Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prostaglandin E2
3. Epidermal Growth Factor Receptor, Cancer, and Intrinsic Inflammation
4. PGE2 and EGFR as a Dual Target for Cancer Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mollaei, M.; Abbasi, A.; Hassan, Z.M.; Pakravan, N. The Intrinsic and Extrinsic Elements Regulating Inflammation. Life Sci. 2020, 260, 118258. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Larghi, P.; Rimoldi, M.; Grazia Totaro, M.; Allavena, P.; Mantovani, A.; Sica, A. Cellular and Molecular Pathways Linking Inflammation and Cancer. Immunobiology 2009, 214, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Pierotti, M.A. Cancer and Inflammation: A Complex Relationship. Cancer Lett. 2008, 267, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, I.; Kulcenty, K.; Suchorska, W. Interplay between Inflammation and Cancer. Rep. Pract. Oncol. Radiother. 2020, 25, 422–427. [Google Scholar] [CrossRef]
- Korniluk, A.; Koper, O.; Kemona, H.; Dymicka-Piekarska, V. From Inflammation to Cancer. Ir. J. Med. Sci. 2017, 186, 57–62. [Google Scholar] [CrossRef]
- Herceg, Z.; Hainaut, P. Genetic and Epigenetic Alterations as Biomarkers for Cancer Detection, Diagnosis and Prognosis. Mol. Oncol. 2007, 1, 26–41. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-Related Inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Dep Prete, A.; Allavena, P.; Santoro, G.; Fumarulo, R.; Corsi, M.M.; Mantovani, A. Inflammation: Molecular pathways in cancer-related inflammation. Biochem. Med. 2011, 21, 264–275. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer: Review. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- DeNardo, D.G.; Andreu, P.; Coussens, L.M. Interactions between Lymphocytes and Myeloid Cells Regulate Pro-versus Anti-Tumor Immunity. Cancer Metastasis Rev. 2010, 29, 309–316. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Qian, B.Z.; Pollard, J.W. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal Stem Cells within Tumour Stroma Promote Breast Cancer Metastasis. Nature 2007, 449, 557–563. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Role of Prostanoids in Gastrointestinal Cancer. J. Clin. Investig. 2018, 128, 2732–2742. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Prostaglandins and Cancer. Gut 2006, 55, 115–122. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Eicosanoids and Cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef]
- Donnini, S.; Finetti, F.; Terzuoli, E.; Bazzani, L.; Ziche, M. Targeting PGE2 Signaling in Tumor Progression and Angiogenesis. Forum Immunopathol. Dis. Ther. 2014, 5, 223–232. [Google Scholar] [CrossRef]
- Finetti, F.; Travelli, C.; Ercoli, J.; Colombo, G.; Buoso, E.; Trabalzini, L. Prostaglandin E2 and Cancer: Insight into Tumor Progression and Immunity. Biology 2020, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Xu, J.; Qian, Y.; Luk, S.T.Y.; Chen, H.; Li, W.; Zhao, L.; Zhang, X.; Chiu, P.W.Y.; Ng, E.K.W.; et al. Prostaglandin E2 Induces DNA Hypermethylation in Gastric Cancer in Vitro and in Vivo. Theranostics 2019, 9, 6256–6268. [Google Scholar] [CrossRef]
- So, J.Y.; Skrypek, N.; Yang, H.H.; Merchant, A.S.; Nelson, G.W.; Chen, W.D.; Ishii, H.; Chen, J.M.; Hu, G.; Achyut, B.R.; et al. Induction of DNMT3B by PGE2 and IL6 at Distant Metastatic Sites Promotes Epigenetic Modification and Breast Cancer Colonization. Cancer Res. 2020, 80, 2612–2627. [Google Scholar] [CrossRef] [PubMed]
- Terzuoli, E.; Donnini, S.; Finetti, F.; Nesi, G.; Villari, D.; Hanaka, H.; Radmark, O.; Giachetti, A.; Ziche, M. Linking Microsomal Prostaglandin E Synthase-1/PGE-2 Pathway with MiR-15a and -186 Expression: Novel Mechanism of VEGF Modulation in Prostate Cancer. Oncotarget 2016, 7, 44350–44364. [Google Scholar] [CrossRef]
- Park, Y.R.; Seo, S.Y.; Kim, S.L.; Zhu, S.M.; Chun, S.; Oh, J.M.; Lee, M.R.; Kim, S.H.; Kim, I.H.; Lee, S.O.; et al. MiRNA-206 Suppresses PGE2-Induced Colorectal Cancer Cell Proliferation, Migration, and Invasion by Targetting TM4SF1. Biosci. Rep. 2018, 38, BSR20180664. [Google Scholar] [CrossRef]
- Cen, B.; Lang, J.D.; Du, Y.; Wei, J.; Xiong, Y.; Bradley, N.; Wang, D.; DuBois, R.N. Prostaglandin E2 Induces MiR675-5p to Promote Colorectal Tumor Metastasis via Modulation of P53 Expression. Gastroenterology 2020, 158, 971–984.e10. [Google Scholar] [CrossRef]
