Associations of Computed Tomography Image-Assessed Adiposity and Skeletal Muscles with Triple-Negative Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Population
2.2. Body Composition Measurements
2.3. Triple-Negative Breast Cancer Subtype
2.4. Covariates Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts and Statistics. Available online: https://www.cancer.org/research/cancer-facts-statistics.html (accessed on 20 May 2021).
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Sauer, A.G.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; López-Tarruella, S.; García-Saenz, J.A.; Khan, Q.J.; Gómez, H.L.; Prat, A.; Moreno, F.; Jerez-Gilarranz, Y.; Barnadas, A.; Picornell, A.C.; et al. Pathological Response and Survival in Triple-Negative Breast Cancer Following Neoadjuvant Carboplatin plus Docetaxel. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 5820–5829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierobon, M.; Frankenfeld, C.L. Obesity as a Risk Factor for Triple-Negative Breast Cancers: A Systematic Review and Meta-Analysis. Breast Cancer Res. Treat. 2013, 137, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Terry, K.L.; Willett, W.C. Longitudinal Study on the Role of Body Size in Premenopausal Breast Cancer. Arch. Intern. Med. 2006, 166, 2395–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogundiran, T.O.; Huo, D.; Adenipekun, A.; Campbell, O.; Oyesegun, R.; Akang, E.; Adebamowo, C.; Olopade, O.I. Case-Control Study of Body Size and Breast Cancer Risk in Nigerian Women. Am. J. Epidemiol. 2010, 172, 682–690. [Google Scholar] [CrossRef]
- Ahn, J.; Schatzkin, A.; Lacey, J.V.; Albanes, D.; Ballard-Barbash, R.; Adams, K.F.; Kipnis, V.; Mouw, T.; Hollenbeck, A.R.; Leitzmann, M.F. Adiposity, Adult Weight Change, and Postmenopausal Breast Cancer Risk. Arch. Intern. Med. 2007, 167, 2091–2102. [Google Scholar] [CrossRef] [Green Version]
- Feigelson, H.S.; Patel, A.V.; Teras, L.R.; Gansler, T.; Thun, M.J.; Calle, E.E. Adult Weight Gain and Histopathologic Characteristics of Breast Cancer among Postmenopausal Women. Cancer 2006, 107, 12–21. [Google Scholar] [CrossRef]
- Palmer, J.R.; Adams-Campbell, L.L.; Boggs, D.A.; Wise, L.A.; Rosenberg, L. A Prospective Study of Body Size and Breast Cancer in Black Women. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2007, 16, 1795–1802. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, R.; Rylander-Rudqvist, T.; Ye, W.; Saji, S.; Wolk, A. Body Weight and Postmenopausal Breast Cancer Risk Defined by Estrogen and Progesterone Receptor Status among Swedish Women: A Prospective Cohort Study. Int. J. Cancer 2006, 119, 1683–1689. [Google Scholar] [CrossRef]
- Setiawan, V.W.; Monroe, K.R.; Wilkens, L.R.; Kolonel, L.N.; Pike, M.C.; Henderson, B.E. Breast Cancer Risk Factors Defined by Estrogen and Progesterone Receptor Status. Am. J. Epidemiol. 2009, 169, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Bandera, E.V.; Chandran, U.; Hong, C.-C.; Troester, M.A.; Bethea, T.N.; Adams-Campbell, L.L.; Haiman, C.A.; Park, S.-Y.; Olshan, A.F.; Ambrosone, C.B.; et al. Obesity, Body Fat Distribution, and Risk of Breast Cancer Subtypes in African American Women Participating in the AMBER Consortium. Breast Cancer Res. Treat. 