Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox
Abstract
:Simple Summary
Abstract
1. Introduction
2. An Overview of NK Cells
2.1. Biological Properties of NK Cells
2.2. Effector Function of NK Cells
2.2.1. Anti-Tumor Function
2.2.2. Pro-Tumor Function
3. NK-Based ACT
3.1. Cell Sources
3.1.1. PB-NK
3.1.2. UCB-NK
3.1.3. NK Cell Lines
3.1.4. Stem Cell-Derived NK
3.2. Genetic Engineering
3.2.1. CAR-Modified NK Cells
CAR NK Cells against Hematological Malignancy
CAR NK Cells against Solid Malignancy
Challenges to CAR NK Cells Application
3.2.2. Enhancement of NK Cell Function
Enhancing Cytotoxicity
Improving Persistence
4. Clinical Applications
5. Conclusions and Future Direction
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kochenderfer, J.N.; Wilson, W.H.; Janik, J.E.; Dudley, M.E.; Stetler-Stevenson, M.; Feldman, S.A.; Maric, I.; Raffeld, M.; Nathan, D.A.; Lanier, B.J.; et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010, 116, 4099–4102. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Ochoa, A.C.; Powers, G.C.; Kopp, W.C.; Alvord, W.G.; Janik, J.E.; Gause, B.L.; Dunn, B.; Kopreski, M.S.; Fenton, R.; et al. Phase I trial of anti-CD3-stimulated CD4+ T cells, infusional interleukin-2, and cyclophosphamide in patients with advanced cancer. J. Clin. Oncol. 1998, 16, 2752–2760. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.V.; Gill, S.; Hexner, E.O.; Schuster, S.; Nasta, S.; Loren, A.; Svoboda, J.; Stadtmauer, E.; Landsburg, D.J.; Mato, A.; et al. Long-Term Outcomes from a Randomized Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells in Relapsed Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 2862–2871. [Google Scholar] [CrossRef] [PubMed]
- Multhoff, G.; Seier, S.; Stangl, S.; Sievert, W.; Shevtsov, M.; Werner, C.; Pockley, A.G.; Blankenstein, C.; Hildebrandt, M.; Offner, R.; et al. Targeted Natural Killer Cell-Based Adoptive Immunotherapy for the Treatment of Patients with NSCLC after Radiochemotherapy: A Randomized Phase II Clinical Trial. Clin. Cancer Res. 2020, 26, 5368–5379. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Okayama, T.; Sakamoto, N.; Ideno, M.; Oka, K.; Enoki, T.; Mineno, J.; Yoshida, N.; Katada, K.; Kamada, K.; et al. Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int. J. Cancer 2018, 142, 2599–2609. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.; Packard, B.; Aebersold, P.; Solomon, D.; Topalian, S.; Toy, S.; Simon, P.; Lotze, M.; Yang, J.; Seipp, C. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med. 1988, 319, 1676–1680. [Google Scholar] [CrossRef]
- Yoshida, S.; Tanaka, R.; Takai, N.; Ono, K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res. 1988, 48, 5011–5016. [Google Scholar]
- Morgan, R.; Dudley, M.; Wunderlich, J.; Hughes, M.; Yang, J.; Sherry, R.; Royal, R.; Topalian, S.; Kammula, U.; Restifo, N.; et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006, 314, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, J.N.; Dudley, M.E.; Stetler-Stevenson, M.; Wilson, W.H.; Rosenberg, S.A. A Phase I Clinical Trial of Treatment of B-Cell Malignancies with Autologous Anti-CD19-CAR-Transduced T Cells. Blood 2010, 116, 2865. [Google Scholar] [CrossRef]
- Goldenson, B.H.; Hor, P.; Kaufman, D.S. iPSC-Derived Natural Killer Cell Therapies—Expansion and Targeting. Front. Immunol. 2022, 13, 841107. [Google Scholar] [CrossRef]
- Minculescu, L.; Marquart, H.V.; Ryder, L.P.; Andersen, N.S.; Schjoedt, I.; Friis, L.S.; Kornblit, B.T.; Petersen, S.L.; Haastrup, E.; Fischer-Nielsen, A.; et al. Improved Overall Survival, Relapse-Free-Survival, and Less Graft-vs.-Host-Disease in Patients with High Immune Reconstitution of TCR Gamma Delta Cells 2 Months After Allogeneic Stem Cell Transplantation. Front. Immunol. 2019, 10, 1997. [Google Scholar] [CrossRef]
