves, S.; Hilton, D.A.; Parkinson, D.B.; Laraba, L.; Ercolano, E.; Kurian, K.M.; Hanemann, C.O.; Belshaw, R.D.; et al. Human Endogenous Retrovirus Type K Promotes Proliferation and Confers Sensitivity to Antiretroviral Drugs in Merlin-Negative Schwannoma and Meningioma. Cancer Res. 2022, 82, 235–247. [Google Scholar] [CrossRef]
- Pemov, A.; Hansen, N.F.; Sindiri, S.; Patidar, R.; Higham, C.S.; Dombi, E.; Miettinen, M.M.; Fetsch, P.; Brems, H.; Chandrasekharappa, S.C.; et al. Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define premalignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol. 2019, 21, 981–992. [Google Scholar] [CrossRef]
- Lee, W.; Teckie, S.; Wiesner, T.; Ran, L.; Prieto Granada, C.N.; Lin, M.; Zhu, S.; Cao, Z.; Liang, Y.; Sboner, A.; et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 2014, 46, 1227–1232. [Google Scholar] [CrossRef]
- Jo, V.Y.; Fletcher, C.D. Epithelioid malignant peripheral nerve sheath tumor: Clinicopathologic analysis of 63 cases. Am. J. Surg. Pathol. 2015, 39, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, I.M.; Dong, F.; Garcia, E.P.; Fletcher, C.D.M.; Jo, V.Y. Recurrent SMARCB1 Inactivation in Epithelioid Malignant Peripheral Nerve Sheath Tumors. Am. J. Surg. Pathol. 2019, 43, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.J.; Graham, M.K.; Brosnan-Cashman, J.A.; Barber, J.R.; Davis, C.; Vizcaino, M.A.; Palsgrove, D.N.; Giannini, C.; Pekmezci, M.; Dahiya, S.; et al. Telomere alterations in neurofibromatosis type 1-associated solid tumors. Acta Neuropathol. Commun. 2019, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.C.; Eulo, V.; Apicelli, A.J.; Pekmezci, M.; Tao, Y.; Luo, J.; Hirbe, A.C.; Dahiya, S. Aberrant ATRX protein expression is associated with poor overall survival in NF1-MPNST. Oncotarget 2018, 9, 23018–23028. [Google Scholar] [CrossRef] [PubMed]
- Ochi, A.; Ochiai, K.; Nakamura, S.; Kobara, A.; Sunden, Y.; Umemura, T. Molecular characteristics and pathogenicity of an avian leukosis virus isolated from avian neurofibrosarcoma. Avian Dis. 2012, 56, 35–43. [Google Scholar] [CrossRef]
- Williams, E.A.; Wakimoto, H.; Shankar, G.M.; Barker, F.G., 2nd; Brastianos, P.K.; Santagata, S.; Sokol, E.S.; Pavlick, D.C.; Shah, N.; Reddy, A.; et al. Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features. Acta Neuropathol. 2020, 140, 89–93. [Google Scholar] [CrossRef]
- Lee, J.C.; Villanueva-Meyer, J.E.; Ferris, S.P.; Sloan, E.A.; Hofmann, J.W.; Hattab, E.M.; Williams, B.J.; Guo, H.; Torkildson, J.; Florez, A.; et al. Primary intracranial sarcomas with DICER1 mutation often contain prominent eosinophilic cytoplasmic globules and can occur in the setting of neurofibromatosis type 1. Acta Neuropathol. 2019, 137, 521–525. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Thomas, C.; Hovestadt, V.; Schrimpf, D.; Johann, P.; Bens, S.; Oyen, F.; Peetz-Dienhart, S.; Crede, Y.; Wefers, A.; et al. Poorly differentiated chordoma with SMARCB1/INI1 loss: A distinct molecular entity with dismal prognosis. Acta Neuropathol. 2016, 132, 149–151. [Google Scholar] [CrossRef]
- Shih, A.R.; Cote, G.M.; Chebib, I.; Choy, E.; DeLaney, T.; Deshpande, V.; Hornicek, F.J.; Miao, R.; Schwab, J.H.; Nielsen, G.P.; et al. Clinicopathologic characteristics of poorly differentiated chordoma. Mod. Pathol. 2018, 31, 1237–1245. [Google Scholar] [CrossRef]
- Kupryjanczyk, J.; Dansonka-Mieszkowska, A.; Moes-Sosnowska, J.; Plisiecka-Halasa, J.; Szafron, L.; Podgorska, A.; Rzepecka, I.K.; Konopka, B.; Budzilowska, A.; Rembiszewska, A.; et al. Ovarian small cell carcinoma of hypercalcemic type—Evidence of germline origin and SMARCA4 gene inactivation. a pilot study. Pol. J. Pathol. 2013, 64, 238–246. [Google Scholar] [CrossRef]