2015, 150, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.R.; Willett, W.C.; Terry, K.L.; Michels, K.B. Body Fat Distribution and Risk of Premenopausal Breast Cancer in the Nurses’ Health Study II. J. Natl. Cancer Inst. 2011, 103, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography With Survival in Patients With Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced Body Composition Assessment: From Body Mass Index to Body Composition Profiling. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zopfs, D.; Theurich, S.; Große Hokamp, N.; Knuever, J.; Gerecht, L.; Borggrefe, J.; Schlaak, M.; Pinto Dos Santos, D. Single-Slice CT Measurements Allow for Accurate Assessment of Sarcopenia and Body Composition. Eur. Radiol. 2020, 30, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Faron, A.; Sprinkart, A.M.; Kuetting, D.L.R.; Feisst, A.; Isaak, A.; Endler, C.; Chang, J.; Nowak, S.; Block, W.; Thomas, D.; et al. Body Composition Analysis Using CT and MRI: Intra-Individual Intermodal Comparison of Muscle Mass and Myosteatosis. Sci. Rep. 2020, 10, 11765. [Google Scholar] [CrossRef]
- Pickhardt, P.J.; Jee, Y.; O’Connor, S.D.; del Rio, A.M. Visceral Adiposity and Hepatic Steatosis at Abdominal CT: Association With the Metabolic Syndrome. Am. J. Roentgenol. 2012, 198, 1100–1107. [Google Scholar] [CrossRef]
- Mühlberg, A.; Museyko, O.; Laredo, J.-D.; Engelke, K. A Reproducible Semi-Automatic Method to Quantify the Muscle-Lipid Distribution in Clinical 3D CT Images of the Thigh. PLoS ONE 2017, 12, e0175174. [Google Scholar] [CrossRef] [Green Version]
- Bronsveld, H.K.; De Bruin, M.L.; Wesseling, J.; Sanders, J.; Hofland, I.; Jensen, V.; Bazelier, M.T.; Ter Braak, B.; de Boer, A.; Vestergaard, P.; et al. The Association of Diabetes Mellitus and Insulin Treatment with Expression of Insulin-Related Proteins in Breast Tumors. BMC Cancer 2018, 18, 224. [Google Scholar] [CrossRef] [Green Version]
- Dowling, R.J.O.; Niraula, S.; Chang, M.C.; Done, S.J.; Ennis, M.; McCready, D.R.; Leong, W.L.; Escallon, J.M.; Reedijk, M.; Goodwin, P.J.; et al. Changes in Insulin Receptor Signaling Underlie Neoadjuvant Metformin Administration in Breast Cancer: A Prospective Window of Opportunity Neoadjuvant Study. Breast Cancer Res. BCR 2015, 17, 32. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Wang, Z.; Punyanita, M.; Lei, J.; Sinav, A.; Kral, J.G.; Imielinska, C.; Ross, R.; Heymsfield, S.B. Adipose Tissue Quantification by Imaging Methods: A Proposed Classification. Obes. Res. 2003, 11, 5–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.-P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total Body Skeletal Muscle and Adipose Tissue Volumes: Estimation from a Single Abdominal Cross-Sectional Image. J. Appl. Physiol. Bethesda Md 1985 2004, 97, 2333–2338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caan, B.J.; Meyerhardt, J.A.; Kroenke, C.H.; Alexeeff, S.; Xiao, J.; Weltzien, E.; Feliciano, E.C.; Castillo, A.L.; Quesenberry, C.P.; Kwan, M.L.; et al. Explaining the Obesity Paradox: The Association between Body Composition and Colorectal Cancer Survival (C-SCANS Study). Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2017, 26, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS Analytics. Artificial Intelligence and Data Management. Available online: https://www.sas.com/en_sa/home.html (accessed on 20 May 2021).