- Li, P.; Shan, J.X.; Chen, X.H.; Zhang, D.; Su, L.P.; Huang, X.Y.; Yu, B.Q.; Zhi, Q.M.; Li, C.L.; Wang, Y.Q.; et al. Epigenetic Silencing of MicroRNA-149 in Cancer-Associated Fibroblasts Mediates Prostaglandin E2/Interleukin-6 Signaling in the Tumor Microenvironment. Cell Res. 2015, 25, 588–603. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Q.; Ye, N.; Sui, H.; Zhou, L.; Zhu, H.; Fan, Z.; Cai, J.; Li, Q. Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway. PLoS ONE 2015, 10, e0123478. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, M.; Li, B.; Xiao, J.; Yang, W.; Xie, S.; Du, Y.; Huang, K.; Nie, D. Growth of T-Cell Lymphoma Cells Is Inhibited by MPGES-1/PGE2 Suppression via JAK/STAT, TGF-β/Smad3 and PI3K/AKT Signal Pathways. Transl. Cancer Res. 2022, 11, 2175–2184. [Google Scholar] [CrossRef]
- Leone, V.; Di Palma, A.; Ricchi, P.; Acquaviva, F.; Giannouli, M.; Di Prisco, A.M.; Iuliano, F.; Acquaviva, A.M. PGE2 Inhibits Apoptosis in Human Adenocarcinoma Caco-2 Cell Line through Ras-PI3K Association and CAMP-Dependent Kinase A Activation. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G673–G681. [Google Scholar] [CrossRef]
- Siegfried, J.M.; Gubish, C.T.; Rothstein, M.E.; De Oliveira, P.E.Q.; Stabile, L.P. Signaling Pathways Involved in Cyclooxygenase-2 Induction by Hepatocyte Growth Factor in Non-Small-Cell Lung Cancer. Mol. Pharmacol. 2007, 72, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Pai, R.; Nakamura, T.; Moon, W.S.; Tarnawski, A.S. Prostaglandins Promote Colon Cancer Cell Invasion; Signaling by Cross-talk between Two Distinct Growth Factor Receptors. FASEB J. 2003, 17, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Pai, R.; Soreghan, B.; Szabo, I.L.; Pavelka, M.; Baatar, D.; Tarnawski, A.S. Prostaglandin E2, Transactivates EGF Receptor: A Novel Mechanism for Promoting Colon Cancer Growth and Gastrointestinal Hypertrophy. Nat. Med. 2002, 8, 289–293. [Google Scholar] [CrossRef]
- Ye, Y.; Peng, L.; Vattai, A.; Deuster, E.; Kuhn, C.; Dannecker, C.; Mahner, S.; Jeschke, U.; von Schönfeldt, V.; Heidegger, H.H. Prostaglandin E2 Receptor 3 (EP3) Signaling Promotes Migration of Cervical Cancer via Urokinase-Type Plasminogen Activator Receptor (UPAR). J. Cancer Res. Clin. Oncol. 2020, 146, 2189–2203. [Google Scholar] [CrossRef]
- Gupta, R.A.; Dubois, R.N. Colorectal Cancer Prevention of Cyclooxygenase-2. Nat. Rev. Cancer 2001, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Inoue, H.; Tanabe, T.; Umesono, K. Feedback Control of Cyclooxygenase-2 Expression through PPARγ. J. Biol. Chem. 2000, 275, 28028–28032. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.; Kuitert, L.M.E.; Bergmann, M.; Adcock, I.M.; Barnes, P.J. Evidence for Involvement of NF-ΚB in the Transcriptional Control of COX-2 Gene Expression by IL-1β. Biochem. Biophys. Res. Commun. 1997, 237, 28–32. [Google Scholar] [CrossRef]
- Olszowski, T.; Gutowska, I.; Baranowska-Bosiacka, I.; Piotrowska, K.; Korbecki, J.; Kurzawski, M.; Chlubek, D. The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages. Biol. Trace Elem. Res. 2015, 165, 135–144. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, L.D.; Liu, H.; Li, H.H.; Ren, C.; Zhang, P.; Guo, K.T.; Zhang, H.X.; Geng, D.Q.; Zhang, C.Y. Fluoride Induces Neuroinflammation and Alters Wnt Signaling Pathway in BV2 Microglial Cells. Inflammation 2017, 40, 1123–1130. [Google Scholar] [CrossRef]
- Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; van de Putte, L.B.A.; Lipsky, P.E. Cyclooxygenase in Biology and Disease. FASEB J. 1998, 12, 1063–1073. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; da Yao, Y.; Luo, J.F.; Liu, Z.Q.; Huang, Y.M.; Wu, F.C.; Sun, Q.H.; Liu, J.X.; Zhou, H. Microsomal Prostaglandin E2 Synthase-1 and Its Inhibitors: Molecular Mechanisms and Therapeutic Significance. Pharmacol. Res. 2021, 175, 105977. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, T.; Nakatani, Y.; Semmyo, N.; Murakami, M.; Kudo, I. Molecular Identification of Cytosolic Prostaglandin E2 Synthase That Is Functionally Coupled with Cyclooxygenase-1 in Immediate Prostaglandin E2 Biosynthesis. J. Biol. Chem. 2000, 275, 32775–32782. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, M.; Kubata, B.K.; Eguchi, N.; Fujitani, Y.; Urade, Y.; Hayaishi, O. Biochemical Characterization of Mouse Microsomal Prostaglandin E Synthase-1 and Its Colocalization with Cyclooxygenase-2 in Peritoneal Macrophages. Arch. Biochem. Biophys. 2002, 397, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Nakashima, K.; Kamei, D.; Masuda, S.; Ishikawa, Y.; Ishii, T.; Ohmiya, Y.; Watanabe, K.; Kudo, I. Cellular Prostaglandin E2 Production by Membrane-Bound Prostaglandin E Synthase-2 via Both Cyclooxygenases-1 and -2. J. Biol. Chem. 2003, 278, 37937–37947. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Rosenberg, D.W. Multifaceted Roles of PGE2 in Inflammation and Cancer. Semin. Immunopathol. 2013, 35, 123–137. [Google Scholar] [CrossRef]