- Rabotti, G.F.; Raine, W.A.; Sellers, R.L. Brain Tumors (Gliomas) Induced in Hamsters by Bryan’s Strain of Rous Sarcoma Virus. Science 1965, 147, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Ristevski, S.; Purcell, D.F.; Marshall, J.; Campagna, D.; Nouri, S.; Fenton, S.P.; McPhee, D.A.; Kannourakis, G. Novel endogenous type D retroviral particles expressed at high levels in a SCID mouse thymic lymphoma. J. Virol. 1999, 73, 4662–4669. [Google Scholar] [CrossRef]
- Bohm, B.; Bilic, I.; Bruggemann, J.; Nishiura, H.; Ochiai, K. Clinically Manifesting, Naturally Occurring Fowl Glioma in a Leghorn Chicken in Germany. Avian Dis. 2022, 66, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Chang, G.; Li, Z.; Bi, Y.; Liu, X.; Chen, G. Comprehensive Transcriptome Analysis Reveals Competing Endogenous RNA Networks During Avian Leukosis Virus, Subgroup J-Induced Tumorigenesis in Chickens. Front. Physiol. 2018, 9, 996. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Higashi, T.; Yamada, M.; Imai, K.; Yamamoto, Y. Basophilic intracytoplasmic viral matrix inclusions distributed widely in layer hens affected with avian-leukosis-virus-associated tumours. Avian Pathol. 2007, 36, 53–58. [Google Scholar] [CrossRef]
- Miyazawa, T.; Shimode, S.; Nakagawa, S. RD-114 virus story: From RNA rumor virus to a useful viral tool for elucidating the world cats’ journey. Uirusu 2016, 66, 21–30. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, Y.; Zhang, N.; Soto, C.; Jiang, X.; An, Z.; Zheng, W.J. Human Endogenous Retroviruses in Glioblastoma Multiforme. Microorganisms 2021, 9, 764. [Google Scholar] [CrossRef]
- Bonte, P.E.; Arribas, Y.A.; Merlotti, A.; Carrascal, M.; Zhang, J.V.; Zueva, E.; Binder, Z.A.; Alanio, C.; Goudot, C.; Amigorena, S. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep. 2022, 39, 110916. [Google Scholar] [CrossRef]
- Jayabal, P.; Ma, X.; Shiio, Y. EZH2 suppresses endogenous retroviruses and an interferon response in cancers. Genes Cancer 2021, 12, 96–105. [Google Scholar] [CrossRef]
- Zhang, S.M.; Cai, W.L.; Liu, X.; Thakral, D.; Luo, J.; Chan, L.H.; McGeary, M.K.; Song, E.; Blenman, K.R.M.; Micevic, G.; et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 2021, 598, 682–687. [Google Scholar] [CrossRef]
- Tong, K.I.; Yoon, S.; Isaev, K.; Bakhtiari, M.; Lackraj, T.; He, M.Y.; Joynt, J.; Silva, A.; Xu, M.C.; Prive, G.G.; et al. Combined EZH2 Inhibition and IKAROS Degradation Leads to Enhanced Antitumor Activity in Diffuse Large B-cell Lymphoma. Clin. Cancer Res. 2021, 27, 5401–5414. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Hantsch, C.; Volkmer, I.; Staege, M.S. Differentiation-Dependent Regulation of Human Endogenous Retrovirus K Sequences and Neighboring Genes in Germ Cell Tumor Cells. Front. Microbiol. 2018, 9, 1253. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.J.; Aldape, K.; Colman, H.; Figrarella-Branger, D.; Fuller, G.N.; Giannini, C.; Holland, E.C.; Jenkins, R.B.; Kleinschmidt-DeMasters, B.; Komori, T.; et al. cIMPACT-NOW update 5: Recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020, 139, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Kadoch, C.; Crabtree, G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015, 1, e1500447. [Google Scholar] [CrossRef]
- Kamoun, A.; Idbaih, A.; Dehais, C.; Elarouci, N.; Carpentier, C.; Letouze, E.; Colin, C.; Mokhtari, K.; Jouvet, A.; Uro-Coste, E.; et al. Integrated multi-omics analysis of oligodendroglial tumours identifies three subgroups of 1p/19q co-deleted gliomas. Nat. Commun. 2016, 7, 11263. [Google Scholar] [CrossRef]
- Riemenschneider, M.J.; Reifenberger, G. Molecular neuropathology of gliomas. Int. J. Mol. Sci. 2009, 10, 184–212. [Google Scholar] [CrossRef]