- Renehan, A.G.; Zwahlen, M.; Egger, M. Adiposity and Cancer Risk: New Mechanistic Insights from Epidemiology. Nat. Rev. Cancer 2015, 15, 484–498. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Shen, W. Obesity: BAI as a New Measure of Adiposity--Throw Away Your Scale? Nat. Rev. Endocrinol. 2011, 7, 321–322. [Google Scholar] [CrossRef]
- Hamilton, E.J.; Gianatti, E.; Strauss, B.J.; Wentworth, J.; Lim-Joon, D.; Bolton, D.; Zajac, J.D.; Grossmann, M. Increase in Visceral and Subcutaneous Abdominal Fat in Men with Prostate Cancer Treated with Androgen Deprivation Therapy. Clin. Endocrinol. 2011, 74, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Choi, Y.-J.; Lee, Y.H. Visceral Fat Measured by Computed Tomography and the Risk of Breast Cancer. Transl. Cancer Res. 2019, 8, 1939. [Google Scholar] [CrossRef]
- Millikan, R.C.; Newman, B.; Tse, C.-K.; Moorman, P.G.; Conway, K.; Dressler, L.G.; Smith, L.V.; Labbok, M.H.; Geradts, J.; Bensen, J.T.; et al. Epidemiology of Basal-like Breast Cancer. Breast Cancer Res. Treat. 2008, 109, 123–139. [Google Scholar] [CrossRef]
- Trivers, K.F.; Lund, M.J.; Porter, P.L.; Liff, J.M.; Flagg, E.W.; Coates, R.J.; Eley, J.W. The Epidemiology of Triple-Negative Breast Cancer, Including Race. Cancer Causes Control CCC 2009, 20, 1071–1082. [Google Scholar] [CrossRef]
- Rose, D.P.; Vona-Davis, L. The Cellular and Molecular Mechanisms by Which Insulin Influences Breast Cancer Risk and Progression. Endocr. Relat. Cancer 2012, 19, R225–R241. [Google Scholar] [CrossRef] [PubMed]
- Dietze, E.C.; Chavez, T.A.; Seewaldt, V.L. Obesity and Triple-Negative Breast Cancer: Disparities, Controversies, and Biology. Am. J. Pathol. 2018, 188, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Massihnia, D.; Galvano, A.; Fanale, D.; Perez, A.; Castiglia, M.; Incorvaia, L.; Listì, A.; Rizzo, S.; Cicero, G.; Bazan, V.; et al. Triple Negative Breast Cancer: Shedding Light onto the Role of Pi3k/Akt/Mtor Pathway. Oncotarget 2016, 7, 60712–60722. [Google Scholar] [CrossRef] [Green Version]
- Ueng, S.-H.; Chen, S.-C.; Chang, Y.-S.; Hsueh, S.; Lin, Y.-C.; Chien, H.-P.; Lo, Y.-F.; Shen, S.-C.; Hsueh, C. Phosphorylated MTOR Expression Correlates with Poor Outcome in Early-Stage Triple Negative Breast Carcinomas. Int. J. Clin. Exp. Pathol. 2012, 5, 806–813. [Google Scholar] [PubMed]
- Iqbal, J.; Thike, A.A.; Cheok, P.Y.; Tse, G.M.-K.; Tan, P.H. Insulin Growth Factor Receptor-1 Expression and Loss of PTEN Protein Predict Early Recurrence in Triple-Negative Breast Cancer. Histopathology 2012, 61, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Elstrom, R.L.; Bauer, D.E.; Buzzai, M.; Karnauskas, R.; Harris, M.H.; Plas, D.R.; Zhuang, H.; Cinalli, R.M.; Alavi, A.; Rudin, C.M.; et al. Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer Res. 2004, 64, 3892–3899. [Google Scholar] [CrossRef] [Green Version]
- Robey, R.B.; Hay, N. Is Akt the “Warburg Kinase”?—Akt-Energy Metabolism Interactions and Oncogenesis. Semin. Cancer Biol. 2009, 19, 25. [Google Scholar] [CrossRef] [Green Version]