- Bolli, R.; Solankhi, M.; Tang, X.L.; Kahlon, A. Cell therapy in patients with heart failure: A comprehensive review and emerging concepts. Cardiovasc. Res. 2022, 118, 951–976. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Gómez García, L.; Escudero, A.; Mestre, C.; Fuster Soler, J.; Martínez, A.; Vagace Valero, J.; Vela, M.; Ruz, B.; Navarro, A.; Fernández, L.; et al. Phase 2 Clinical Trial of Infusing Haploidentical K562-mb15-41BBL-Activated and Expanded Natural Killer Cells as Consolidation Therapy for Pediatric Acute Myeloblastic Leukemia. Clin. Lymphoma Myeloma Leuk. 2021, 21, 328–337. [Google Scholar] [CrossRef]
- Miller, J.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.; Yun, G.; Fautsch, S.; McKenna, D.; Le, C.; Defor, T.; Burns, L.; et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005, 105, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Martínez, A.; Fernández, L.; Valentín, J.; Martínez-Romera, I.; Corral, M.; Ramírez, M.; Abad, L.; Santamaría, S.; González-Vicent, M.; Sirvent, S.; et al. A phase I/II trial of interleukin-15--stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy 2015, 17, 1594–1603. [Google Scholar] [CrossRef]
- Rubnitz, J.; Inaba, H.; Ribeiro, R.; Pounds, S.; Rooney, B.; Bell, T.; Pui, C.; Leung, W. NKAML: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Klingemann, H. Challenges of cancer therapy with natural killer cells. Cytotherapy 2015, 17, 245–249. [Google Scholar] [CrossRef]
- Huntington, N.; Cursons, J.; Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 2020, 20, 437–454. [Google Scholar] [CrossRef]
- Myers, J.; Miller, J. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef]
- Naeimi Kararoudi, M.; Tullius, B.; Chakravarti, N.; Pomeroy, E.; Moriarity, B.; Beland, K.; Colamartino, A.; Haddad, E.; Chu, Y.; Cairo, M.; et al. Genetic and epigenetic modification of human primary NK cells for enhanced antitumor activity. Semin. Hematol. 2020, 57, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, R.; Klein, E.; Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 1975, 5, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Scoville, S.; Freud, A.; Caligiuri, M. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells. Front. Immunol. 2017, 8, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heipertz, E.L.; Zynda, E.R.; Stav-Noraas, T.E.; Hungler, A.D.; Boucher, S.E.; Kaur, N.; Vemuri, M.C. Current Perspectives on "Off-The-Shelf" Allogeneic NK and CAR-NK Cell Therapies. Front. Immunol. 2021, 12, 732135. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.A.; Fehniger, T.A.; Turner, S.C.; Chen, K.S.; Ghaheri, B.A.; Ghayur, T.; Carson, W.E.; Caligiuri, M.A. Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001, 97, 3146–3151. [Google Scholar] [CrossRef] [Green Version]
- Crinier, A.; Narni-Mancinelli, E.; Ugolini, S.; Vivier, E. SnapShot: Natural Killer Cells. Cell 2020, 180, 1280. [Google Scholar] [CrossRef]
- Getahun, A.; Cambier, J. Of ITIMs, ITAMs, and ITAMis: Revisiting immunoglobulin Fc receptor signaling. Immunol. Rev. 2015, 268, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Quatrini, L.; Della Chiesa, M.; Sivori, S.; Mingari, M.; Pende, D.; Moretta, L. Human NK cells, their receptors and function. Eur. J. Immunol. 2021, 51, 1566–1579. [Google Scholar] [CrossRef]
- Dorsch, M.; Urlaub, D.; Bönnemann, V.; Bröde, P.; Sandusky, M.; Watzl, C. Quantitative analysis of human NK cell reactivity using latex beads coated with defined amounts of antibodies. Eur. J. Immunol. 2020, 50, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Rumpret, M.; Drylewicz, J.; Ackermans, L.; Borghans, J.; Medzhitov, R.; Meyaard, L. Functional categories of immune inhibitory receptors. Nat. Rev. Immunol. 2020, 20, 771–780. [Google Scholar] [CrossRef]
- Shklovskaya, E.; Rizos, H. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It. Int. J. Mol. Sci. 2021, 22, 6741. [Google Scholar] [CrossRef]
