Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response
Abstract
Simple Summary
Abstract
1. Introduction
2. Design and Methods
2.1. Study Design and Target Population
2.2. TMA Preparation for the Detection of TME Markers
2.3. Slide-Scanning and Digital Image Analysis
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Clinico-Pathological, Cellular and Genetic Characteristics of the Patient Cohort
3.2. Survival Curve Analysis According to IHC Markers and mRNA Expression Levels
3.3. Univariate and Multivariate Cox Regression of Markers and Clinico-Pathological Findings in Residual Tumor Post-NAC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, S.R.; Ellis, I.O.; Schnitt, S.J.; Tan, P.H.; van de Vijver, M.J. World Health Organization Classification of Tumours of the Breast, 5th ed.; IARC Press: Lyon, France, 2019; ISBN -10: 9283245008. [Google Scholar]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, M.; Seo, J.H.; Gong, G.; Lee, H.J. Changes in Tumor-infiltrating Lymphocytes after Neoadjuvant Chemotherapy and Clinical Significance in Triple Negative Breast Cancer. Anticancer Res. 2020, 40, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Mustacchi, G.; De Laurentiis, M. The role of taxanes in triple-negative breast cancer: Literature review. Drug Des. Devel. Ther. 2015, 9, 4303–4318. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Pivot, X.; Cortes, J.; Elias, A.; Cesari, R.; Khosravan, R.; Collier, M.; Huang, X.; Cataruozolo, P.E.; Kern, K.A.; et al. Randomized phase II study of sunitinib versus standard of care for patients with previously treated advanced triple-negative breast cancer. Breast 2013, 22, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Liedtke, C.; Mazouni, C.; Hess, K.R.; Andre, F.; Tordai, A.; Mejia, J.A.; Symmans, W.F.; Gonzalez-Angulo, A.M.; Hennessy, B.; Green, M.; et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J. Clin. Oncol. 2008, 26, 1275–1281. [Google Scholar] [CrossRef]
- Curigliano, G.; Criscitiello, C.; Gelao, L.; Goldhirsch, A. Molecular pathways: Human leukocyte antigen G (HLA-G). Clin. Cancer Res. 2013, 19, 5564–5571. [Google Scholar] [CrossRef]
- Yu, K.D.; Zhu, R.; Zhan, M.; Rodriguez, A.A.; Yang, W.; Wong, S.; Makris, A.; Lehmann, B.D.; Chen, X.; Mayer, I.; et al. Identification of prognosis-relevant subgroups in patients with chemoresistant triple-negative breast cancer. Clin. Cancer Res. 2013, 19, 2723–2733. [Google Scholar] [CrossRef]
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef]
- Vanguri, R.S.; Fenn, K.M.; Kearney, M.R.; Wang, Q.; Guo, H.; Marks, D.K.; Chin, C.; Alcus, C.F.; Thompson, J.B.; Leu, C.S.; et al. Tumor Immune Microenvironment and Response to Neoadjuvant Chemotherapy in Hormone Receptor/HER2+ Early Stage Breast Cancer. Clin. Breast Cancer 2022, 22, 538–546. [Google Scholar] [CrossRef]
- von der Lippe Gythfeldt, H.; Lien, T.; Tekpli, X.; Silwal-Pandit, L.; Borgen, E.; Garred, O.; Skjerven, H.; Schlichting, E.; Lundgren, S.; Wist, E.; et al. Immune phenotype of tumor microenvironment predicts response to bevacizumab in neoadjuvant treatment of ER-positive breast cancer. Int. J. Cancer 2020, 147, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, L.G.; Sarian, L.O.; Vassallo, J.; de Paiva Silva, G.R.; Ramalho, S.O.B.; Ferracini, A.C.; da Silva Araujo, K.; Jales, R.M.; Figueira, D.E.; Derchain, S. Evaluation of PD-L1 and tumor infiltrating lymphocytes in paired pretreatment biopsies and post neoadjuvant chemotherapy surgical specimens of breast carcinoma. Sci. Rep. 2021, 11, 22478. [Google Scholar] [CrossRef] [PubMed]
- Upadhya, D.; Hattiangady, B.; Castro, O.W.; Shuai, B.; Kodali, M.; Attaluri, S.; Bates, A.; Dong, Y.; Zhang, S.C.; Prockop, D.J.; et al. Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc. Natl. Acad. Sci. USA 2019, 116, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, N.A.; Sanchez-Salas, R.; Peske, J.D.; Vano, Y.; Becht, E.; Petitprez, F.; Validire, P.; Ingels, A.; Cathelineau, X.; Fridman, W.H.; et al. The clinical role of the TME in solid cancer. Br. J. Cancer 2019, 120, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Badr, N.M.; Berditchevski, F.; Shaaban, A.M. The Immune Microenvironment in Breast Carcinoma: Predictive and Prognostic Role in the Neoadjuvant Setting. Pathobiology 2020, 87, 61–74. [Google Scholar] [CrossRef]