- Teslow, E.A.; Mitrea, C.; Bao, B.; Mohammad, R.M.; Polin, L.A.; Dyson, G.; Purrington, K.S.; Bollig-Fischer, A. Obesity-Induced MBD2_v2 Expression Promotes Tumor-Initiating Triple-Negative Breast Cancer Stem Cells. Mol. Oncol. 2019, 13, 894–908. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Siervo, M.; Mire, E.; Heymsfield, S.B.; Stephan, B.C.M.; Broyles, S.; Smith, S.R.; Wells, J.C.K.; Katzmarzyk, P.T. A Population-Based Approach to Define Body-Composition Phenotypes. Am. J. Clin. Nutr. 2014, 99, 1369–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phipps, A.I.; Malone, K.E.; Porter, P.L.; Daling, J.R.; Li, C.I. Body Size and Risk of Luminal, HER2-Overexpressing, and Triple-Negative Breast Cancer in Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2008, 17, 2078–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, D.P.; Vona-Davis, L. Interaction between Menopausal Status and Obesity in Affecting Breast Cancer Risk. Maturitas 2010, 66, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.P.; Vona-Davis, L. Influence of Obesity on Breast Cancer Receptor Status and Prognosis. Expert Rev. Anticancer Ther. 2009, 9, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, E.; Parsons, H.; Warneke, C.L.; Pulivarthi, K.; Litton, J.K.; Dev, R.; Palla, S.L.; Brewster, A.; Bruera, E. The Relationship between Body Composition and Response to Neoadjuvant Chemotherapy in Women with Operable Breast Cancer. Oncologist 2012, 17, 1240–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.; Baracos, V.; McCargar, L.; Reiman, T.; Tonkin, K.; Mackey, J.; Koski, S.; Pituskin, E.; Sawyer, M. Sarcopenia as a Determinant of Chemotherapy Toxicity and Time to Tumor Progression in Metastatic Breast Cancer Patients Receiving Capecitabine Treatment. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 2920–2926. [Google Scholar] [CrossRef] [Green Version]
- Rier, H.N.; Jager, A.; Sleijfer, S.; van Rosmalen, J.; Kock, M.C.J.M.; Levin, M.-D. Low Muscle Attenuation Is a Prognostic Factor for Survival in Metastatic Breast Cancer Patients Treated with First Line Palliative Chemotherapy. Breast Edinb. Scotl. 2017, 31, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Shachar, S.S.; Deal, A.M.; Weinberg, M.; Nyrop, K.A.; Williams, G.R.; Nishijima, T.F.; Benbow, J.M.; Muss, H.B. Skeletal Muscle Measures as Predictors of Toxicity, Hospitalization, and Survival in Patients with Metastatic Breast Cancer Receiving Taxane-Based Chemotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 658–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villaseñor, A.; Ballard-Barbash, R.; Baumgartner, K.; Baumgartner, R.; Bernstein, L.; McTiernan, A.; Neuhouser, M.L. Prevalence and Prognostic Effect of Sarcopenia in Breast Cancer Survivors: The HEAL Study. J. Cancer Surviv. Res. Pract. 2012, 6, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Dzien, A.; Winner, H.; Theurl, E.; Dzien-Bischinger, C.; Lechleitner, M. Fat-Free Mass and Fasting Glucose Values in Patients with and without Statin Therapy Assigned to Age Groups between <60 and >75 Years. Obes. Facts 2013, 6, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Gadiyaram, V.; Zhang, C.; Chen, Z.; Lopaschuk, G.; Stillman, A.E. Statins Reduce Epicardial Adipose Tissue Attenuation Independent of Lipid Lowering: A Potential Pleiotropic Effect. J. Am. Heart Assoc. 2019, 8, e013104. [Google Scholar] [CrossRef] [Green Version]