- O’Callaghan, G.; Houston, A. Prostaglandin E2 and the EP Receptors in Malignancy: Possible Therapeutic Targets? Br. J. Pharmacol. 2015, 172, 5239–5250. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Narumiya, S. Prostaglandin E Receptors. J. Biol. Chem. 2007, 282, 11613–11617. [Google Scholar] [CrossRef]
- Narumiya, S.; Sugimoto, Y.; Ushikubi, F. Prostanoid Receptors: Structures, Properties, and Functions. Physiol. Rev. 1999, 79, 1193–1226. [Google Scholar] [CrossRef]
- Ching, M.M.; Reader, J.; Fulton, A.M. Eicosanoids in Cancer: Prostaglandin E2 Receptor 4 in Cancer Therapeutics and Immunotherapy. Front. Pharmacol. 2020, 11, 819. [Google Scholar] [CrossRef]
- Tai, H.H. Prostaglandin Catabolic Enzymes as Tumor Suppressors. Cancer Metastasis Rev. 2011, 30, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.Y.; Lin, T.S.; Lin, J.P.; Wu, Y.C.; Chow, K.C.; Wang, L.S. Cyclooxygenase-2 in Human Non-Small Cell Lung Cancer. Eur. J. Surg. Oncol. 2003, 29, 171–177. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Subbaramaiah, K.; Dannenberg, A.J.; DeLellis, R.A.; Golijanin, D.; Paty, P.B.; Soslow, R.A.; Jakobsson, P.J. Inducible Microsomal Prostaglandin E Synthase Is Overexpressed in Colorectal Adenomas and Cancer. Clin. Cancer Res. 2001, 7, 3971–3976. [Google Scholar] [PubMed]
- Sano, H.; Kawahito, Y.; Wilder, R.L.; Hashiramoto, A.; Mukai, S.; Asai, K.; Kimura, S.; Kato, H.; Kondo, M.; Hla, T. Expression of Cyclooxygenà ¤ Se-1and -2 in Human Colorectal Cancer1. Cancer Res. 1995, 55, 3785–3790. [Google Scholar] [PubMed]
- Roelofs, H.M.J.; te Morsche, R.H.M.; van Heumen, B.W.H.; Nagengast, F.M.; Peters, W.H.M. Over-Expression of COX-2 MRNA in Colorectal Cancer. BMC Gastroenterol. 2014, 14, 3–8. [Google Scholar] [CrossRef]
- Half, E.; Tang, X.M.; Gwyn, K.; Sahin, A.; Wathen, K.; Sinicrope, F.A. Cyclooxygenase-2 Expression in Human Breast Cancers and Adjacent Ductal Carcinoma in Situ. Cancer Res. 2002, 62, 1676–1681. [Google Scholar]
- Mehrotra, S.; Morimiya, A.; Agarwal, B.; Konger, R.; Badve, S. Microsomal Prostaglandin E2 Synthase-1 in Breast Cancer: A Potential Target for Therapy. J. Pathol. 2006, 208, 356–363. [Google Scholar] [CrossRef]
- Majumder, M.; Nandi, P.; Omar, A.; Ugwuagbo, K.C.; Lala, P.K. EP4 as a Therapeutic Target for Aggressive Human Breast Cancer. Int. J. Mol. Sci. 2018, 19, 1019. [Google Scholar] [CrossRef]
- Khor, L.Y.; Bae, K.; Pollack, A.; Hammond, M.E.H.; Grignon, D.J.; Venkatesan, V.M.; Rosenthal, S.A.; Ritter, M.A.; Sandler, H.M.; Hanks, G.E.; et al. COX-2 Expression Predicts Prostate-Cancer Outcome: Analysis of Data from the RTOG 92-02 Trial. Lancet Oncol. 2007, 8, 912–920. [Google Scholar] [CrossRef]
- Finetti, F.; Terzuoli, E.; Giachetti, A.; Santi, R.; Villari, D.; Hanaka, H.; Radmark, O.; Ziche, M.; Donnini, S. MPGES-1 in Prostate Cancer Controls Stemness and Amplifies Epidermal Growth Factor Receptor-Driven Oncogenicity. Endocr. Relat. Cancer 2015, 22, 665–678. [Google Scholar] [CrossRef]
- Panza, E.; de Cicco, P.; Ercolano, G.; Armogida, C.; Scognamiglio, G.; Anniciello, A.M.; Botti, G.; Cirino, G.; Ianaro, A. Differential Expression of Cyclooxygenase-2 in Metastatic Melanoma Affects Progression Free Survival. Oncotarget 2016, 7, 57077–57085. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, J.; Finetti, F.; Woodby, B.; Belmonte, G.; Miracco, C.; Valacchi, G.; Trabalzini, L. KRIT1 as a Possible New Player in Melanoma Aggressiveness. Arch. Biochem. Biophys. 2020, 691, 108483. [Google Scholar] [CrossRef] [PubMed]
- Koga, H.; Sakisaka, S.; Ohishi, M.; Kawaguchi, T.; Taniguchi, E.; Sasatomi, K.; Harada, M.; Kusaba, T.; Tanaka, M.; Kimura, R.; et al. Expression of Cyclooxygenase-2 in Human Hepatocellular Carcinoma: Relevance to Tumor Dedifferentiation. Hepatology 1999, 29, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Zang, S.; Ni, M.; Lian, Y.; Zhang, Y.; Liu, J.; Huang, A. Expression of Microsomal Prostaglandin E2 Synthase-1 and Its Role in Human Hepatocellular Carcinoma. Hum. Pathol. 2013, 44, 1681–1687. [Google Scholar] [CrossRef]