- Russick, J.; Torset, C.; Hemery, E.; Cremer, I. NK cells in the tumor microenvironment: Prognostic and theranostic impact. Recent advances and trends. Semin. Immunol. 2020, 48, 101407. [Google Scholar] [CrossRef]
- Federici, C.; Shahaj, E.; Cecchetti, S.; Camerini, S.; Casella, M.; Iessi, E.; Camisaschi, C.; Paolino, G.; Calvieri, S.; Ferro, S.; et al. Natural-Killer-Derived Extracellular Vesicles: Immune Sensors and Interactors. Front. Immunol. 2020, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Cochran, A.; Kornbluth, J. Extracellular Vesicles from the Human Natural Killer Cell Line NK3.3 Have Broad and Potent Anti-Tumor Activity. Front. Cell Dev. Biol. 2021, 9, 698639. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, Y.; Jiang, X. Antibody and antibody fragments for cancer immunotherapy. J. Control. Release Off. J. Control. Release Soc. 2020, 328, 395–406. [Google Scholar] [CrossRef]
- López-Díaz de Cerio, A.; García-Muñoz, R.; Pena, E.; Panizo, Á.; Feliu, J.; Giraldo, P.; Rodríguez-Calvillo, M.; Martínez-Calle, N.; Grande, C.; Olave, M.; et al. Maintenance therapy with ex vivo expanded lymphokine-activated killer cells and rituximab in patients with follicular lymphoma is safe and may delay disease progression. Br. J. Haematol. 2020, 189, 1064–1073. [Google Scholar] [CrossRef]
- Ottaiano, A.; Scala, S.; Normanno, N.; Napolitano, M.; Capozzi, M.; Rachiglio, A.; Roma, C.; Trotta, A.; D’Alterio, C.; Portella, L.; et al. Cetuximab, irinotecan and fluorouracile in fiRst-line treatment of immunologically-selected advanced colorectal cancer patients: The CIFRA study protocol. BMC Cancer 2019, 19, 899. [Google Scholar] [CrossRef] [Green Version]
- Louis, E.; El Ghoul, Z.; Vermeire, S.; Dall’Ozzo, S.; Rutgeerts, P.; Paintaud, G.; Belaiche, J.; De Vos, M.; Van Gossum, A.; Colombel, J.; et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment. Pharmacol. Ther. 2004, 19, 511–519. [Google Scholar] [CrossRef]
- Fan, Z.; Yu, P.; Wang, Y.; Wang, Y.; Fu, M.L.; Liu, W.; Sun, Y.; Fu, Y.X. NK-cell activation by LIGHT triggers tumor-specific CD8+ T-cell immunity to reject established tumors. Blood 2006, 107, 1342–1351. [Google Scholar] [CrossRef]
- Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 2020, 19, 200–218. [Google Scholar] [CrossRef]
- Böttcher, J.P.; Bonavita, E.; Chakravarty, P.; Blees, H.; Cabeza-Cabrerizo, M.; Sammicheli, S.; Rogers, N.C.; Sahai, E.; Zelenay, S.; Reis e Sousa, C. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 2018, 172, 1022–1037.e1014. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.C.; Hsu, J.; Broz, M.L.; Cueto, F.J.; Binnewies, M.; Combes, A.J.; Nelson, A.E.; Loo, K.; Kumar, R.; Rosenblum, M.D.; et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 2018, 24, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Castro, F.; Cardoso, A.; Gonçalves, R.; Serre, K.; Oliveira, M. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front. Immunol. 2018, 9, 847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morvan, M.G.; Lanier, L.L. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 2016, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Bassani, B.; Baci, D.; Gallazzi, M.; Poggi, A.; Bruno, A.; Mortara, L. Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers 2019, 11, 461. [Google Scholar] [CrossRef] [Green Version]
- Corvino, D.; Kumar, A.; Bald, T. Plasticity of NK cells in Cancer. Front. Immunol. 2022, 13, 888313. [Google Scholar] [CrossRef]
- Bruno, A.; Focaccetti, C.; Pagani, A.; Imperatori, A.S.; Spagnoletti, M.; Rotolo, N.; Cantelmo, A.R.; Franzi, F.; Capella, C.; Ferlazzo, G.; et al. The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013, 15, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Chambers, C.B.; Tabatabai, T.; Hatley, H.; Delfino, K.R.; Robinson, K.; Alanee, S.R.; Ran, S.; Torry, D.S.; Wilber, A. Renal cell tumors convert natural killer cells to a proangiogenic phenotype. Oncotarget 2020, 11, 2571–2585. [Google Scholar] [CrossRef]