Variables | Total (N = 350) | TNBC (N = 86, 24.6%) | Non-TNBC (N = 264, 75.4%) | p-Value |
---|---|---|---|---|
Age | ||||
<55 years | 126 (37.8) | 37 (44.6) | 89 (35.6) | 0.183 |
≥55 years | 207 (62.2) | 46 (54.4) | 161 (64.4) | |
Missing | 17 | 3 | 14 | |
Missing | ||||
Body Mass Index | ||||
Underweight (<18.5) | 1 (0.3) | 0 (0.00) | 1 (0.4) | 0.027 * |
Normal weight (18.5–24.9) | 95 (31.7) | 34 (45.3) | 61 (27.2) | |
Overweight (25.0–29.9) | 100 (33.3) | 22 (29.3) | 78 (34.7) | |
Obese (30 and above) | 104 (34.7) | 19 (18.4) | 85 (34.7) | |
Missing | 50 | 11 | 39 | |
Missing | ||||
Race | ||||
White | 301 (86.0) | 69 (80.2) | 232 (87.9) | 0.076 |
Black American | 49 (14.0) | 17 (19.8) | 32 (12.1) | |
Disease stage | ||||
0 | 3 (0.9) | 3 (3.6) | 0 (0.0) | <0.001 * |
I | 144 (43.0) | 24 (28.9) | 120 (47.6) | |
II | 125 (37.3) | 31 (37.4) | 94 (37.3) | |
III | 45 (13.4) | 23 (27.7) | 22 (8.7) | |
IV | 18 (5.4) | 2 (2.4) | 16 (6.4) | |
Missing | 15 | 3 | 12 | |
Tumor grade | ||||
I | 38 (11.4) | 1 (1.2) | 37 (14.8) | <0.001 * |
II | 117 (34.9) | 11 (12.9) | 106 (42.4) | |
III | 180 (53.7) | 73 (85.9) | 107 (42.8) | |
Missing | 15 | 1 | 14 | |
Tumor size | ||||
<2 cm | 168 (54.4) | 13 (16.0) | 155 (68.0) | <0.001 * |
≥2 cm | 141 (45.6) | 68 (84.0) | 73 (32.0) | |
Missing | 41 | 5 | 36 | |
Subcutaneous Adipose Tissue | ||||
Low (tertile 1) | 99 (32.4) | 23 (28.4) | 76 (31.7) | 0.39 |
Middle (tertile 2) | 104 (33.0) | 28 (34.6) | 76 (31.7) | |
High (tertile 3) | 118 (34.6) | 30 (37.0) | 88 (36.6) | |
Missing | 29 | 5 | 24 | |
Intramuscular Adipose Tissue | ||||
Low (tertile 1) | 105 (32.7) | 31 (38.3) | 74 (30.8) | 0.434 |
Middle (tertile 2) | 107 (33.3) | 26 (32.1) | 81 (33.8) | |
High (tertile 3) | 109 (34.0) | 24 (29.6) | 85 (35.4) | |
Missing | 29 | 5 | 24 | |
Visceral Adipose Tissues | ||||
Low (tertile 1) | 94 (30.8) | 22 (27.2) | 72 (30.0) | 0.021 * |
Middle (tertile 2) | 99 (34.3) | 21 (25.9) | 78 (32.5) | |
High (tertile 3) | 128 (34.9) | 38 (46.9) | 90 (37.5) | |
Missing | 29 | 5 | 24 | |
Very Low-Density Muscle | ||||
Low (tertile 1) | 99 (30.9) | 29 (35.8) | 70 (29.2) | 0.378 |
Middle (tertile 2) | 108 (33.6) | 28 (34.6) | 80 (33.3) | |
High (tertile 3) | 114 (35.5) | 24 (29.6) | 90 (37.5) | |
Missing | 29 | 5 | 24 | |
Low Density Muscle | ||||
Low (tertile 1) | 98 (30.5) | 29 (35.80) | 69 (28.75) | 0.352 |
Middle (tertile 2) | 110 (34.3) | 23 (28.40) | 87 (36.25) | |
High (tertile 3) | 113 (35.2) | 29 (35.80) | 84 (35.00) | |
Missing | 29 | 5 | 24 | |
Normal Density Muscle | ||||
Low (tertile 1) | 112 (34.9) | 23 (28.4) | 89 (37.1) | 0.29 |
Middle (tertile 2) | 105 (32.7) | 27 (33.3) | 78 (32.5) | |
High (tertile 3) | 104 (32.4) | 31 (38.3) | 73 (30.4) | |
Missing | 29 | 5 | 24 | |
High Density Muscle | ||||
Low (tertile 1) | 98 (30.5) | 25 (30.9) | 73 (30.4) | 0.719 |
Middle (tertile 2) | 102 (31.8) | 23 (28.4) | 79 (32.9) | |
High (tertile 3) | 121 (37.7) | 33 (40.7) | 88 (36.7) | |
Missing | 29 | 5 | 24 | |
Very High-Density Muscle | ||||