- Takeda, H.; Miyoshi, H.; Tamai, Y.; Oshima, M.; Taketo, M.M. Simultaneous Expression of COX-2 and MPGES-1 in Mouse Gastrointestinal Hamartomas. Br. J. Cancer 2004, 90, 701–704. [Google Scholar] [CrossRef]
- Sasaki, Y.; Kamei, D.; Ishikawa, Y.; Ishii, T.; Uematsu, S.; Akira, S.; Murakami, M.; Hara, S. Microsomal Prostaglandin E Synthase-1 Is Involved in Multiple Steps of Colon Carcinogenesis. Oncogene 2012, 31, 2943–2952. [Google Scholar] [CrossRef]
- Oshima, H.; Oshima, M.; Inaba, K.; Taketo, M.M. Hyperplastic Gastric Tumors Induced by Activated Macrophages in COX-2/MPGES-1 Transgenic Mice. EMBO J. 2004, 23, 1669–1678. [Google Scholar] [CrossRef]
- Nakanishi, M.; Montrose, D.C.; Clark, P.; Nambiar, P.R.; Belinsky, G.S.; Claffey, K.P.; Xu, D.; Rosenberg, D.W. Genetic Deletion of MPGES-1 Suppresses Intestinal Tumorigenesis. Cancer Res. 2008, 68, 3251–3259. [Google Scholar] [CrossRef]
- Badawi, A.F.; Liu, Y.; Eldeen, M.B.; Morrow, W.; Razak, Z.R.; Maradeo, M.; Badr, M.Z. Age-Associated Changes in the Expression Pattern of Cyclooxygenase-2 and Related Apoptotic Markers in the Cancer Susceptible Region of Rat Prostate. Carcinogenesis 2004, 25, 1681–1688. [Google Scholar] [CrossRef]
- Sun, X.; Li, Q. Prostaglandin EP2 Receptor: Novel Therapeutic Target for Human Cancers (Review). Int. J. Mol. Med. 2018, 42, 1203–1214. [Google Scholar] [CrossRef]
- Mutoh, M.; Watanabe, K.; Kitamura, T.; Shoji, Y.; Takahashi, M.; Kawamori, T.; Sugimura, T.; Wakabayashi, K.; Tani, K.; Kobayashi, M.; et al. Involvement of Prostaglandin E Receptor Subtype EP4 in Colon Carcinogenesis. Cancer Res. 2002, 62, 28–32. [Google Scholar] [PubMed]
- Chell, S.D.; Witherden, I.R.; Dobson, R.R.; Moorghen, M.; Herman, A.A.; Qualtrough, D.; Williams, A.C.; Paraskeva, C. Increased EP4 Receptor Expression in Colorectal Cancer Progression Promotes Cell Growth and Anchorage Independence. Cancer Res. 2006, 66, 3106–3113. [Google Scholar] [CrossRef] [PubMed]
- Doherty, G.A.; Byrne, S.M.; Molloy, E.S.; Malhotra, V.; Austin, S.C.; Kay, E.W.; Murray, F.E.; Fitzgerald, D.J. Proneoplastic Effects of PGE2 Mediated by EP4 Receptor in Colorectal Cancer. BMC Cancer 2009, 9, 207. [Google Scholar] [CrossRef]
- Watanabe, K.; Kawamori, T.; Nakatsugi, S.; Ohta, T.; Ohuchida, S.; Yamamoto, H.; Maruyama, T.; Kondo, K.; Ushikubi, F.; Narumiya, S.; et al. Role of the Prostaglandin E Receptor Subtype EP1 in Colon Carcinogenesis. Cancer Res. 1999, 59, 5093–5096. [Google Scholar]
- Shoji, Y.; Takahashi, M.; Kitamura, T.; Watanabe, K.; Kawamori, T.; Maruyama, T.; Sugimoto, Y.; Negishi, M.; Narumiya, S.; Sugimura, T.; et al. Downregulation of Prostaglandin E Receptor Subtype EP3 during Colon Cancer Development. Gut 2004, 53, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Sonoshita, M.; Takaku, K.; Sasaki, N.; Sugimoto, Y.; Ushikubi, F.; Narumiya, S.; Oshima, M.; Taketo, M.M. Acceleration of Intestinal Polyposis through Prostaglandin Receptor EP2 in ApcΔ716 Knockout Mice. Nat. Med. 2001, 7, 1048–1051. [Google Scholar] [CrossRef]
- Fujino, H.; Toyomura, K.; Chen, X.B.; Regan, J.W.; Murayama, T. Prostaglandin E2 Regulates Cellular Migration via Induction of Vascular Endothelial Growth Factor Receptor-1 in HCA-7 Human Colon Cancer Cells. Biochem. Pharmacol. 2011, 81, 379–387. [Google Scholar] [CrossRef]
- Mizuno, R.; Kawada, K.; Sakai, Y. Prostaglandin E2/EP Signaling in the Tumor Microenvironment of Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 6254. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, J.; Wang, D.; Cen, B.; Lang, J.D.; DuBois, R.N. The COX-2–PGE2 Pathway Promotes Tumor Evasion in Colorectal Adenomas. Cancer Prev. Res. 2022, 15, 285–296. [Google Scholar] [CrossRef]
- Masato, M.; Miyata, Y.; Kurata, H.; Ito, H.; Mitsunari, K.; Asai, A.; Nakamura, Y.; Araki, K.; Mukae, Y.; Matsuda, T.; et al. Oral Administration of E-Type Prostanoid (EP) 1 Receptor Antagonist Suppresses Carcinogenesis and Development of Prostate Cancer via Upregulation of Apoptosis in an Animal Model. Sci. Rep. 2021, 11, 20279. [Google Scholar] [CrossRef]
- Miyata, Y.; Kanda, S.; Maruta, S.; Matsuo, T.; Sakai, H.; Hayashi, T.; Kanetake, H. Relationship between Prostaglandin E2 Receptors and Clinicopathologic Features in Human Prostate Cancer Tissue. Urology 2006, 68, 1360–1365. [Google Scholar] [CrossRef]
- Zelenay, S.; Reis e Sousa, C. Reducing Prostaglandin E2 Production to Raise Cancer Immunogenicity. Oncoimmunology 2016, 5, e1123370. [Google Scholar] [CrossRef]
- Böttcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of CDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037.e14. [Google Scholar] [CrossRef]
- Pelly, V.S.; Moeini, A.; Roelofsen, L.M.; Bonavita, E.; Bell, C.R.; Hutton, C.; Blanco-Gomez, A.; Banyard, A.; Bromley, C.P.; Flanagan, E.; et al. Anti-Inflammatory Drugs Remodel the Tumor Immune Environment to Enhance Immune Checkpoint Blockade Efficacy. Cancer Discov. 2021, 11, 2602–2619. [Google Scholar] [CrossRef]
- Oshima, H.; Hioki, K.; Popivanova, B.K.; Oguma, K.; van Rooijen, N.; Ishikawa, T.; Oshima, M. Prostaglandin E2 2 Signaling and Bacterial Infection Recruit Tumor-Promoting Macrophages to Mouse Gastric Tumors. Gastroenterology 2011, 140, 596–607.e7. [Google Scholar] [CrossRef]
- Fulton, A.M.; Ma, X.; Kundu, N. Targeting Prostaglandin E EP Receptors to Inhibit Metastasis. Cancer Res. 2006, 66, 9794–9797. [Google Scholar] [CrossRef]
- Majumder, M.; Xin, X.; Liu, L.; Girish, G.v.; Lala, P.K. Prostaglandin E2 Receptor EP4 as the Common Target on Cancer Cells and Macrophages to Abolish Angiogenesis, Lymphangiogenesis, Metastasis, and Stem-like Cell Functions. Cancer Sci. 2014, 105, 1142–1151. [Google Scholar] [CrossRef]
- Albu, D.I.; Wang, Z.; Huang, K.C.; Wu, J.; Twine, N.; Leacu, S.; Ingersoll, C.; Parent, L.; Lee, W.; Liu, D.; et al. EP4 Antagonism by E7046 Diminishes Myeloid Immunosuppression and Synergizes with Treg-Reducing IL-2-Diphtheria Toxin Fusion Protein in Restoring Anti-Tumor Immunity. Oncoimmunology 2017, 6, e1338239. [Google Scholar] [CrossRef] [PubMed]
- Loo, T.M.; Kamachi, F.; Watanabe, Y.; Yoshimoto, S.; Kanda, H.; Arai, Y.; Nakajima-Takagi, Y.; Iwama, A.; Koga, T.; Sugimoto, Y.; et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through Pge2-Mediated Suppression of Antitumor Immunity. Cancer Discov. 2017, 7, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, F.G.; Wang, D.; Bargiacchi, F.; DuBois, R.N. Prostaglandin E2 Regulates Cell Migration via the Intracellular Activation of the Epidermal Growth Factor Receptor. J. Biol. Chem. 2003, 278, 35451–35457. [Google Scholar] [CrossRef] [PubMed]
- Donnini, S.; Finetti, F.; Solito, R.; Terzuoli, E.; Sacchetti, A.; Morbidelli, L.; Patrignani, P.; Ziche, M. EP2 Prostanoid Receptor Promotes Squamous Cell Carcinoma Growth through Epidermal Growth Factor Receptor Transactivation and INOS and ERK1/2 Pathways. FASEB J. 2007, 21, 2418–2430. [Google Scholar] [CrossRef] [PubMed]
- Sales, K.J.; Maudsley, S.; Jabbour, H.N. Elevated Prostaglandin EP2 Receptor in Endometrial Adenocarcinoma Cells Promotes Vascular Endothelial Growth Factor Expression via Cyclic 3′,5′-Adenosine Monophosphate-Mediated Transactivation of the Epidermal Growth Factor Receptor and Extracelluar Signal-Regulated Kinase 1/2 Signaling Pathways. Mol. Endocrinol. 2004, 18, 1533–1545. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.B.; Shi, R.H.; Tong, J.D.; Li, X.Y.; Zhang, G.X.; Xiao, W.M.; Yang, J.G.; Bao, Y.; Wu, J.; Yan, Z.G.; et al. PGE2 Up-Regulates Vascular Endothelial Growth Factor Expression in MKN28 Gastric Cancer Cells via Epidermal Growth Factor Receptor Signaling System. Exp. Oncol. 2005, 27, 108–113. [Google Scholar] [PubMed]
- Fernández-Martínez, A.B.; Lucio-Cazaña, J. Intracellular EP2 Prostanoid Receptor Promotes Cancer-Related Phenotypes in PC3 Cells. Cell. Mol. Life Sci. 2015, 72, 3355–3373. [Google Scholar] [CrossRef]
- Bai, X.; Wang, J.; Guo, Y.; Pan, J.; Yang, Q.; Zhang, M.; Li, H.; Zhang, L.; Ma, J.; Shi, F.; et al. Prostaglandin E2 Stimulates Β1-Integrin Expression in Hepatocellular Carcinoma through the EP1 Receptor/PKC/NF-ΚB Pathway. Sci. Rep. 2014, 4, 6538. [Google Scholar] [CrossRef]
- Oshima, H.; Popivanova, B.K.; Oguma, K.; Kong, D.; Ishikawa, T.O.; Oshima, M. Activation of Epidermal Growth Factor Receptor Signaling by the Prostaglandin E2 Receptor EP4 Pathway during Gastric Tumorigenesis. Cancer Sci. 2011, 102, 713–719. [Google Scholar] [CrossRef]
- Bazzani, L.; Donnini, S.; Finetti, F.; Christofori, G.; Ziche, M. PGE<inf>2</Inf>/EP3/SRC Signaling Induces EGFR Nuclear Translocation and Growth through EGFR Ligands Release in Lung Adenocarcinoma Cells. Oncotarget 2017, 8, 31270–31287. [Google Scholar] [CrossRef]
- Tveteraas, I.H.; Müller, K.M.; Aasrum, M.; Ødegård, J.; Dajani, O.; Guren, T.; Sandnes, D.; Christoffersen, T. Mechanisms Involved in PGE2-Induced Transactivation of the Epidermal Growth Factor Receptor in MH1C1 Hepatocarcinoma Cells. J. Exp. Clin. Cancer Res. 2012, 31, 72. [Google Scholar] [CrossRef]