- Valenberg, F.; Hiar, A.M.; Wallace, E.; Bridge, J.A.; Mayne, D.J.; Beqaj, S.; Sexton, W.J.; Lotan, Y.; Weizer, A.Z.; Jansz, G.K.; et al. Prospective Validation of an mRNA-based Urine Test for Surveillance of Patients with Bladder Cancer. Eur. Urol. 2019, 75, 853–860. [Google Scholar] [CrossRef]
- Miyashita, M.; Sasano, H.; Tamaki, K.; Hirakawa, H.; Takahashi, Y.; Nakagawa, S.; Watanabe, G.; Tada, H.; Suzuki, A.; Ohuchi, N.; et al. Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: A retrospective multicenter study. Breast Cancer Res. 2015, 17, 124. [Google Scholar] [CrossRef]
- Pinard, C.; Debled, M.; Ben Rejeb, H.; Velasco, V.; Tunon de Lara, C.; Hoppe, S.; Richard, E.; Brouste, V.; Bonnefoi, H.; MacGrogan, G. Residual cancer burden index and tumor-infiltrating lymphocyte subtypes in triple-negative breast cancer after neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2020, 179, 11–23. [Google Scholar] [CrossRef]
- Lee, J.S.; Yost, S.E.; Yuan, Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers 2020, 12, 1404. [Google Scholar] [CrossRef]
- Dieci, M.V.; Tsvetkova, V.; Griguolo, G.; Miglietta, F.; Tasca, G.; Giorgi, C.A.; Cumerlato, E.; Massa, D.; Lo Mele, M.; Orvieto, E.; et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. Eur J. Cancer 2020, 136, 7–15. [Google Scholar] [CrossRef]
- Bai, Y.G.; Gao, G.X.; Zhang, H.; Zhang, S.; Liu, Y.H.; Duan, X.N.; Xu, L. Prognostic value of tumor-infiltrating lymphocyte subtypes in residual tumors of patients with triple-negative breast cancer after neoadjuvant chemotherapy. Chin. Med. J. (Engl.) 2020, 133, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, E.; Gil, G.L.; Benito, A.C.; Gonzalez-Billalabeitia, E.; Conesa, M.A.; Garcia Garcia, T.; Garcia-Garre, E.; Vicente, V.; Ayala de la Pena, F. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014, 16, 488. [Google Scholar] [CrossRef] [PubMed]
- Hamy, A.S.; Bonsang-Kitzis, H.; De Croze, D.; Laas, E.; Darrigues, L.; Topciu, L.; Menet, E.; Vincent-Salomon, A.; Lerebours, F.; Pierga, J.Y.; et al. Interaction between Molecular Subtypes and Stromal Immune Infiltration before and after Treatment in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Clin. Cancer Res. 2019, 25, 6731–6741. [Google Scholar] [CrossRef] [PubMed]
- Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Lauro, V.D.; Fusco, G.; Gioia, G.D.; Licenziato, M.; De Laurentiis, M. Biomarkers in Triple-Negative Breast Cancer: State-of-the-Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 4579. [Google Scholar] [CrossRef] [PubMed]
- Derouane, F.; van Marcke, C.; Berliere, M.; Gerday, A.; Fellah, L.; Leconte, I.; Van Bockstal, M.R.; Galant, C.; Corbet, C.; Duhoux, F.P. Predictive Biomarkers of Response to Neoadjuvant Chemotherapy in Breast Cancer: Current and Future Perspectives for Precision Medicine. Cancers 2022, 14, 3876. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.J.; Song, I.H.; Park, I.A.; Kang, J.; Yu, J.H.; Ahn, J.H.; Gong, G. Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: Relationship to tumor-infiltrating lymphocytes. Breast Cancer Res. Treat. 2015, 151, 619–627. [Google Scholar] [CrossRef]
- Wang, R.X.; Chen, S.; Huang, L.; Shao, Z.M. Predictive and prognostic value of Matrix metalloproteinase (MMP)-9 in neoadjuvant chemotherapy for triple-negative breast cancer patients. BMC Cancer 2018, 18, 909. [Google Scholar] [CrossRef]
- Yu, T.; Di, G. Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chin. J. Cancer Res. 2017, 29, 237–252. [Google Scholar] [CrossRef]