Low (tertile 1) | 106 (33.0) | 28 (34.6) | 78 (32.5) | 0.587 |
Middle (tertile 2) | 97 (30.2) | 27 (33.3) | 70 (29.2) | |
High (tertile 3) | 118 (36.8) | 26 (32.1) | 92 (38.3) | |
Missing | 29 | 5 | 24 | |
Total Adipose Tissue | ||||
Low (tertile 1) | 93 (32.7) | 16 (19.75) | 77 (32.08) | 0.016 * |
Middle (tertile 2) | 107 (33.3) | 33 (40.74) | 74 (30.83) | |
High (tertile 3) | 121 (34.0) | 32 (39.51) | 89 (37.08) | |
Missing | 29 | 5 | 24 | |
Total Skeletal Muscle | ||||
Low (tertile 1) | 103 (32.2) | 27 (33.3) | 76 (31.8) | 0.005 * |
Middle (tertile 2) | 106 (33.1) | 16 (19.8) | 90 (37.7) | |
High (tertile 3) | 112 (34.7) | 38 (46.9) | 74 (30.5) | |
Missing | 29 | 5 | 24 | |
Body composition categories | ||||
Normal (Low adiposity, high muscle) | 134 (41.9) | 42 (51.9) | 92 (38.5) | 0.037 * |
High adiposity, high muscle | 84 (25.9) | 12 (14.8) | 72 (29.7) | |
Low adiposity, low muscle, | 82 (25.6) | 23 (28.4) | 59 (24.7) | |
High adiposity, low muscle | 21 (6.6) | 4 (4.9) | 17 (7.1) | |
Missing | 29 | 5 | 24 |
Body Composition | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Unadjusted OR (95% CI) | Adjusted OR a (95% CI) | Adjusted OR b (95% CI) | |
Subcutaneous Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.01(0.55–1.87) | 2.14 (0.81–5.66) | 2.99 (0.99–8.97) * |
High (tertile 3) | 1.28 (0.71–2.31) | 6.10 (1.93–19.32) * | 10.34 (2.90–36.90) * |
Intramuscular Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.31 (0.71–2.40) | 2.47 (0.86–7.03) | 2.14 (0.72–6.35) |
High (tertile 3) | 1.48 (0.80–2.75) | 1.57 (0.99–4.72) | 1.36 (0.44–4.25) |
Visceral Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.96 (1.05–3.65) | 6.72 (2.12–21.36) * | 6.15 (1.89–20.00) * |
High (tertile 3) | 2.16 (1.17–3.97) * | 6.93 (2.45–19.57) * | 11.25 (3.46–36.52) * |
Very Low-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.18 (0.64–2.18) | 1.41 (0.52–3.86) | 0.70 (0.23–2.16) |
High (tertile 3) | 1.55 (0.83–2.90) | 1.65 (0.57–4.77) | 0.33 (0.08–1.34) |
Low Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.59 (0.85–2.99) | 3.81 (1.42–10.00) * | 3.35 (1.11–10.10) * |
High (tertile 3) | 1.22 (0.67–2.23) | 4.25 (1.56–11.59) * | 3.15 (1.05- 10.38) * |
Normal Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.75 (0.40–1.41) | 1.42 (0.50–4.02) | 1.74 (0.54–5.62) |
High (tertile 3) | 0.61 (0.33–1.13) | 0.51 (0.19–1.40) | 0.69 (0.23–2.07) |
High Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.18 (0.61–2.25) | 0.67 (0.22–1.99) | 0.93 (0.28–3.13) |
High (tertile 3) | 0.91 (0.50–1.67) | 0.39 (0.14–1.08) | 0.48 (0.15–1.50) |
Very High-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.93 (0.50–1.73) | 0.61 (0.23–1.63) | 0.62 (0.21–1.83) |
High (tertile 3) | 1.27 (0.69–2.35) | 0.99 (0.38–2.60) | 0.56 (0.18–1.71) |
Total Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.93 (0.52–1.67) | 1.72 (0.72–4.14) | 1.71 (0.68–4.27) |
High (tertile 3) | 2.31 (1.18–4.53) * | 3.53 (1.28–9.72) * | 3.99 (1.37–11.68) * |
Total Skeletal Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 2.00 (1.00–3.98) | 1.44 (0.54–3.86) | 1.26 (0.45–3.55) |
High (tertile 3) | 0.68 (0.38–1.23) | 1.13 (0.46–2.77) | 0.75 (0.29–1.96) |