- Bruno, A.; Bassani, B.; D’Urso, D.G.; Pitaku, I.; Cassinotti, E.; Pelosi, G.; Boni, L.; Dominioni, L.; Noonan, D.M.; Mortara, L.; et al. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 32, 5365–5377. [Google Scholar] [CrossRef] [Green Version]
- Mamessier, E.; Sylvain, A.; Thibult, M.L.; Houvenaeghel, G.; Jacquemier, J.; Castellano, R.; Gonçalves, A.; André, P.; Romagné, F.; Thibault, G.; et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Investig. 2011, 121, 3609–3622. [Google Scholar] [CrossRef] [Green Version]
- Levi, I.; Amsalem, H.; Nissan, A.; Darash-Yahana, M.; Peretz, T.; Mandelboim, O.; Rachmilewitz, J. Characterization of tumor infiltrating natural killer cell subset. Oncotarget 2015, 6, 13835–13843. [Google Scholar] [CrossRef] [PubMed]
- Radomska-Leśniewska, D.M.; Białoszewska, A.; Kamiński, P. Angiogenic Properties of NK Cells in Cancer and Other Angiogenesis-Dependent Diseases. Cells 2021, 10, 1621. [Google Scholar] [CrossRef] [PubMed]
- López-Soto, A.; Gonzalez, S.; Smyth, M.J.; Galluzzi, L. Control of Metastasis by NK Cells. Cancer Cell 2017, 32, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.C.; Xu, Z.; Kim, I.S.; Pingel, B.; Aguirre, S.; Kodali, S.; Liu, J.; Zhang, W.; Muscarella, A.M.; Hein, S.M.; et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat. Cancer 2020, 1, 709–722. [Google Scholar] [CrossRef] [PubMed]
- López-Soto, A.; Folgueras, A.R.; Seto, E.; Gonzalez, S. HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: Potential implications for the immunosurveillance of cancer. Oncogene 2009, 28, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Basher, F.; Wu, J.D. NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Front. Immunol. 2015, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Schlecker, E.; Fiegler, N.; Arnold, A.; Altevogt, P.; Rose-John, S.; Moldenhauer, G.; Sucker, A.; Paschen, A.; von Strandmann, E.P.; Textor, S.; et al. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res. 2014, 74, 3429–3440. [Google Scholar] [CrossRef] [Green Version]
- Chan, I.S.; Knútsdóttir, H.; Ramakrishnan, G.; Padmanaban, V.; Warrier, M.; Ramirez, J.C.; Dunworth, M.; Zhang, H.; Jaffee, E.M.; Bader, J.S.; et al. Cancer cells educate natural killer cells to a metastasis-promoting cell state. J. Cell Biol. 2020, 219, e202001134. [Google Scholar] [CrossRef]
- Beldi-Ferchiou, A.; Lambert, M.; Dogniaux, S.; Vély, F.; Vivier, E.; Olive, D.; Dupuy, S.; Levasseur, F.; Zucman, D.; Lebbé, C.; et al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget 2016, 7, 72961–72977. [Google Scholar] [CrossRef] [Green Version]
- Pesce, S.; Greppi, M.; Tabellini, G.; Rampinelli, F.; Parolini, S.; Olive, D.; Moretta, L.; Moretta, A.; Marcenaro, E. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J. Allergy Clin. Immunol. 2017, 139, 335–346.e333. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Huang, Q.; Huang, M.; Wen, H.; Lin, R.; Zheng, M.; Qu, K.; Li, K.; Wei, H.; Xiao, W.; et al. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology 2019, 70, 168–183. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Li, J.; Hou, X.; Li, L.; Wang, W.; Shi, Y.; Li, D.; Li, L.; Zhao, Z.; et al. Involvement of TIGIT in Natural Killer Cell Exhaustion and Immune Escape in Patients and Mouse Model with Liver Echinococcus multilocularis Infection. Hepatology 2021, 74, 3376–3393. [Google Scholar] [CrossRef]
- Sun, C.; Xu, J.; Huang, Q.; Huang, M.; Wen, H.; Zhang, C.; Wang, J.; Song, J.; Zheng, M.; Sun, H.; et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. Oncoimmunology 2017, 6, e1264562. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Hou, N.; Meng, J.; Wang, X.; Zhang, X.; Zhao, D.; Liu, Y.; Zhu, F.; Zhang, L.; Sun, W.; et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J. Hepatol. 2010, 52, 322–329. [Google Scholar] [CrossRef]