- Swartling, F.J.; Savov, V.; Persson, A.I.; Chen, J.; Hackett, C.S.; Northcott, P.A.; Grimmer, M.R.; Lau, J.; Chesler, L.; Perry, A.; et al. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 2012, 21, 601–613. [Google Scholar] [CrossRef]
- Bale, T.A.; Sait, S.F.; Benhamida, J.; Ptashkin, R.; Haque, S.; Villafania, L.; Sill, M.; Sadowska, J.; Akhtar, R.B.; Liechty, B.; et al. Malignant transformation of a polymorphous low grade neuroepithelial tumor of the young (PLNTY). Acta Neuropathol. 2021, 141, 123–125. [Google Scholar] [CrossRef]
- Buczkowicz, P.; Hoeman, C.; Rakopoulos, P.; Pajovic, S.; Letourneau, L.; Dzamba, M.; Morrison, A.; Lewis, P.; Bouffet, E.; Bartels, U.; et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat. Genet. 2014, 46, 451–456. [Google Scholar] [CrossRef]
- Castel, D.; Philippe, C.; Calmon, R.; Le Dret, L.; Truffaux, N.; Boddaert, N.; Pages, M.; Taylor, K.R.; Saulnier, P.; Lacroix, L.; et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015, 130, 815–827. [Google Scholar] [CrossRef]
- Bjerke, L.; Mackay, A.; Nandhabalan, M.; Burford, A.; Jury, A.; Popov, S.; Bax, D.A.; Carvalho, D.; Taylor, K.R.; Vinci, M.; et al. Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov. 2013, 3, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sturm, D.; Orr, B.A.; Toprak, U.H.; Hovestadt, V.; Jones, D.T.W.; Capper, D.; Sill, M.; Buchhalter, I.; Northcott, P.A.; Leis, I.; et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell 2016, 164, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.S.; Lu, C.; Xie, H.M.; Nestler, K.; Vermunt, M.W.; Lenard, A.; Bennett, L.; Speck, N.A.; Hanamura, I.; Lessard, J.A.; et al. Intrinsically disordered Meningioma-1 stabilizes the BAF complex to cause AML. Mol. Cell 2021, 81, 2332–2348 e2339. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, A.; Sycheva, R.; Golanov, A. Recurrent cytogenetic aberrations in central neurocytomas and their biological relevance. Acta Neuropathol. 2007, 113, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, S.; Perry, A.; Reifenberger, G.; Giangaspero, F.; Huang, H.; Hara, A.; Masuoka, J.; Rainov, N.G.; Bergmann, M.; Heppner, F.L.; et al. Genetic and expression profiles of cerebellar liponeurocytomas. Brain Pathol. 2004, 14, 281–289. [Google Scholar] [CrossRef]
- Kupp, R.; Ruff, L.; Terranova, S.; Nathan, E.; Ballereau, S.; Stark, R.; Sekhar Reddy Chilamakuri, C.; Hoffmann, N.; Wickham-Rahrmann, K.; Widdess, M.; et al. ZFTA Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discov. 2021, 11, 2216–2229. [Google Scholar] [CrossRef]
- Chang, L.; Azzolin, L.; Di Biagio, D.; Zanconato, F.; Battilana, G.; Lucon Xiccato, R.; Aragona, M.; Giulitti, S.; Panciera, T.; Gandin, A.; et al. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 2018, 563, 265–269. [Google Scholar] [CrossRef]
- Pajtler, K.W.; Wen, J.; Sill, M.; Lin, T.; Orisme, W.; Tang, B.; Hubner, J.M.; Ramaswamy, V.; Jia, S.; Dalton, J.D.; et al. Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathol. 2018, 136, 211–226. [Google Scholar] [CrossRef]
- Scheil, S.; Bruderlein, S.; Eicker, M.; Herms, J.; Herold-Mende, C.; Steiner, H.H.; Barth, T.F.; Moller, P. Low frequency of chromosomal imbalances in anaplastic ependymomas as detected by comparative genomic hybridization. Brain Pathol. 2001, 11, 133–143. [Google Scholar] [CrossRef]
- Swanson, A.A.; Raghunathan, A.; Jenkins, R.B.; Messing-Junger, M.; Pietsch, T.; Clarke, M.J.; Kaufmann, T.J.; Giannini, C. Spinal Cord Ependymomas with MYCN Amplification Show Aggressive Clinical Behavior. J. Neuropathol. Exp. Neurol. 2019, 78, 791–797. [Google Scholar] [CrossRef]