- Finetti, F.; Terzuoli, E.; Bocci, E.; Coletta, I.; Polenzani, L.; Mangano, G.; Alisi, M.A.; Cazzolla, N.; Giachetti, A.; Ziche, M.; et al. Pharmacological Inhibition of Microsomal Prostaglandin E Synthase-1 Suppresses Epidermal Growth Factor Receptor-Mediated Tumor Growth and Angiogenesis. PLoS ONE 2012, 7, e40576. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Schlessinger, J.; Ferguson, K.M. The EGFR Family: Not so Prototypical Receptor Tyrosine Kinases. Cold Spring Harb. Perspect. Biol. 2014, 6, a020768. [Google Scholar] [CrossRef]
- Roskoski, R. The ErbB/HER Family of Protein-Tyrosine Kinases and Cancer. Pharmacol. Res. 2014, 79, 34–74. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.L.; Engelman, J.A. ERBB Receptors: From Oncogene Discovery to Basic Science to Mechanism-Based Cancer Therapeutics. Cancer Cell 2014, 25, 282–303. [Google Scholar] [CrossRef] [PubMed]
- Appert-Collin, A.; Hubert, P.; Crémel, G.; Bennasroune, A. Role of ErbB Receptors in Cancer Cell Migration and Invasion. Front. Pharmacol. 2015, 6, 283. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Saito, H.; Masuda, S.; Yang, X.; Takano, Y. Phosphorylated GSK3β-Ser9 and EGFR Are Good Prognostic Factors for Lung Carcinomas. Anticancer Res. 2007, 27, 3561–3569. [Google Scholar]
- Monteiro, L.S.; Diniz-Freitas, M.; Warnakulasuriya, S.; Garcia-Caballero, T.; Forteza, J.; Fraga, M. An Immunohistochemical Score to Predict the Outcome for Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2018, 47, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Punt, C.J.A.; Koopman, M.; Vermeulen, L. From Tumour Heterogeneity to Advances in Precision Treatment of Colorectal Cancer. Nat. Rev. Clin. Oncol. 2016, 14, 235–246. [Google Scholar] [CrossRef]
- Theodoropoulos, G.E.; Karafoka, E.; Papailiou, J.G.; Stamopoulos, P.; Zambirinis, C.P.; Bramis, K.; Panoussopoulos, S.G.; Leandros, E.; Bramis, J. P53 and EGFR Expression in Colorectal Cancer: A Reappraisal of “old” Tissue Markers in Patients with Long Follow-Up. Anticancer Res. 2009, 29, 785–791. [Google Scholar]
- Yarden, Y.; Pines, G. The ERBB Network: At Last, Cancer Therapy Meets Systems Biology. Nat. Rev. Cancer 2012, 12, 553–563. [Google Scholar] [CrossRef]
- Guardiola, S.; Varese, M.; Sánchez-Navarro, M.; Giralt, E. A Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends Pharmacol. Sci. 2019, 40, 941–955. [Google Scholar] [CrossRef]
- Martinelli, E.; Ciardiello, D.; Martini, G.; Troiani, T.; Cardone, C.; Vitiello, P.P.; Normanno, N.; Rachiglio, A.M.; Maiello, E.; Latiano, T.; et al. Implementing Anti-Epidermal Growth Factor Receptor (EGFR) Therapy in Metastatic Colorectal Cancer: Challenges and Future Perspectives. Ann. Oncol. 2020, 31, 30–40. [Google Scholar] [CrossRef]
- Wykosky, J.; Fenton, T.; Furnari, F.; Cavenee, W.K. Therapeutic Targeting of Epidermal Growth Factor Receptor in Human Cancer: Successes and Limitations. Chin. J. Cancer 2011, 30, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Hrustanovic, G.; Lee, B.J.; Bivona, T.G. Mechanisms of Resistance to EGFR Targeted Therapies. Cancer Biol. Ther. 2013, 14, 304–314. [Google Scholar] [CrossRef]
- Hopper-Borge, E.A.; Nasto, R.E.; Ratushny, V.; Weiner, L.M.; Golemis, E.A.; Astsaturov, I. Mechanisms of Tumor Resistance to EGFR-Targeted Therapies. Expert Opin. Ther. Targets 2009, 13, 339–362. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, D.; Chen, Z.; Yao, W.; Yang, J.; Ramalingam, S.S.; Sun, S.Y. Inhibition of MEK5/ERK5 Signaling Overcomes Acquired Resistance to the Third Generation EGFR Inhibitor, Osimertinib, via Enhancing Bim-Dependent Apoptosis. Cancer Lett. 2021, 519, 141–149. [Google Scholar] [CrossRef]
- Sato, H.; Yamamoto, H.; Sakaguchi, M.; Shien, K.; Tomida, S.; Shien, T.; Ikeda, H.; Hatono, M.; Torigoe, H.; Namba, K.; et al. Combined Inhibition of MEK and PI3K Pathways Overcomes Acquired Resistance to EGFR-TKIs in Non-Small Cell Lung Cancer. Cancer Sci. 2018, 109, 3183–3196. [Google Scholar] [CrossRef]
- Sforza, V.; Martinelli, E.; Ciardiello, F.; Gambardella, V.; Napolitano, S.; Martini, G.; Corte, C.D.; Cardone, C.; Ferrara, M.L.; Reginelli, A.; et al. Mechanisms of Resistance to Anti-Epidermal Growth Factor Receptor Inhibitors in Metastatic Colorectal Cancer. World J. Gastroenterol. 2016, 22, 6345–6361. [Google Scholar] [CrossRef]