- Blaye, C.; Darbo, E.; Debled, M.; Brouste, V.; Velasco, V.; Pinard, C.; Larmonier, N.; Pellegrin, I.; Tarricone, A.; Arnedos, M.; et al. An immunological signature to predict outcome in patients with triple-negative breast cancer with residual disease after neoadjuvant chemotherapy. ESMO Open 2022, 7, 100502. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Xing, X.; Zhuang, J.; Wang, J.; Wang, C.; Zhang, L.; Liu, L.; Feng, F.; Li, H.; et al. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. Mol. Nucleic Acids. 2022, 28, 670–684. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, T. Identification of immune-related signature for the prognosis and benefit of immunotherapy in triple-negative breast cancer. Front. Genet. 2022. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.M.; Gomez, A.C.; Aguilar, A.; Salgado, R.; Balko, J.M.; Bravo, L.; Doimi, F.; Bretel, D.; Morante, Z.; Flores, C.; et al. Effect of CCL5 expression in the recruitment of immune cells in triple negative breast cancer. Sci. Rep. 2018, 8, 4899. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, D.; Bedard, P.L.; Nahleh, Z.; Michiels, S.; Sotiriou, C.; Loi, S.; Sparano, J.A.; Ellis, M.; Hylton, N.; Zujewski, J.A.; et al. A common language in neoadjuvant breast cancer clinical trials: Proposals for standard definitions and endpoints. Lancet Oncol. 2012, 13, e240–e248. [Google Scholar] [CrossRef]
- Steinberg, G.K.; Kondziolka, D.; Wechsler, L.R.; Lunsford, L.D.; Kim, A.S.; Johnson, J.N.; Bates, D.; Poggio, G.; Case, C.; McGrogan, M.; et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study. J. Neurosurg. 2018, 131, 1462–1472. [Google Scholar] [CrossRef]
- Bianchetti, E.; Bates, S.J.; Carroll, S.L.; Siegelin, M.D.; Roth, K.A. Usp9X Regulates Cell Death in Malignant Peripheral Nerve Sheath Tumors. Sci. Rep. 2018, 8, 17390. [Google Scholar] [CrossRef] [PubMed]
- Baxevanis, C.N.; Fortis, S.P.; Perez, S.A. The balance between breast cancer and the immune system: Challenges for prognosis and clinical benefit from immunotherapies. Semin. Cancer Biol. 2019. [Google Scholar] [CrossRef]
- Criscitiello, C.; Bayar, M.A.; Curigliano, G.; Symmans, F.W.; Desmedt, C.; Bonnefoi, H.; Sinn, B.; Pruneri, G.; Vicier, C.; Pierga, J.Y.; et al. A gene signature to predict high tumor-infiltrating lymphocytes after neoadjuvant chemotherapy and outcome in patients with triple-negative breast cancer. Ann. Oncol. 2018, 29, 162–169. [Google Scholar] [CrossRef]
- Hill, B.S.; Sarnella, A.; D’Avino, G.; Zannetti, A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin. Cancer Biol. 2020, 60, 202–213. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef]
- Mooney-Somers, J.; Lau, A.; Bateson, D.; Richters, J.; Stewart, M.; Black, K.; Nothnagle, M. Enhancing use of emergency contraceptive pills: A systematic review of women’s attitudes, beliefs, knowledge, and experiences in Australia. Health Care Women Int. 2019, 40, 174–195. [Google Scholar] [CrossRef]
- Liu, T.; Larionova, I.; Litviakov, N.; Riabov, V.; Zavyalova, M.; Tsyganov, M.; Buldakov, M.; Song, B.; Moganti, K.; Kazantseva, P.; et al. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology 2018, 7, e1436922. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Carpi, A. Immune manipulation of advanced breast cancer: An interpretative model of the relationship between immune system and tumor cell biology. Med. Res. Rev. 2009, 29, 436–471. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Hassan, H.; Vilardo, L.; Kumar, S.K.; Kumar, A.V.; Kelsch, R.; Schneider, C.; Kiesel, L.; Eich, H.T.; Zucchi, I.; et al. Syndecan-1 (CD138) modulates triple-negative breast cancer stem cell properties via regulation of LRP-6 and IL-6-mediated STAT3 signaling. PLoS ONE 2013, 8, e85737. [Google Scholar] [CrossRef] [PubMed]
- Pinder, S.E.; Brown, J.P.; Gillett, C.; Purdie, C.A.; Speirs, V.; Thompson, A.M.; Shaaban, A.M. The manufacture and assessment of tissue microarrays: Suggestions and criteria for analysis, with breast cancer as an example. J. Clin. Pathol. 2013, 66, 169–177. [Google Scholar] [CrossRef]
- Pelekanou, V.; Villarroel-Espindola, F.; Schalper, K.A.; Pusztai, L.; Rimm, D.L. CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers. Breast Cancer Res. 2018, 20, 154. [Google Scholar] [CrossRef]
- Herlin, P.; Signolle, N. Method for Determining the Position of Tissue Sampler Chips on a Blade of Transparent Material. 2005, FR2860319B1. Available online: https://patents.google.com/patent/FR2860319B1/en/ (accessed on 5 December 2022).