- Ghasemi, D.R.; Sill, M.; Okonechnikov, K.; Korshunov, A.; Yip, S.; Schutz, P.W.; Scheie, D.; Kruse, A.; Harter, P.N.; Kastelan, M.; et al. MYCN amplification drives an aggressive form of spinal ependymoma. Acta Neuropathol. 2019, 138, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Raffeld, M.; Abdullaev, Z.; Pack, S.D.; Xi, L.; Nagaraj, S.; Briceno, N.; Vera, E.; Pittaluga, S.; Lopes Abath Neto, O.; Quezado, M.; et al. High level MYCN amplification and distinct methylation signature define an aggressive subtype of spinal cord ependymoma. Acta Neuropathol. Commun. 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Tabori, U.; Shlien, A.; Baskin, B.; Levitt, S.; Ray, P.; Alon, N.; Hawkins, C.; Bouffet, E.; Pienkowska, M.; Lafay-Cousin, L.; et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J. Clin. Oncol. 2010, 28, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, K.D.; Noltner, K.A.; Buzin, C.H.; Gu, D.; Wen-Fong, C.Y.; Nguyen, V.Q.; Han, J.H.; Lowstuter, K.; Longmate, J.; Sommer, S.S.; et al. Beyond Li Fraumeni Syndrome: Clinical characteristics of families with p53 germline mutations. J. Clin. Oncol. 2009, 27, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Grausam, K.B.; Wang, J.; Lun, M.P.; Ohli, J.; Lidov, H.G.; Calicchio, M.L.; Zeng, E.; Salisbury, J.L.; Wechsler-Reya, R.J.; et al. Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat. Cell Biol. 2016, 18, 418–430. [Google Scholar] [CrossRef]
- Cancer, M.; Hutter, S.; Holmberg, K.O.; Rosen, G.; Sundstrom, A.; Tailor, J.; Bergstrom, T.; Garancher, A.; Essand, M.; Wechsler-Reya, R.J.; et al. Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell 2019, 25, 855–870 e811. [Google Scholar] [CrossRef]
- Jeon, S.; Seong, R.H. Anteroposterior Limb Skeletal Patterning Requires the Bifunctional Action of SWI/SNF Chromatin Remodeling Complex in Hedgehog Pathway. PLoS Genet. 2016, 12, e1005915. [Google Scholar] [CrossRef]
- Kool, M.; Jones, D.T.; Jager, N.; Northcott, P.A.; Pugh, T.J.; Hovestadt, V.; Piro, R.M.; Esparza, L.A.; Markant, S.L.; Remke, M.; et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 2014, 25, 393–405. [Google Scholar] [CrossRef]
- Ellison, D.W.; Kocak, M.; Dalton, J.; Megahed, H.; Lusher, M.E.; Ryan, S.L.; Zhao, W.; Nicholson, S.L.; Taylor, R.E.; Bailey, S.; et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 2011, 29, 1400–1407. [Google Scholar] [CrossRef]
- Lambo, S.; Grobner, S.N.; Rausch, T.; Waszak, S.M.; Schmidt, C.; Gorthi, A.; Romero, J.C.; Mauermann, M.; Brabetz, S.; Krausert, S.; et al. The molecular landscape of ETMR at diagnosis and relapse. Nature 2019, 576, 274–280. [Google Scholar] [CrossRef]
- Chitale, S.; Richly, H. Shaping chromatin with DICER. Oncotarget 2017, 8, 39937–39938. [Google Scholar] [CrossRef] [PubMed]
- Li, B.K.; Vasiljevic, A.; Dufour, C.; Yao, F.; Ho, B.L.B.; Lu, M.; Hwang, E.I.; Gururangan, S.; Hansford, J.R.; Fouladi, M.; et al. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: A Rare Brain Tumor Consortium registry study. Acta Neuropathol. 2020, 139, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, E.; Aichmuller, C.; Sill, M.; Stichel, D.; Snuderl, M.; Karajannis, M.A.; Schuhmann, M.U.; Schittenhelm, J.; Hasselblatt, M.; Thomas, C.; et al. Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathol. 2020, 139, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, R.M.; den Bakker, M.A.; Dubbink, H.J.; Hop, W.C.; Dinjens, W.N.; Kros, J.M. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J. Neuropathol. Exp. Neurol. 2010, 69, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Brohl, A.S.; Kahen, E.; Yoder, S.J.; Teer, J.K.; Reed, D.R. The genomic landscape of malignant peripheral nerve sheath tumors: Diverse drivers of Ras pathway activation. Sci. Rep. 2017, 7, 14992. [Google Scholar] [CrossRef]