- Bi, J.; Tian, Z. NK Cell Exhaustion. Front. Immunol 2017, 8, 760. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Souza-Fonseca-Guimaraes, F.; Bald, T.; Ng, S.S.; Young, A.; Ngiow, S.F.; Rautela, J.; Straube, J.; Waddell, N.; Blake, S.J.; et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 2017, 18, 1004–1015. [Google Scholar] [CrossRef]
- Cerdeira, A.S.; Rajakumar, A.; Royle, C.M.; Lo, A.; Husain, Z.; Thadhani, R.I.; Sukhatme, V.P.; Karumanchi, S.A.; Kopcow, H.D. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J. Immunol. 2013, 190, 3939–3948. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Sarhan, D.; Steven, A.; Seliger, B.; Kiessling, R.; Lundqvist, A. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin. Cancer Res. 2014, 20, 4096–4106. [Google Scholar] [CrossRef] [Green Version]
- Wan, R.; Wang, Z.W.; Li, H.; Peng, X.D.; Liu, G.Y.; Ou, J.M.; Cheng, A.Q. Human Leukocyte Antigen-G Inhibits the Anti-Tumor Effect of Natural Killer Cells via Immunoglobulin-Like Transcript 2 in Gastric Cancer. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 44, 1828–1841. [Google Scholar] [CrossRef]
- Lee, C.L.; Vijayan, M.; Wang, X.; Lam, K.K.W.; Koistinen, H.; Seppala, M.; Li, R.H.W.; Ng, E.H.Y.; Yeung, W.S.B.; Chiu, P.C.N. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype. Hum. Reprod. 2019, 34, 689–701. [Google Scholar] [CrossRef]
- Law, A.M.K.; Valdes-Mora, F.; Gallego-Ortega, D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020, 9, 561. [Google Scholar] [CrossRef] [PubMed]
- Langhans, B.; Alwan, A.W.; Krämer, B.; Glässner, A.; Lutz, P.; Strassburg, C.P.; Nattermann, J.; Spengler, U. Regulatory CD4+ T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type. J. Hepatol. 2015, 62, 398–404. [Google Scholar] [CrossRef]
- Neelapu, S.; Locke, F.; Bartlett, N.; Lekakis, L.; Miklos, D.; Jacobson, C.; Braunschweig, I.; Oluwole, O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Bishop, M.; Tam, C.; Waller, E.; Borchmann, P.; McGuirk, J.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Maude, S.; Frey, N.; Shaw, P.; Aplenc, R.; Barrett, D.; Bunin, N.; Chew, A.; Gonzalez, V.; Zheng, Z.; Lacey, S.; et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garfall, A.; Maus, M.; Hwang, W.; Lacey, S.; Mahnke, Y.; Melenhorst, J.; Zheng, Z.; Vogl, D.; Cohen, A.; Weiss, B.; et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1040–1047. [Google Scholar] [CrossRef]
- June, C.; O’Connor, R.; Kawalekar, O.; Ghassemi, S.; Milone, M. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- American Association for Cancer Research. First-Ever CAR T-cell Therapy Approved in U.S. Cancer Discov. 2017, 7, OF1. [Google Scholar] [CrossRef] [Green Version]
- FDA Approves Second CAR T-cell Therapy. Cancer Discov. 2018, 8, 5–6. [CrossRef] [Green Version]
- Mullard, A. FDA approves fourth CAR-T cell therapy. Nat. Rev. Drug Discov. 2021, 20, 166. [Google Scholar] [CrossRef]
- Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
- Hay, K.; Hanafi, L.; Li, D.; Gust, J.; Liles, W.; Wurfel, M.; López, J.; Chen, J.; Chung, D.; Harju-Baker, S.; et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 2017, 130, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Leahy, A.; Newman, H.; Li, Y.; Liu, H.; Myers, R.; DiNofia, A.; Dolan, J.; Callahan, C.; Baniewicz, D.; Devine, K.; et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: A post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 2021, 8, e711–e722. [Google Scholar] [CrossRef]
- Berdeja, J.; Madduri, D.; Usmani, S.; Jakubowiak, A.; Agha, M.; Cohen, A.; Stewart, A.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Zhao, Y.; Shao, Q.; Peng, G. Exhaustion and senescence: Two crucial dysfunctional states of T cells in the tumor microenvironment. Cell. Mol. Immunol. 2020, 17, 27–35. [Google Scholar] [CrossRef]