- Lejeune, M.; Plancoulaine, B.; Elie, N.; Bosch, R.; Fontoura, L.; de Villasante, I.; Korzynska, A.; Navarro, A.G.; Colon, E.S.; Lopez, C. How the variability between computer-assisted analysis procedures evaluating immune markers can influence patients’ outcome prediction. Histochem Cell Biol. 2021, 156, 461–478. [Google Scholar] [CrossRef]
- Lopez, C.; Callau, C.; Bosch, R.; Korzynska, A.; Jaen, J.; Garcia-Rojo, M.; Bueno, G.; Salvado, M.T.; Alvaro, T.; Onos, M. Development of automated quantification methodologies of immunohistochemical markers to determine patterns of immune response in breast cancer: A retrospective cohort study. BMJ Open 2014, 4, e005643. [Google Scholar] [CrossRef]
- Callau, C.; Lejeune, M.; Korzynska, A.; Garcia, M.; Bueno, G.; Bosch, R.; Jaen, J.; Orero, G.; Salvado, T.; Lopez, C. Evaluation of cytokeratin-19 in breast cancer tissue samples: A comparison of automatic and manual evaluations of scanned tissue microarray cylinders. Biomed. Eng. Online 2015, 14 (Suppl. 2), S2. [Google Scholar] [CrossRef]
- Dieci, M.V.; Miglietta, F.; Guarneri, V. Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications. Cells 2021, 10, 223. [Google Scholar] [CrossRef]
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and Other Tools) Resource; Food and Drug Administration (US): Silver Spring, MD, USA; National Institutes of Health (US): Bethesda, MD, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK326791/ (accessed on 5 December 2022).
- da Silva, J.L.; Cardoso Nunes, N.C.; Izetti, P.; de Mesquita, G.G.; de Melo, A.C. Triple negative breast cancer: A thorough review of biomarkers. Crit Rev. Oncol. Hematol. 2020, 145, 102855. [Google Scholar] [CrossRef]
- Wang, X.X.; Jiang, Y.Z.; Li, J.J.; Song, C.G.; Shao, Z.M. Effect of nodal status on clinical outcomes of triple-negative breast cancer: A population-based study using the SEER 18 database. Oncotarget 2016, 7, 46636–46645. [Google Scholar] [CrossRef]
- Yin, L.; Shuang, H.; Sheng, C.; Liang, H.; Sun, X.J.; Yang, W.T.; Shao, Z.M. The Prognostic Value of Nodal Staging in Triple-Negative Breast Cancer—A Cohort from China. Sci. Rep. 2018, 8, 9007. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.; Gibert-Ramos, A.; Bosch, R.; Korzynska, A.; Garcia-Rojo, M.; Bueno, G.; Garcia-Fontgivell, J.F.; Martinez Gonzalez, S.; Fontoura, L.; Gras Navarro, A.; et al. Differences in the Immune Response of the Nonmetastatic Axillary Lymph Nodes between Triple-Negative and Luminal A Breast Cancer Surrogate Subtypes. Am. J. Pathol. 2021, 191, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Volm, M.D.; Shapiro, R.L.; Yee, H.T.; Oratz, R.; Formenti, S.C.; Muggia, F.; Symmans, W.F. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin. Cancer Res. 2001, 7, 3025–3030. [Google Scholar]
- da Silva, J.L.; de Albuquerque, L.Z.; Rodrigues, F.R.; de Mesquita, G.G.; Fernandes, P.V.; Thuler, L.C.S.; de Melo, A.C. Prognostic Influence of Residual Tumor-Infiltrating Lymphocyte Subtype After Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Front. Oncol. 2021, 11, 636716. [Google Scholar] [CrossRef]