- Sohier, P.; Luscan, A.; Lloyd, A.; Ashelford, K.; Laurendeau, I.; Briand-Suleau, A.; Vidaud, D.; Ortonne, N.; Pasmant, E.; Upadhyaya, M. Confirmation of mutation landscape of NF1-associated malignant peripheral nerve sheath tumors. Genes Chromosom. Cancer 2017, 56, 421–426. [Google Scholar] [CrossRef]
- Moonen, J.R.; Chappell, J.; Shi, M.; Shinohara, T.; Li, D.; Mumbach, M.R.; Zhang, F.; Nair, R.V.; Nasser, J.; Mai, D.H.; et al. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress. Nat. Commun. 2022, 13, 4941. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Z.J.; Hartman, M.; Smits, A.; Westermark, B.; Muhr, C.; Nister, M. Detection of TP53 gene mutation in human meningiomas: A study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int. J. Cancer 1995, 64, 223–228. [Google Scholar] [CrossRef]
- McDonald, C.; Reich, N.C. Cooperation of the transcriptional coactivators CBP and p300 with Stat6. J. Interferon. Cytokine Res. 1999, 19, 711–722. [Google Scholar] [CrossRef]
- Park, H.K.; Yu, D.B.; Sung, M.; Oh, E.; Kim, M.; Song, J.Y.; Lee, M.S.; Jung, K.; Noh, K.W.; An, S.; et al. Molecular changes in solitary fibrous tumor progression. J. Mol. Med. 2019, 97, 1413–1425. [Google Scholar] [CrossRef]
- Liang, Y.; Heller, R.S.; Wu, J.K.; Heilman, C.B.; Tischler, A.S.; Arkun, K. High p16 Expression Is Associated with Malignancy and Shorter Disease-Free Survival Time in Solitary Fibrous Tumor/Hemangiopericytoma. J. Neurol. Surg. B Skull Base 2019, 80, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Linden, M.; Thomsen, C.; Grundevik, P.; Jonasson, E.; Andersson, D.; Runnberg, R.; Dolatabadi, S.; Vannas, C.; Luna Santamariotaa, M.; Fagman, H.; et al. FET family fusion oncoproteins target the SWI/SNF chromatin remodeling complex. EMBO Rep. 2019, 20, e45766. [Google Scholar] [CrossRef] [PubMed]
- Brohl, A.S.; Solomon, D.A.; Chang, W.; Wang, J.; Song, Y.; Sindiri, S.; Patidar, R.; Hurd, L.; Chen, L.; Shern, J.F.; et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014, 10, e1004475. [Google Scholar] [CrossRef] [PubMed]
- Tirode, F.; Surdez, D.; Ma, X.; Parker, M.; Le Deley, M.C.; Bahrami, A.; Zhang, Z.; Lapouble, E.; Grossetete-Lalami, S.; Rusch, M.; et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 2014, 4, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, T.G.P.; Cidre-Aranaz, F.; Surdez, D.; Tomazou, E.M.; de Alava, E.; Kovar, H.; Sorensen, P.H.; Delattre, O.; Dirksen, U. Ewing sarcoma. Nat. Rev. Dis. Primers 2018, 4, 5. [Google Scholar] [CrossRef]
- Xi, Q.; He, W.; Zhang, X.H.; Le, H.V.; Massague, J. Genome-wide impact of the BRG1 SWI/SNF chromatin remodeler on the transforming growth factor beta transcriptional program. J. Biol. Chem. 2008, 283, 1146–1155. [Google Scholar] [CrossRef]
- Meijer, D.; de Jong, D.; Pansuriya, T.C.; van den Akker, B.E.; Picci, P.; Szuhai, K.; Bovee, J.V. Genetic characterization of mesenchymal, clear cell, and dedifferentiated chondrosarcoma. Genes Chromosom. Cancer 2012, 51, 899–909. [Google Scholar] [CrossRef]
- Behjati, S.; Tarpey, P.S.; Presneau, N.; Scheipl, S.; Pillay, N.; Van Loo, P.; Wedge, D.C.; Cooke, S.L.; Gundem, G.; Davies, H.; et al. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat. Genet. 2013, 45, 1479–1482. [Google Scholar] [CrossRef]
- Hollmann, T.J.; Hornick, J.L. INI1-deficient tumors: Diagnostic features and molecular genetics. Am. J. Surg. Pathol. 2011, 35, e47–e63. [Google Scholar] [CrossRef]
- Kusters-Vandevelde, H.V.; Kusters, B.; van Engen-van Grunsven, A.C.; Groenen, P.J.; Wesseling, P.; Blokx, W.A. Primary melanocytic tumors of the central nervous system: A review with focus on molecular aspects. Brain Pathol. 2015, 25, 209–226. [Google Scholar] [CrossRef]