Body Composition Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Unadjusted OR (95% CI) | Adjusted OR a (95% CI) | Adjusted OR b (95% CI) | |
Subcutaneous Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.66 (0.63–4.37) | 2.05 (0.69–6.12) | 3.25 (0.50–20.98) |
High (tertile 3) | 3.30 (1.25–8.74) * | 32.90 (7.27–148.98) * | 34.07 (4.58–253.31) * |
Intra-Muscular Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.41 (0.56–3.50) | 4.41 (0.95–20.45) | 4.13 (0.80–21.21) |
High (tertile 3) | 3.82 (1.17–12.44) * | 4.06 (0.72–22.85) | 3.75 (0.61–23.01) |
Visceral Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 5.28 (1.88–14.86) * | 213.75 (14.26–603.78) * | 160.24 (10.29–440.32) * |
High (tertile 3) | 4.16 (1.46–11.88) * | 59.91 (6.85–524.19) * | 106.71 (8.61–356.43) * |
Very Low-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.63 (0.64–4.17) | 5.00 (1.04–24.12) * | 0.97 (0.15–6.44) |
High (tertile 3) | 3.10 (1.14–8.47) * | 7.62 (1.40–41.49) * | 0.62 (0.06–6.73) |
Low-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 2.20 (0.83–5.83) | 4.20 (0.98–17.98) | 4.26 (0.44–41.77) |
High (tertile 3) | 1.63 (0.64–4.16) | 3.61 (0.84–15.56) | 0.46 (0.04–4.81) |
Normal Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.82 (0.26–2.54) | 6.15 (1.16–32.75) * | 13.87 (0.83–230.91) |
High (tertile 3) | 0.42 (0.14–1.22) | 0.41 (0.08–2.14) | 0.25 (0.02–3.32) |
High Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.43 (0.52–3.93) | 0.43 (0.08–2.27) * | 1.04 (0.13–8.28) |
High (tertile 3) | 0.58 (0.23–1.45) | 0.14 (0.03–0.67) * | 0.33 (0.05–2.09) |
Very-High Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.80 (0.30–2.13) | 0.51 (0.12–2.23) | 0.33 (0.05–2.39) |
High (tertile 3) | 0.97 (0.39–2.41) | 0.46 (0.13–1.70) | 0.50 (0.08–3.22) |
Total Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.42 (0.57–3.56) | 21.11 (2.56–174.08) * | 15.64 (1.52–161.18) * |
High (tertile 3) | 4.44 (1.53–12.90) * | 108.64 (10.40–442.75) * | 194.58 (13.45–367.34) * |
Total Skeletal Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 4.02 (1.27–12.71) * | 6.15 (1.13–33.34) * | 5.91 (0.53–65.67) |
High (tertile 3) | 1.00 (0.41–2.46) | 1.04 (0.24–4.42) | 0.32 (0.04–2.85) |
Body Composition Variables | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Unadjusted OR (95% CI) | Adjusted OR a (95% CI) | Adjusted OR b (95% CI) | |
Subcutaneous Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.79 (0.36–1.77) | 1.22 (0.29–5.14) | 3.11 (0.52–18.60) |
High (tertile 3) | 0.98 (0.42–2.28) | 1.27 (0.25–6.61) | 3.78 (0.54–26.59) |
Intra-Muscular Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.94 (0.37–2.37) | 1.70 (0.26–10.98) | 1.22 (0.17–8.89) |
High (tertile 3) | 0.73 (0.30–1.77) | 0.58 (0.09–3.70) | 0.32 (0.04–2.43) |
Visceral Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.98 (0.42–2.28) | 1.00 (0.22–4.50) | 1.34 (0.28–6.33) |
High (tertile 3) | 1.22 (0.54–2.74) | 2.06 (0.52–8.16) | 4.21 (0.83–21.33) |
Very Low-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.76 (0.32–1.81) | 0.33 (0.04–2.60) | 0.27 (0.03–2.40) |
High (tertile 3) | 0.88 (0.37–2.14) | 0.19 (0.02–1.44) | 0.17 (0.02–1.50) |