- Sterner, R.; Sterner, R. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Titov, A.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Petukhov, A.; Rakhmatullina, A.; Miftakhova, R.; Fainshtein, M.; Rizvanov, A.; Bulatov, E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers 2021, 13, 743. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, Q.; Jiang, H.; Hu, L.; Zhao, T.; Yu, X.; Huang, X. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo. Eur. J. Immunol. 2020, 50, 1374–1385. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, Z.; Du, D.; Wu, Y.; Qiu, S.; Mu, F.; Xu, K.; Chen, J. Safety and Short-Term Efficacy of Irreversible Electroporation and Allogenic Natural Killer Cell Immunotherapy Combination in the Treatment of Patients with Unresectable Primary Liver Cancer. Cardiovasc. Interv. Radiol. 2019, 42, 48–59. [Google Scholar] [CrossRef]
- Reina-Ortiz, C.; Constantinides, M.; Fayd-Herbe-de-Maudave, A.; Présumey, J.; Hernandez, J.; Cartron, G.; Giraldos, D.; Díez, R.; Izquierdo, I.; Azaceta, G.; et al. Expanded NK cells from umbilical cord blood and adult peripheral blood combined with daratumumab are effective against tumor cells from multiple myeloma patients. Oncoimmunology 2020, 10, 1853314. [Google Scholar] [CrossRef]
- Xu, C.; Liu, D.; Chen, Z.; Zhuo, F.; Sun, H.; Hu, J.; Li, T. Umbilical Cord Blood-Derived Natural Killer Cells Combined with Bevacizumab for Colorectal Cancer Treatment. Hum. Gene Ther. 2019, 30, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.; Mansour, A.; Zhu, Z.; Li, Z.; Tian, L.; Ma, S.; Xu, B.; Lu, T.; Chen, H.; Hou, D.; et al. Off-the-Shelf Prostate Stem Cell Antigen–Directed Chimeric Antigen Receptor Natural Killer Cell Therapy to Treat Pancreatic Cancer. Gastroenterology 2022, 162, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Kang, M.; Kim, T.; Hwang, I.; Jin, H.; Sung, Y.; Eom, K.; Kim, S. Discovery of a novel natural killer cell line with distinct immunostimulatory and proliferative potential as an alternative platform for cancer immunotherapy. J. Immunother. Cancer 2019, 7, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suck, G.; Odendahl, M.; Nowakowska, P.; Seidl, C.; Wels, W.; Klingemann, H.; Tonn, T. NK-92: An ‘off-the-shelf therapeutic’ for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol. Immunother. CII 2016, 65, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Law, A.; Routy, B.; denHollander, N.; Gupta, V.; Wang, X.; Chaboureau, A.; Viswanathan, S.; Keating, A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget 2017, 8, 89256–89268. [Google Scholar] [CrossRef] [Green Version]
- You, F.; Wang, Y.; Jiang, L.; Zhu, X.; Chen, D.; Yuan, L.; An, G.; Meng, H.; Yang, L. A novel CD7 chimeric antigen receptor-modified NK-92MI cell line targeting T-cell acute lymphoblastic leukemia. Am. J. Cancer Res. 2019, 9, 64–78. [Google Scholar]
- Zhu, H.; Blum, R.; Bernareggi, D.; Ask, E.; Wu, Z.; Hoel, H.; Meng, Z.; Wu, C.; Guan, K.; Malmberg, K.; et al. Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes In Vivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell 2020, 27, 224–237.e226. [Google Scholar] [CrossRef]
- Zhu, H.; Blum, R.; Bjordahl, R.; Gaidarova, S.; Rogers, P.; Lee, T.; Abujarour, R.; Bonello, G.; Wu, J.; Tsai, P.; et al. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 2020, 135, 399–410. [Google Scholar] [CrossRef]
- Lee, S.; Shimasaki, N.; Lim, J.; Wong, A.; Yadav, K.; Yong, W.; Tan, L.; Koh, L.; Poon, M.; Tan, S.; et al. Phase I Trial of Expanded, Activated Autologous NK-cell Infusions with Trastuzumab in Patients with HER2-positive Cancers. Clin. Cancer Res. An. Off. J. Am. Assoc. Cancer Res. 2020, 26, 4494–4502. [Google Scholar] [CrossRef]