- Brunn, A.; Nagel, I.; Montesinos-Rongen, M.; Klapper, W.; Vater, I.; Paulus, W.; Hans, V.; Blumcke, I.; Weis, J.; Siebert, R.; et al. Frequent triple-hit expression of MYC, BCL2, and BCL6 in primary lymphoma of the central nervous system and absence of a favorable MYC(low)BCL2 (low) subgroup may underlie the inferior prognosis as compared to systemic diffuse large B cell lymphomas. Acta Neuropathol. 2013, 126, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Emile, J.F.; Diamond, E.L.; Helias-Rodzewicz, Z.; Cohen-Aubart, F.; Charlotte, F.; Hyman, D.M.; Kim, E.; Rampal, R.; Patel, M.; Ganzel, C.; et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood 2014, 124, 3016–3019. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yamaguchi, S.; Burstein, M.D.; Terashima, K.; Chang, K.; Ng, H.K.; Nakamura, H.; He, Z.; Doddapaneni, H.; Lewis, L.; et al. Novel somatic and germline mutations in intracranial germ cell tumours. Nature 2014, 511, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Terashima, K.; Yu, A.; Chow, W.Y.; Hsu, W.C.; Chen, P.; Wong, S.; Hung, Y.S.; Suzuki, T.; Nishikawa, R.; Matsutani, M.; et al. Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors. Pediatr. Blood Cancer 2014, 61, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, S.; Ichikawa, T.; Koga, H.; Washiyama, K.; Motoyama, T.; Kumanishi, T. Intracranial germ cell tumors: Detection of p53 gene mutations by single-strand conformation polymorphism analysis. Jpn. J. Cancer Res. 1995, 86, 555–561. [Google Scholar] [CrossRef]
- Sekine, S.; Shibata, T.; Kokubu, A.; Morishita, Y.; Noguchi, M.; Nakanishi, Y.; Sakamoto, M.; Hirohashi, S. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am. J. Pathol. 2002, 161, 1997–2001. [Google Scholar] [CrossRef]
- O’Neill, D.W.; Schoetz, S.S.; Lopez, R.A.; Castle, M.; Rabinowitz, L.; Shor, E.; Krawchuk, D.; Goll, M.G.; Renz, M.; Seelig, H.P.; et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell Biol. 2000, 20, 7572–7582. [Google Scholar] [CrossRef]
- Tanizaki, Y.; Jin, L.; Scheithauer, B.W.; Kovacs, K.; Roncaroli, F.; Lloyd, R.V. P53 gene mutations in pituitary carcinomas. Endocr. Pathol. 2007, 18, 217–222. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Kovacs, K.; Horvath, E.; Kim, D.S.; Osamura, R.Y.; Ketterling, R.P.; Lloyd, R.V.; Kim, O.L. Pituitary blastoma. Acta Neuropathol. 2008, 116, 657–666. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Horvath, E.; Abel, T.W.; Robital, Y.; Park, S.H.; Osamura, R.Y.; Deal, C.; Lloyd, R.V.; Kovacs, K. Pituitary blastoma: A unique embryonal tumor. Pituitary 2012, 15, 365–373. [Google Scholar] [CrossRef]
- de Kock, L.; Sabbaghian, N.; Plourde, F.; Srivastava, A.; Weber, E.; Bouron-Dal Soglio, D.; Hamel, N.; Choi, J.H.; Park, S.H.; Deal, C.L.; et al. Pituitary blastoma: A pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014, 128, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Lee, H.K.; Khang, S.K.; Kim, D.W.; Jeong, A.K.; Ahn, K.J.; Choi, C.G.; Suh, D.C. Neuronal tumors of the central nervous system: Radiologic findings and pathologic correlation. Radiographics 2002, 22, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Wesseling, P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016, 134, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Halfpenny, A.M.; Wood, M.D. Review of the Recent Changes in the WHO Classification for Pediatric Brain and Spinal Cord Tumors. Pediatr. Neurosurg. 2023; Online Ahead of Print. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Y.; Zhang, C.; Wang, Z.; Liu, X.; Li, G.; Sun, L.; Liang, J.; Luo, J.; Zhou, D.; et al. The Landscape of Viral Expression Reveals Clinically Relevant Viruses with Potential Capability of Promoting Malignancy in Lower-Grade Glioma. Clin. Cancer Res. 2017, 23, 2177–2185. [Google Scholar] [CrossRef]
- Shah, A.H.; Gilbert, M.; Ivan, M.E.; Komotar, R.J.; Heiss, J.; Nath, A. The role of human endogenous retroviruses in gliomas: From etiological perspectives and therapeutic implications. Neuro Oncol. 2021, 23, 1647–1655. [Google Scholar] [CrossRef]