- Li, Y.; St. John, M.A.R.; Zhou, X.; Kim, Y.; Sinha, U.; Jordan, R.C.K.; Eisele, D.; Abemayor, E.; Elashoff, D.; Park, N.H.; et al. Salivary Transcriptome Diagnostics for Oral Cancer Detection. Clin. Cancer Res. 2004, 10, 8442–8450. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chang, J.S.-M.; Syu, S.-H.; Wong, T.-S.; Chan, J.Y.-W.; Tang, Y.-C.; Yang, Z.-P.; Yang, W.-C.; Chen, C.-T.; Lu, S.-C.; et al. IL-1β Promotes Malignant Transformation and Tumor Aggressiveness in Oral Cancer. J. Cell Physiol. 2015, 230, 875–884. [Google Scholar] [CrossRef]
- Lee, C.-H.; Syu, S.-H.; Liu, K.-J.; Chu, P.-Y.; Yang, W.-C.; Lin, P.; Shieh, W.-Y. Interleukin-1 Beta Transactivates Epidermal Growth Factor Receptor via the CXCL1-CXCR2 Axis in Oral Cancer. Oncotarget 2015, 6, 38866–38880. [Google Scholar] [CrossRef]
- Mechelke, T.; Wittig, F.; Ramer, R.; Hinz, B. Interleukin-1β Induces Tissue Factor Expression in A549 Cells via Egfr-Dependent and-Independent Mechanisms. Int. J. Mol. Sci. 2021, 22, 6606. [Google Scholar] [CrossRef]
- Murdocca, M.; De Masi, C.; Pucci, S.; Mango, R.; Novelli, G.; Di Natale, C.; Sangiuolo, F. LOX-1 and Cancer: An Indissoluble Liaison. Cancer Gene Ther. 2021, 28, 1088–1098. [Google Scholar] [CrossRef]
- Ohd, J.F.; Wikstrom, K.; Sjolander, A. Leukotrienes Induce Cell-Survival Signaling in Intestinal Epithelial Cells. Gastroenterology 2000, 119, 1007–1018. [Google Scholar] [CrossRef]
- Cabral, M.; Martín-Venegas, R.; Moreno, J.J. Leukotriene D4-Induced Caco-2 Cell Proliferation Is Mediated by Prostaglandin E2 Synthesis. Physiol. Rep. 2015, 3, e12417. [Google Scholar] [CrossRef]
- Dholia, N.; Yadav, U.C.S. Lipid Mediator Leukotriene D4-Induces Airway Epithelial Cells Proliferation through EGFR/ERK1/2 Pathway. Prostaglandins Other Lipid Mediat. 2018, 136, 55–63. [Google Scholar] [CrossRef]
- McGovern, T.; Risse, P.A.; Tsuchiya, K.; Hassan, M.; Frigola, G.; Martin, J.G. LTD4 Induces HB-EGF-Dependent CXCL8 Release through EGFR Activation in Human Bronchial Epithelial Cells. Am. J. Physiol. Cell. Mol. Physiol. 2010, 299, L808–L815. [Google Scholar] [CrossRef]
- Yang, C.C.; Chang, K.W. Eicosanoids and HB-EGF/EGFR in Cancer. Cancer Metastasis Rev. 2018, 37, 385–395. [Google Scholar] [CrossRef]
- Donnini, S.; Finetti, F.; Terzuoli, E.; Giachetti, A.; Ĩiguez, M.A.; Hanaka, H.; Fresno, M.; Rådmark, O.; Ziche, M. EGFR Signaling Upregulates Expression of Microsomal Prostaglandin e Synthase-1 in Cancer Cells Leading to Enhanced Tumorigenicity. Oncogene 2012, 31, 3457–3466. [Google Scholar] [CrossRef]
- Trabalzini, L.; Ercoli, J.; Trezza, A.; Schiavo, I.; Macr, G.; Moglia, A.; Spiga, O.; Finetti, F. Pharmacological and In Silico Analysis of Oat Avenanthramides as EGFR Inhibitors: Effects on EGF-Induced Lung Cancer Cell Growth and Migration. Int. J. Mol. Sci. 2022, 23, 8534. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Chang, K.-Y.; Chen, S.-H.; Lee, C.-T.; Chang, S.-T.; Cheng, H.-C.; Chang, W.-C.; Chen, B.-K. Epidermal Growth Factor-Induced Cyclooxygenase-2 Enhances Head and Neck Squamous Cell Carcinoma Metastasis through Fibronectin up-Regulation. Oncotarget 2015, 6, 1723. [Google Scholar] [CrossRef]
- Chiang, K.H.; Shieh, J.M.; Shen, C.J.; Chang, T.W.; Wu, P.T.; Hsu, J.Y.; Tsai, J.P.; Chang, W.C.; Chen, B.K. Epidermal Growth Factor-Induced COX-2 Regulates Metastasis of Head and Neck Squamous Cell Carcinoma through Upregulation of Angiopoietin-like 4. Cancer Sci. 2020, 111, 2004–2015. [Google Scholar] [CrossRef]
- Qiu, X.; Cheng, J.C.; Chang, H.M.; Leung, P.C.K. COX2 and PGE2 Mediate EGF-Induced E-Cadherin-Independent Human Ovarian Cancer Cell Invasion. Endocr. Relat. Cancer 2014, 21, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Bocca, C.; Bozzo, F.; Miglietta, A. COX2 Inhibitor NS398 Reduces HT-29 Cell Invasiveness by Modulating Signaling Pathways Mediated by EGFR and HIF1-α. Anticancer Res. 2014, 34, 1793–1800. [Google Scholar] [PubMed]