- Parkhurst, M.; Riley, J.; Dudley, M.; Rosenberg, S. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res. An. Off. J. Am. Assoc. Cancer Res. 2011, 17, 6287–6297. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, T.; Wynberg, J.; Srinivasan, R.; Becknell, B.; McCoy, J.; Takahashi, Y.; Suffredini, D.; Linehan, W.; Caligiuri, M.; Childs, R. Enhanced cytotoxicity of allogeneic NK cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004, 104, 170–177. [Google Scholar] [CrossRef]
- Zhang, T.; Scott, J.; Hwang, I.; Kim, S. Cutting edge: Antibody-dependent memory-like NK cells distinguished by FcRγ deficiency. J. Immunol. 2013, 190, 1402–1406. [Google Scholar] [CrossRef]
- Hwang, I.; Zhang, T.; Scott, J.; Kim, A.; Lee, T.; Kakarla, T.; Kim, A.; Sunwoo, J.; Kim, S. Identification of human NK cells that are deficient for signaling adaptor FcRγ and specialized for antibody-dependent immune functions. Int. Immunol. 2012, 24, 793–802. [Google Scholar] [CrossRef]
- Lee, J.; Zhang, T.; Hwang, I.; Kim, A.; Nitschke, L.; Kim, M.; Scott, J.; Kamimura, Y.; Lanier, L.; Kim, S. Epigenetic modification and antibody-dependent expansion of memory-like NK cells in human cytomegalovirus-infected individuals. Immunity 2015, 42, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Bigley, A.; Spade, S.; Agha, N.; Biswas, S.; Tang, S.; Malik, M.; Dai, L.; Masoumi, S.; Patiño-Escobar, B.; Hale, M.; et al. FcεRIγ-negative NK cells persist in vivo and enhance efficacy of therapeutic monoclonal antibodies in multiple myeloma. Blood Adv. 2021, 5, 3021–3031. [Google Scholar] [CrossRef]
- Cooper, M.; Elliott, J.; Keyel, P.; Yang, L.; Carrero, J.; Yokoyama, W. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 2009, 106, 1915–1919. [Google Scholar] [CrossRef] [Green Version]
- Romee, R.; Rosario, M.; Berrien-Elliott, M.; Wagner, J.; Jewell, B.; Schappe, T.; Leong, J.; Abdel-Latif, S.; Schneider, S.; Willey, S.; et al. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci. Transl. Med. 2016, 8, 357ra123. [Google Scholar] [CrossRef] [Green Version]
- Gang, M.; Marin, N.; Wong, P.; Neal, C.; Marsala, L.; Foster, M.; Schappe, T.; Meng, W.; Tran, J.; Schaettler, M.; et al. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 2020, 136, 2308–2318. [Google Scholar] [CrossRef]
- Marin, N.; Krasnick, B.; Becker-Hapak, M.; Conant, L.; Goedegebuure, S.; Berrien-Elliott, M.; Robbins, K.; Foltz, J.; Foster, M.; Wong, P.; et al. Memory-like Differentiation Enhances NK Cell Responses to Melanoma. Clin. Cancer Res. An. Off. J. Am. Assoc. Cancer Res. 2021, 27, 4859–4869. [Google Scholar] [CrossRef]
- Dong, H.; Ham, J.; Hu, G.; Xie, G.; Vergara, J.; Liang, Y.; Ali, A.; Tarannum, M.; Donner, H.; Baginska, J.; et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 2022, 119, e2122379119. [Google Scholar] [CrossRef]
- Liu, E.; Ang, S.; Kerbauy, L.; Basar, R.; Kaur, I.; Kaplan, M.; Li, L.; Tong, Y.; Daher, M.; Ensley, E.; et al. GMP-Compliant Universal Antigen Presenting Cells (uAPC) Promote the Metabolic Fitness and Antitumor Activity of Armored Cord Blood CAR-NK Cells. Front. Immunol. 2021, 12, 626098. [Google Scholar] [CrossRef] [PubMed]
- Nham, T.; Poznanski, S.; Fan, I.; Vahedi, F.; Shenouda, M.; Lee, A.; Chew, M.; Hogg, R.; Lee, D.; Ashkar, A. Ex Vivo-expanded Natural Killer Cells Derived from Long-term Cryopreserved Cord Blood are Cytotoxic Against Primary Breast Cancer Cells. J. Immunother. 2018, 41, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Shereck, E.; Day, N.; Awasthi, A.; Ayello, J.; Chu, Y.; McGuinn, C.; van de Ven, C.; Lim, M.; Cairo, M. Immunophenotypic, cytotoxic, proteomic and genomic characterization of human cord blood vs. peripheral blood CD56 NK cells. Innate Immun. 2019, 25, 294–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, L.; Santos, S.; Vesga, M.; Anguita, J.; Martin-Ruiz, I.; Carrascosa, T.; Juan, M.; Eguizabal, C. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci. Rep. 2019, 9, 18729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Maki, G.; Klingemann, H. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994, 8, 652–658. [Google Scholar]