- Kleinerman, R.A.; Tucker, M.A.; Tarone, R.E.; Abramson, D.H.; Seddon, J.M.; Stovall, M.; Li, F.P.; Fraumeni, J.F., Jr. Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: An extended follow-up. J. Clin. Oncol. 2005, 23, 2272–2279. [Google Scholar] [CrossRef]
- Butler, E.; Ludwig, K.; Pacenta, H.L.; Klesse, L.J.; Watt, T.C.; Laetsch, T.W. Recent progress in the treatment of cancer in children. CA Cancer J. Clin. 2021, 71, 315–332. [Google Scholar] [CrossRef]
- Berube, N.G.; Mangelsdorf, M.; Jagla, M.; Vanderluit, J.; Garrick, D.; Gibbons, R.J.; Higgs, D.R.; Slack, R.S.; Picketts, D.J. The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis. J. Clin. Investig. 2005, 115, 258–267. [Google Scholar] [CrossRef]
- Dyer, M.A.; Qadeer, Z.A.; Valle-Garcia, D.; Bernstein, E. ATRX and DAXX: Mechanisms and Mutations. Cold Spring Harb. Perspect. Med. 2017, 7, a026567. [Google Scholar] [CrossRef]
- Lewis, P.W.; Elsaesser, S.J.; Noh, K.M.; Stadler, S.C.; Allis, C.D. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc. Natl. Acad. Sci. USA 2010, 107, 14075–14080. [Google Scholar] [CrossRef]
- Voon, H.P.; Hughes, J.R.; Rode, C.; De La Rosa-Velazquez, I.A.; Jenuwein, T.; Feil, R.; Higgs, D.R.; Gibbons, R.J. ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes. Cell Rep. 2015, 11, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Valle-Garcia, D.; Qadeer, Z.A.; McHugh, D.S.; Ghiraldini, F.G.; Chowdhury, A.H.; Hasson, D.; Dyer, M.A.; Recillas-Targa, F.; Bernstein, E. ATRX binds to atypical chromatin domains at the 3’ exons of zinc finger genes to preserve H3K9me3 enrichment. Epigenetics 2016, 11, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Boller, K.; Schonfeld, K.; Lischer, S.; Fischer, N.; Hoffmann, A.; Kurth, R.; Tonjes, R.R. Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J. Gen. Virol. 2008, 89, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Heslin, D.J.; Murcia, P.; Arnaud, F.; Van Doorslaer, K.; Palmarini, M.; Lenz, J. A single amino acid substitution in a segment of the CA protein within Gag that has similarity to human immunodeficiency virus type 1 blocks infectivity of a human endogenous retrovirus K provirus in the human genome. J. Virol. 2009, 83, 1105–1114. [Google Scholar] [CrossRef]
- Gianno, F.; Miele, E.; Antonelli, M.; Giangaspero, F. Embryonal tumors in the WHO CNS5 classification: A Review. Indian J. Pathol. Microbiol. 2022, 65, S73–S82. [Google Scholar] [CrossRef]
- MacDonald, T.J. Aggressive infantile embryonal tumors. J. Child Neurol. 2008, 23, 1195–1204. [Google Scholar] [CrossRef]
- Selvadurai, H.J.; Luis, E.; Desai, K.; Lan, X.; Vladoiu, M.C.; Whitley, O.; Galvin, C.; Vanner, R.J.; Lee, L.; Whetstone, H.; et al. Medulloblastoma Arises from the Persistence of a Rare and Transient Sox2(+) Granule Neuron Precursor. Cell Rep. 2020, 31, 107511. [Google Scholar] [CrossRef]
- Johann, P.D.; Hovestadt, V.; Thomas, C.; Jeibmann, A.; Hess, K.; Bens, S.; Oyen, F.; Hawkins, C.; Pierson, C.R.; Aldape, K.; et al. Cribriform neuroepithelial tumor: Molecular characterization of a SMARCB1-deficient non-rhabdoid tumor with favorable long-term outcome. Brain Pathol. 2017, 27, 411–418. [Google Scholar] [CrossRef]
- Cai, C. SWI/SNF deficient central nervous system neoplasms. Semin. Diagn. Pathol. 2021, 38, 167–174. [Google Scholar] [CrossRef]
- Robinson, G.; Parker, M.; Kranenburg, T.A.; Lu, C.; Chen, X.; Ding, L.; Phoenix, T.N.; Hedlund, E.; Wei, L.; Zhu, X.; et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012, 488, 43–48. [Google Scholar] [CrossRef]