- Gao, G.; Wang, Z.; Qu, X.; Zhang, Z. Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer 2020, 20, 179. [Google Scholar] [CrossRef]
- Kaewkangsadan, V.; Verma, C.; Eremin, J.M.; Cowley, G.; Ilyas, M.; Eremin, O. Crucial Contributions by T Lymphocytes (Effector, Regulatory, and Checkpoint Inhibitor) and Cytokines (TH1, TH2, and TH17) to a Pathological Complete Response Induced by Neoadjuvant Chemotherapy in Women with Breast Cancer. J. Immunol. Res. 2016, 2016, 4757405. [Google Scholar] [CrossRef]
- Abdelrahman, A.E.; Rashed, H.E.; Toam, M.; Omar, A.; Abdelhamid, M.I.; Matar, I. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann. Diagn Pathol. 2021, 51, 151676. [Google Scholar] [CrossRef]
- Bates, G.J.; Fox, S.B.; Han, C.; Leek, R.D.; Garcia, J.F.; Harris, A.L.; Banham, A.H. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 2006, 24, 5373–5380. [Google Scholar] [CrossRef]
- Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. The transition from HLA-I positive to HLA-I negative primary tumors: The road to escape from T-cell responses. Curr. Opin. Immunol. 2018, 51, 123–132. [Google Scholar] [CrossRef]
- Perez-Pena, J.; Tibor Fekete, J.; Paez, R.; Baliu-Pique, M.; Garcia-Saenz, J.A.; Garcia-Barberan, V.; Manzano, A.; Perez-Segura, P.; Esparis-Ogando, A.; Pandiella, A.; et al. A Transcriptomic Immunologic Signature Predicts Favorable Outcome in Neoadjuvant Chemotherapy Treated Triple Negative Breast Tumors. Front. Immunol. 2019, 10, 2802. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, K.; Ishigami, S.; Kijima, Y.; Funasako, Y.; Hirata, M.; Okumura, H.; Shinchi, H.; Koriyama, C.; Ueno, S.; Yoshinaka, H.; et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 2011, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.B.; Kim, Y.A.; Seo, J.H.; Lee, H.J.; Gong, G.; Park, S.H. Prediction of prognostic signatures in triple-negative breast cancer based on the differential expression analysis via NanoString nCounter immune panel. BMC Cancer 2020, 20, 1052. [Google Scholar] [CrossRef] [PubMed]
- Szpor, J.; Streb, J.; Glajcar, A.; Fraczek, P.; Winiarska, A.; Tyrak, K.E.; Basta, P.; Okon, K.; Jach, R.; Hodorowicz-Zaniewska, D. Dendritic Cells Are Associated with Prognosis and Survival in Breast Cancer. Diagnostics 2021, 11, 702. [Google Scholar] [CrossRef]
- Liu, Y.; Teng, L.; Fu, S.; Wang, G.; Li, Z.; Ding, C.; Wang, H.; Bi, L. Highly heterogeneous-related genes of triple-negative breast cancer: Potential diagnostic and prognostic biomarkers. BMC Cancer 2021, 21, 644. [Google Scholar] [CrossRef]
- Goode, G.; Gunda, V.; Chaika, N.V.; Purohit, V.; Yu, F.; Singh, P.K. MUC1 facilitates metabolomic reprogramming in triple-negative breast cancer. PLoS ONE 2017, 12, e0176820. [Google Scholar]
- Maeda, T.; Hiraki, M.; Jin, C.; Rajabi, H.; Tagde, A.; Alam, M.; Bouillez, A.; Hu, X.; Suzuki, Y.; Miyo, M.; et al. MUC1-C Induces PD-L1 and Immune Evasion in Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 205–215. [Google Scholar] [CrossRef]