Low-Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.21 (0.52–2.84) | 1.18 (0.29–4.88) | 1.70 (0.34–8.54) |
High (tertile 3) | 1.00 (0.44–2.27) | 2.12 (0.44–10.22) | 3.34 (0.59–18.82) |
Normal Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.67 (0.31–1.48) | 0.42 (0.10–1.73) | 0.68 (0.13–3.47) |
High (tertile 3) | 0.86 (0.37–1.98) | 0.57 (0.13–2.53) | 1.18 (0.15–9.19) |
High Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.94 (0.39–2.28) | 0.72 (0.13–3.83) | 0.68 (0.13–3.74) |
High (tertile 3) | 1.03 (0.44–2.42) | 0.93 (0.20–4.29) | 1.35 (0.28–6.63) |
Very-High Density Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 0.91 (0.40–2.09) | 0.89 (0.21–3.68) | 0.69 (0.15–3.17) |
High (tertile 3) | 1.39 (0.60–3.26) | 0.58 (0.50–12.63) | 1.25 (0.21–7.47) |
Total Adipose Tissue | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 2.23 (0.33–1.59) | 2.13 (0.39–11.58) | 0.47 (0.12–1.91) |
High (tertile 3) | 1.50 (0.62–3.64) | 0.42 (0.09–2.06) | 8.17 (0.89–72.29) |
Total Skeletal Muscle | |||
Low (tertile 1) | ref | ref | ref |
Middle (tertile 2) | 1.20 (0.49–2.94) | 0.69 (0.15–3.17) | 0.46 (0.39–11.58) |
High (tertile 3) | 0.50 (0.22–1.12) | 1.25 (0.21–7.47) | 0.42 (0.09–2.06) |
Body Composition Categories | Model 1 Unadjusted OR (95% CI) | Model 2 |
---|---|---|
Adjusted OR a (95% CI) | ||
All women | ||
Normal (Low adiposity, high muscle) | ref | ref |
High adiposity, high muscle | 2.71 (1.33–5.51) * | 5.54 (2.12–14.7) * |
Low adiposity, low muscle | 1.17 (0.64–2.14) | 1.02 (0.37–2.83) |
High adiposity, low muscle | 1.94 (0.62–6.12) | 4.87 (0.78–30.24) |
Premenopausal women only | ||
Normal (Low adiposity, high muscle) | ref | ref |
High adiposity, high muscle | 4.08 (1.24–13.46) * | 20.32 (4.46–166.65) * |
Low adiposity, low muscle | 0.75 (0.29–1.93) | 0.92 (0.15–5.39) |
High adiposity, low muscle | 1.97 (0.37–10.50) | 6.95 (0.51–94.34) |
Postmenopausal women only | ||
Normal (Low adiposity, high muscle) | ref | ref |
High adiposity, high muscle | 2.10 (0.86–5.12) | 1.89 (0.51–7.07) |
Low adiposity, low muscle, | 1.68 (0.73–3.88) | 1.63 (0.40–6.61) |
High adiposity, low muscle | 1.00 (0.41–9.81) | 6.21 (0.44–88.29) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aduse-Poku, L.; Bian, J.; Gopireddy, D.R.; Hernandez, M.; Lall, C.; Falzarano, S.M.; Masood, S.; Jo, A.; Cheng, T.-Y.D. Associations of Computed Tomography Image-Assessed Adiposity and Skeletal Muscles with Triple-Negative Breast Cancer. Cancers 2022, 14, 1846. https://doi.org/10.3390/cancers14071846
Aduse-Poku L, Bian J, Gopireddy DR, Hernandez M, Lall C, Falzarano SM, Masood S, Jo A, Cheng T-YD. Associations of Computed Tomography Image-Assessed Adiposity and Skeletal Muscles with Triple-Negative Breast Cancer. Cancers. 2022; 14(7):1846. https://doi.org/10.3390/cancers14071846
Chicago/Turabian StyleAduse-Poku, Livingstone, Jiang Bian, Dheeraj R. Gopireddy, Mauricio Hernandez, Chandana Lall, Sara M. Falzarano, Shahla Masood, Ara Jo, and Ting-Yuan David Cheng. 2022. "Associations of Computed Tomography Image-Assessed Adiposity and Skeletal Muscles with Triple-Negative Breast Cancer" Cancers 14, no. 7: 1846. https://doi.org/10.3390/cancers14071846