- Woodley, C.M.; Romer, A.S.; Wang, J.; Guarnaccia, A.D.; Elion, D.L.; Maxwell, J.N.; Guerrazzi, K.; McCann, T.S.; Popay, T.M.; Matlock, B.K.; et al. Multiple interactions of the oncoprotein transcription factor MYC with the SWI/SNF chromatin remodeler. Oncogene 2021, 40, 3593–3609. [Google Scholar] [CrossRef] [PubMed]
- Sammak, S.; Allen, M.D.; Hamdani, N.; Bycroft, M.; Zinzalla, G. The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex. FEBS J. 2018, 285, 4165–4180. [Google Scholar] [CrossRef] [PubMed]
- Chougule, M. Neuropathology of Brain Tumors with Radiologic Correlates; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mankin, H.J.; Mankin, K.P. Schwannoma: A rare benign tumor of soft tissues. Musculoskelet. Surg. 2014, 98, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Somatilaka, B.N.; Sadek, A.; McKay, R.M.; Le, L.Q. Malignant peripheral nerve sheath tumor: Models, biology, and translation. Oncogene 2022, 41, 2405–2421. [Google Scholar] [CrossRef]
- Vitte, J.; Gao, F.; Coppola, G.; Judkins, A.R.; Giovannini, M. Timing of Smarcb1 and Nf2 inactivation determines schwannoma versus rhabdoid tumor development. Nat. Commun. 2017, 8, 300. [Google Scholar] [CrossRef]
- Kerr, K.; Qualmann, K.; Esquenazi, Y.; Hagan, J.; Kim, D.H. Familial Syndromes Involving Meningiomas Provide Mechanistic Insight Into Sporadic Disease. Neurosurgery 2018, 83, 1107–1118. [Google Scholar] [CrossRef]
- Torchia, J.; Golbourn, B.; Feng, S.; Ho, K.C.; Sin-Chan, P.; Vasiljevic, A.; Norman, J.D.; Guilhamon, P.; Garzia, L.; Agamez, N.R.; et al. Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell 2016, 30, 891–908. [Google Scholar] [CrossRef]
- Golovnina, K.; Blinov, A.; Akhmametyeva, E.M.; Omelyanchuk, L.V.; Chang, L.S. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2) tumor-suppressor gene. BMC Evol. Biol. 2005, 5, 69. [Google Scholar] [CrossRef]
- Ogasawara, C.; Philbrick, B.D.; Adamson, D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines 2021, 9, 319. [Google Scholar] [CrossRef]
- Abedalthagafi, M.S.; Bi, W.L.; Merrill, P.H.; Gibson, W.J.; Rose, M.F.; Du, Z.; Francis, J.M.; Du, R.; Dunn, I.F.; Ligon, A.H.; et al. ARID1A and TERT promoter mutations in dedifferentiated meningioma. Cancer Genet. 2015, 208, 345–350. [Google Scholar] [CrossRef]
- Wilson, B.G.; Roberts, C.W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Roberts, C.W. ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov. 2013, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.C.; Wang, T.L.; Shih Ie, M. The emerging roles of ARID1A in tumor suppression. Cancer Biol. Ther. 2014, 15, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.M.; Loewenstern, J.; Rutland, J.W.; Arib, H.; Pain, M.; Umphlett, M.; Kinoshita, Y.; McBride, R.B.; Bederson, J.; Donovan, M.; et al. SWI/SNF chromatin remodeling complex alterations in meningioma. J. Cancer Res. Clin. Oncol. 2021, 147, 3431–3440. [Google Scholar] [CrossRef] [PubMed]
- Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C.K.; Stephens, P.; Davies, H.; Jones, D.; Lin, M.L.; Teague, J.; et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011, 469, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Behling, F.; Bersali, I.; Santacroce, A.; Hempel, J.; Kandilaris, K.; Schittenhelm, J.; Tatagiba, M. Transition of a vestibular schwannoma to a malignant peripheral nerve sheath tumor with loss of H3K27 trimethylation after radiosurgery—A case report and review of the literature. Neurosurg. Rev. 2022, 45, 915–922. [Google Scholar] [CrossRef]
- Dreier, M.R.; de la Serna, I.L. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. Epigenomes 2022, 6, 10. [Google Scholar] [CrossRef]
- Park, S.W.; Huq, M.D.; Loh, H.H.; Wei, L.N. Retinoic acid-induced chromatin remodeling of mouse kappa opioid receptor gene. J. Neurosci. 2005, 25, 3350–3357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).