- Atta Manu, E.; Bedu-Addo, K.; Titiloye, N.A.; Ameh-Mensah, C.; Opoku, F.; Duduyemi, B.M. Expression of Tumour-Associated MUC1 Is a Poor Prognostic Marker in Breast Cancer in Kumasi, Ghana. J. Oncol. 2020, 2020, 9752952. [Google Scholar] [CrossRef]
- Jing, X.; Liang, H.; Hao, C.; Yang, X.; Cui, X. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol. Rep. 2019, 41, 801–810. [Google Scholar] [CrossRef]
- Schmidt, M.; Weyer-Elberich, V.; Hengstler, J.G.; Heimes, A.S.; Almstedt, K.; Gerhold-Ay, A.; Lebrecht, A.; Battista, M.J.; Hasenburg, A.; Sahin, U.; et al. Prognostic impact of CD4-positive T cell subsets in early breast cancer: A study based on the FinHer trial patient population. Breast Cancer Res. 2018, 20, 15. [Google Scholar] [CrossRef]
All Patients (n = 96) | Non-Relapsed (n = 54) | Relapsed (n = 41) | p | Alive (n = 59) | Dead (n = 37) | p | |
---|---|---|---|---|---|---|---|
Age Years, median (IQR) | 51 (26) | 51 (26) | 52 (28) | 0.473* | 51 (26) | 55 (28) | 0.660 * |
Menopausal status Pre-menopausal Menopausal | 35 (44.9%) 43 (55.1%) | 20 (45.5%) 24 (54.5%) | 15 (45.5%) 18 (54.5%) | 1.000 Ɨ | 21 (44.7%) 26 (55.3%) | 14 (45.2%) 17 (54.8%) | 1.000 Ɨ |
Histological grade <3 =3 | 17 (18.5%) 75 (81.5%) | 9 (17.6%) 42 (82.4%) | 8 (20.0%) 32 (80.0%) | 0.988 Ɨ | 13 (23.2%) 43 (76.8%) | 4 (11.1%) 32 (88.9%) | 0.236 Ɨ |
Tumor diameter mm, median (IQR) | 25.00 (22.00) | 22.00 (25.00) | 30.00 (25.00) | 0.011 * | 22.00 (23.00) | 30.00 (20.00) | 0.021 * |
Nodal status Negative Positive | 41 (43.6%) 53 (56.4%) | 29 (55.8%) 23 (44.2%) | 12 (29.3%) 29 (70.7%) | 0.019 Ɨ | 32 (56.1%) 25 (43.9%) | 9 (24.3%) 28 (75.7%) | 0.005 Ɨ |
Ki67 degree ≤30% >30% | 24 (27.9%) 62 (72.1%) | 10 (20.0%) 40 (80.0%) | 14 (40.0%) 21 (60.0%) | 0.077 Ɨ | 14 (26.4%) 39 (73.6%) | 10 (30.3%) 23 (69.7%) | 0.886 Ɨ |
Pathological response Partial response Without response | 63 (65.6%) 33 (34.4%) | 40 (74.1%) 14 (25.9%) | 23 (56.1%) 18 (43.9%) | 0.106 Ɨ | 42 (71.2%) 17 (28.8%) | 21 (56.8%) 16 (43.2%) | 0.219 Ɨ |
Surgery Tumorectomy Mastectomy No lymphadenectomy Lymphadenectomy | 36 (38.3%) 58 (61.7%) 20 (21.3%) 74 (78.7%) | 21 (40.4%) 31 (59.6%) 13 (25.0%) 39 (75.0%) | 14 (34.1%) 27 (65.9%) 7 (17.1%) 34 (82.9%) | 0.688 Ɨ 0.503 Ɨ | 25 (43.9%) 32 (56.1%) 14 (24.6%) 43 (75.4%) | 11 (29.7%) 26 (70.3%) 6 (16.2%) 31 (83.8%) | 0.246 Ɨ 0.479 Ɨ |
Adjuvant chemotherapy No Yes | 77 (82.8%) 16 (17.2%) | 42 (80.8%) 10 (19.2%) | 35 (87.5%) 5 (12.5%) | 0.561 Ɨ | 47 (82.5%) 10 (17.5%) | 30 (83.3%) 6 (16.7%) | 1.000 Ɨ |
Adjuvant radiotherapy No Yes | 4 (4.5%) 84 (95.5%) | 3 (6.0%) 47 (94.0%) | 1 (2.6%) 37 (97.4%) | 0.631 Ɨ | 3 (5.5%) 52 (94.5%) | 1 (3.0%) 32 (97.0%) | 1.000 Ɨ |
Relapse No Yes | 54 (56.8%) 41 (43.2%) | - | - | - | 52 (88.1%) 7 (11.9%) | 2 (5.6%) 34 (94.4%) | <0.001 Ɨ |
Overall survival Months, median (IQR) | 47.32 (38.10) | 60.00 (14.60) | 25.07 (25.65) | <0.001 * | - | - | - |