- Cao, H.; Song, S.; Zhang, H.; Zhang, Y.; Qu, R.; Yang, B.; Jing, Y.; Hu, T.; Yan, F.; Wang, B. Chemopreventive Effects of Berberine on Intestinal Tumor Development in Apc Min/+ Mice. BMC Gastroenterol. 2013, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Alaaeldin, R.; Hassan, H.A.; Abdel-Rahman, I.M.; Mohyeldin, R.H.; Youssef, N.; Allam, A.E.; Abdelwahab, S.F.; Zhao, Q.L.; Fathy, M. A New EGFR Inhibitor from Ficus Benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition. Curr. Issues Mol. Biol. 2022, 44, 2967–2981. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.M.; Kuo, W.W.; Velmurugan, B.K.; Hsien, H.H.; Hsieh, Y.L.; Hsu, H.H.; Tu, C.C.; Bau, D.T.; Viswanadha, V.P.; Huang, C.Y. Helioxanthin Suppresses the Cross Talk of COX-2/PGE2 and EGFR/ERK Pathway to Inhibit Arecoline-Induced Oral Cancer Cell (T28) Proliferation and Blocks Tumor Growth in Xenografted Nude Mice. Environ. Toxicol. 2016, 31, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Banu, N.; Buda, A.; Chell, S.; Elder, D.; Moorghen, M.; Paraskeva, C.; Qualtrough, D.; Pignatelli, M.; Pignatelli, M. Inhibition of COX-2 with NS-398 Decreases Colon Cancer Cell Motility through Blocking Epidermal Growth Factor Receptor Transactivation: Possibilities for Combination Therapy. Cell Prolif. 2007, 40, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.; Qian, D.; Jing, H.; Li, Y.; Ma, C.; Zhou, Y. Combined Cetuximab and Celecoxib Treatment Exhibits a Synergistic Anticancer Effect on Human Oral Squamous Cell Carcinoma in Vitro and in Vivo. Oncol. Rep. 2014, 32, 1681–1688. [Google Scholar] [CrossRef]
- Li, Y.X.; Wang, J.L.; Gao, M.; Tang, H.; Gui, R.; Fu, Y.F. Celecoxib-Erlotinib Combination Delays Growth and Inhibits Angiogenesis in EGFR-Mutated Lung Cancer. Am. J. Cancer Res. 2016, 6, 1494–1510. [Google Scholar]
- Li, N.; Li, H.; Su, F.; Li, J.; Ma, X.; Gong, P. Relationship between Epidermal Growth Factor Receptor (EGFR) Mutation and Serum Cyclooxygenase-2 Level, and the Synergistic Effect of Celecoxib and Gefitinib on EGFR Expression in Non-Small Cell Lung Cancer Cells. Int. J. Clin. Exp. Pathol. 2015, 8, 9010. [Google Scholar]
- Benelli, R.; Barboro, P.; Costa, D.; Astigiano, S.; Barbieri, O.; Capaia, M.; Poggi, A.; Ferrari, N. Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. Int. J. Mol. Sci. 2019, 20, 6091. [Google Scholar] [CrossRef]
- Gitlitz, B.J.; Bernstein, E.; Santos, E.S.; Otterson, G.A.; Milne, G.; Syto, M.; Burrows, F.; Zaknoen, S. A Randomized, Placebo-Controlled, Multicenter, Biomarker-Selected, Phase 2 Study of Apricoxib in Combination with Erlotinib in Patients with Advanced Non-Small-Cell Lung Cancer. J. Thorac. Oncol. 2014, 9, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Reckamp, K.L.; Koczywas, M.; Cristea, M.C.; Dowell, J.E.; Wang, H.J.; Gardner, B.K.; Milne, G.L.; Figlin, R.A.; Fishbein, M.C.; Elashoff, R.M.; et al. Randomized Phase 2 Trial of Erlotinib in Combination with High-Dose Celecoxib or Placebo in Patients with Advanced Non-Small Cell Lung Cancer. Cancer 2015, 121, 3298–3306. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.Y.; Li, J.Y.; Li, T.H.; Song, Y.X.; Sun, J.X.; Chen, X.W.; Zhao, J.H.; Li, Y.; Wu, Z.H.; Gao, P.; et al. The Efficacy and Safety of Celecoxib in Addition to Standard Cancer Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr. Oncol. 2022, 29, 6137–6153. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, F.; Lu, H.; Xu, S.; Zou, L.; Tian, Q.; Fu, Y.; Lin, X.; Liu, L.; Yuan, P.; et al. Targeting the COX2/MET/TOPK Signaling Axis Induces Apoptosis in Gefitinib-Resistant NSCLC Cells. Cell Death Dis. 2019, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Hao, S.; Lu, C.; Zhang, C.; Lin, C.; Li, L.; Wang, Y.; Hu, C.; He, Y. Aspirin Sensitizes Osimertinib-Resistant NSCLC Cells in Vitro and in Vivo via Bim-Dependent Apoptosis Induction. Mol. Oncol. 2020, 14, 1152–1169. [Google Scholar] [CrossRef]
- Li, L.; Hu, M.; Wang, T.; Chen, H.; Xu, L. Repositioning Aspirin to Treat Lung and Breast Cancers and Overcome Acquired Resistance to Targeted Therapy. Front Oncol. 2020, 9, 1503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finetti, F.; Paradisi, L.; Bernardi, C.; Pannini, M.; Trabalzini, L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers 2023, 15, 2374. https://doi.org/10.3390/cancers15082374
Finetti F, Paradisi L, Bernardi C, Pannini M, Trabalzini L. Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers. 2023; 15(8):2374. https://doi.org/10.3390/cancers15082374
Chicago/Turabian StyleFinetti, Federica, Lucrezia Paradisi, Clizia Bernardi, Margherita Pannini, and Lorenza Trabalzini. 2023. "Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy" Cancers 15, no. 8: 2374. https://doi.org/10.3390/cancers15082374
APA StyleFinetti, F., Paradisi, L., Bernardi, C., Pannini, M., & Trabalzini, L. (2023). Cooperation between Prostaglandin E2 and Epidermal Growth Factor Receptor in Cancer Progression: A Dual Target for Cancer Therapy. Cancers, 15(8), 2374. https://doi.org/10.3390/cancers15082374