Relapse-free survival Months, median (IQR) | 40.67 (46.89) | - | - | - | 60.00 (16.13) | 13.73 (14.88) | <0.001 * |
Survival status Alive Dead | 59 (61.5%) 37 (38.5%) | 52 (96.3%) 2 (3.7%) | 7 (17.1%) 34 (82.9%) | <0.001 Ɨ | - | - | - |
Non-Relapsed (n = 54) | Relapsed (n = 41) | p | Alive (n = 59) | Death (n = 37) | p | |
---|---|---|---|---|---|---|
CD4+ T lymphocytes | 0.85 (2.29) | 0.28 (0.97) | 0.004 * | 0.86 (2.33) | 0.30 (0.74) | 0.004 * |
CD8+ T lymphocytes | 0.81 (2.08) | 0.37 (0.89) | 0.051 * | 0.79 (1.95) | 0.37 (0.80) | 0.055 * |
FOXP3+ regulatory T cells | 0.06 (0.19) | 0.03 (0.06) | 0.004 * | 0.06 (0.19) | 0.03 (0.06) | 0.020 * |
CD57+ NK cells | 0.02 (0.06) | 0.05 (0.39) | 0.093 * | 0.03 (0.09) | 0.03 (0.32) | 0.698 * |
CD68+ macrophages | 1.72 (2.53) | 1.42 (2.55) | 0.604 * | 1.91 (3.48) | 1.39 (2.35) | 0.418 * |
CD1a+ dendritic cells | 0.12 (0.43) | 0.07 (0.18) | 0.032 * | 0.12 (0.41) | 0.07 (0.18) | 0.053 * |
CD21+ dendritic cells | 0.001 (0.009) | 0.000 (0.002) | 0.002 * | 0.001 (0.007) | 0.000 (0.002) | 0.013 * |
CD83+ dendritic cells | 0.07 (0.18) | 0.03 (0.11) | 0.103 * | 0.06 (0.17) | 0.03 (0.11) | 0.201 * |
CD15+ granulocytes | 1.05 (4.60) | 2.27 (5.28) | 0.523 * | 1.17 (4.74) | 1.51 (4.53) | 0.836 * |
HLA-DR+ APC | 14.94 (28.17) | 9.63 (12.32) | 0.101 * | 14.86 (28.64) | 9.63 (11.35) | 0.156 * |
CD31+ endothelial cells | 1.35 (2.81) | 1.18 (1.90) | 0.173 * | 1.37 (2.81) | 1.15 (1.73) | 0.114 * |
CD34+ endothelial cells | 1.88 (1.69) | 1.90 (1.61) | 0.921 * | 2.11 (1.87) | 1.86 (1.16) | 0.407 * |
CD138+ cells | 26.25 (34.49) | 25.76 (37.63) | 0.940 * | 23.84 (35.42) | 27.49 (38.88) | 0.454 * |
CXCL13 Absence Presence | 20 (40.8%) 29 (59.2%) | 25 (64.1%) 14 (35.9%) | 0.050 Ɨ | 24 (44.4%) 30 (55.6%) | 22 (62.9%) 13 (37.1%) | 0.139 Ɨ |
IL6 Absence Presence | 16 (33.3%) 32 (66.7%) | 14 (36.8%) 24 (63.2%) | 0.911 Ɨ | 18 (34.0%) 35 (66.0%) | 12 (35.3%) 22 (64.7%) | 1.000 Ɨ |
IL10 Absence Presence | 42 (85.7%) 7 (14.3%) | 35 (89.7%) 4 (10.3%) | 0.748 Ɨ | 46 (85.2%) 8 (14.8%) | 32 (91.4%) 3 (8.6%) | 0.516 Ɨ |
IL15 Absence Presence | 22 (46.8%) 25 (53.2%) | 22 (57.9%) 16 (42.1%) | 0.424 Ɨ | 25 (48.1%) 27 (51.9%) | 19 (55.9%) 15 (44.1%) | 0.626 Ɨ |
MMP1 Absence Presence | 29 (59.2%) 20 (40.8%) | 27 (71.1%) 11 (28.9%) | 0.357 Ɨ | 35 (64.8%) 19 (35.2%) | 22 (64.7%) 12 (35.3%) | 1.000 Ɨ |
MMP9 Absence Presence | 14 (29.2%) 34 (70.8%) | 15 (39.5%) 23 (60.5%) | 0.439 Ɨ | 17 (32.1%) 36 (67.9%) | 12 (35.3%) 22 (64.7%) | 0.938 Ɨ |
MMP12 Absence Presence | 36 (78.3%) 10 (21.7%) | 34 (89.5%) 4 (10.5%) | 0.281 Ɨ | 41 (80.4%) 10 (19.6%) | 30 (88.2%) 4 (11.8%) | 0.511 Ɨ |
MUC1 Absence Presence | 23 (46.9%) 26 (53.1%) | 13 (34.2%) 25 (65.8%) | 0.329 Ɨ | 27 (50.0%) 27 (50.0%) | 9 (26.5%) 25 (73.5%) | 0.050 Ɨ |
TNF-α Absence Presence | 30 (57.7%) 22 (42.3%) | 22 (57.9%) 16 (42.1%) | 1.000 Ɨ | 33 (57.9%) 24 (42.1%) | 19 (55.9%) 15 (44.1%) | 1.000 Ɨ |
Univariate Analysis | Multivariate Analysis | Multivariate Analysis after Bootstraping | ||||
---|---|---|---|---|---|---|
Variables Associated with OS | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p |
Tumor diameter | 1.018 (1.004–1.032) | 0.009 | - | - | - | - |
Nodal status at baseline Positive Negative | 3.154 (1.485–6.699) 1.0 | 0.003 | 4.061 (1.653–9.973) 1.0 | 0.002 | 2.869 (1.335–6.168) 1.0 | 0.007 |
CD4 | 0.746 (0.566–0.983) | 0.038 | 0.642 (0.435–0.950) | 0.027 | 0.773 (0.601–0.994) | 0.083 |
CD8 | 0.816 (0.651–1.024) | 0.079 | - | - | - | - |
FOXP3 | 0.012 (0.000–0.583) | 0.026 | - | - | - | - |
HLA-DR | 0.981 (0.962–1.000) | 0.049 | - | - | - | - |
CD31 | 0.793 (0.631–0.997) | 0.047 | - | - | - | - |
MUC1 Presence Absence | 2.472 (1.153–5.301) 1.0 | 0.020 | 2.296 (1.049–5.026) 1.0 | 0.038 | 2.655 (1.237–5.697) 1.0 | 0.006 |
Variables associated with RFS | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p |
Tumor diameter | 1.018 (1.006–1.031) | 0.004 | 1.014 (1.001–1.028) | 0.036 | 1.014 (1.001–1.028) | 0.036 |
Nodal status at baseline Positive Negative | 2.509 (1.276–4.933) 1.0 | 0.008 | 2.749 (1.270–5.954) 1.0 | 0.010 | 2.749 (1.270–5.954) 1.0 | 0.008 |
Response Partial Without | 1.766 (0.951–3.279) 1.0 | 0.072 | - | - | - | - |
CD4 | 0.792 (0.633–0.992) | 0.042 | - | - | - | - |
CD8 | 0.815 (0.660–1.007) | 0.058 | - | - | - | - |
FOXP3 | 0.007 (0.000–0.334) | 0.012 | - | - | - | - |
CD83 | 0.120 (0.010–1.437) | 0.094 | - | - | - | - |
CD15 | 1.042 (0.993–1.094) | 0.097 | - | - | - | - |
HLA-DR | 0.982 (0.965–0.999) | 0.043 | - | - | - | - |
CD31 | 0.820 (0.673–0.999) | 0.049 | - | - | - | - |
CXCL13 Presence Absence | 0.510 (0.265–0.982) 1.0 | 0.044 | 0.453 (0.220–0.933) 1.0 | 0.032 | 0.453 (0.220–0.933) 1.0 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lejeune, M.; Reverté, L.; Sauras, E.; Gallardo, N.; Bosch, R.; Roso, A.; Petit, A.; Peg, V.; Riu, F.; García-Fontgivell, J.; et al. Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response. Cancers 2023, 15, 597. https://doi.org/10.3390/cancers15030597
Lejeune M, Reverté L, Sauras E, Gallardo N, Bosch R, Roso A, Petit A, Peg V, Riu F, García-Fontgivell J, et al. Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response. Cancers. 2023; 15(3):597. https://doi.org/10.3390/cancers15030597
Chicago/Turabian StyleLejeune, Marylène, Laia Reverté, Esther Sauras, Noèlia Gallardo, Ramon Bosch, Albert Roso, Anna Petit, Vicente Peg, Francisco Riu, Joan García-Fontgivell, and et al. 2023. "Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response" Cancers 15, no. 3: 597. https://doi.org/10.3390/cancers15030597
APA StyleLejeune, M., Reverté, L., Sauras, E., Gallardo, N., Bosch, R., Roso, A., Petit, A., Peg, V., Riu, F., García-Fontgivell, J., Ibáñez, J., Relea, F., Vieites, B., Bor, C., de la Cruz-Merino, L., Arenas, M., Rodriguez, V., Galera, J., Korzynska, A., ... López, C. (2023). Prognostic Implications of the Residual Tumor Microenvironment after Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients without Pathological Complete Response. Cancers, 15(3), 597. https://doi.org/10.3390/cancers15030597