- Tonn, T.; Schwabe, D.; Klingemann, H.; Becker, S.; Esser, R.; Koehl, U.; Suttorp, M.; Seifried, E.; Ottmann, O.; Bug, G. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 2013, 15, 1563–1570. [Google Scholar] [CrossRef]
- Boyiadzis, M.; Agha, M.; Redner, R.; Sehgal, A.; Im, A.; Hou, J.; Farah, R.; Dorritie, K.; Raptis, A.; Lim, S.; et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy 2017, 19, 1225–1232. [Google Scholar] [CrossRef]
- Grote, S.; Ureña-Bailén, G.; Chan, K.; Baden, C.; Mezger, M.; Handgretinger, R.; Schleicher, S. In Vitro Evaluation of CD276-CAR NK-92 Functionality, Migration and Invasion Potential in the Presence of Immune Inhibitory Factors of the Tumor Microenvironment. Cells 2021, 10, 1020. [Google Scholar] [CrossRef]
- Gossel, L.; Heim, C.; Pfeffermann, L.; Moser, L.; Bönig, H.; Klingebiel, T.; Bader, P.; Wels, W.; Merker, M.; Rettinger, E. Retargeting of NK-92 Cells against High-Risk Rhabdomyosarcomas by Means of an ERBB2 (HER2/Neu)-Specific Chimeric Antigen Receptor. Cancers 2021, 13, 1443. [Google Scholar] [CrossRef]
- Grote, S.; Traub, F.; Mittelstaet, J.; Seitz, C.; Kaiser, A.; Handgretinger, R.; Schleicher, S. Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases. Cancers 2021, 13, 1124. [Google Scholar] [CrossRef]
- Fabian, K.; Padget, M.; Donahue, R.; Solocinski, K.; Robbins, Y.; Allen, C.; Lee, J.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J.; et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J. Immunother. Cancer 2020, 8, e000450. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Z.; Li, G.; Liu, G.; Lin, S.; Chen, W.; Xiong, S. An NK cell line (NK92-41BB) expressing high levels of granzyme is engineered to express the high affinity chimeric genes CD16/CAR. Cytotechnology 2021, 73, 539–553. [Google Scholar] [CrossRef]
- Kloess, S.; Oberschmidt, O.; Dahlke, J.; Vu, X.; Neudoerfl, C.; Kloos, A.; Gardlowski, T.; Matthies, N.; Heuser, M.; Meyer, J.; et al. Preclinical Assessment of Suitable Natural Killer Cell Sources for Chimeric Antigen Receptor Natural Killer-Based "Off-the-Shelf" Acute Myeloid Leukemia Immunotherapies. Hum. Gene Ther. 2019, 30, 381–401. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Kalimuthu, S.; Gangadaran, P.; Lee, H.; Oh, J.; Baek, S.; Jeong, S.; Lee, S.; Lee, J.; et al. Natural Killer Cell (NK-92MI)-Based Therapy for Pulmonary Metastasis of Anaplastic Thyroid Cancer in a Nude Mouse Model. Front. Immunol. 2017, 8, 816. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Cao, B.; Zhou, G.; Zhu, L.; Wang, L.; Zhang, L.; Kwok, H.; Zhang, Z.; Zhao, Q. Targeting B7-H3 Immune Checkpoint with Chimeric Antigen Receptor-Engineered Natural Killer Cells Exhibits Potent Cytotoxicity Against Non-Small Cell Lung Cancer. Front. Pharmacol. 2020, 11, 1089. [Google Scholar] [CrossRef]
- Hong, S.; Yu, C.; Wang, P.; Shi, Y.; Cao, W.; Cheng, B.; Chapla, D.; Ma, Y.; Li, J.; Rodrigues, E.; et al. Glycoengineering of NK Cells with Glycan Ligands of CD22 and Selectins for B-Cell Lymphoma Therapy. Angew. Chem. Int. Ed. 2021, 60, 3603–3610. [Google Scholar] [CrossRef]
- Saetersmoen, M.; Hammer, Q.; Valamehr, B.; Kaufman, D.; Malmberg, K. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells. Semin. Immunopathol. 2019, 41, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Goldenson, B.; Zhu, H.; Wang, Y.; Heragu, N.; Bernareggi, D.; Ruiz-Cisneros, A.; Bahena, A.; Ask, E.; Hoel, H.; Malmberg, K.; et al. Umbilical Cord Blood and iPSC-Derived Natural Killer Cells Demonstrate Key Differences in Cytotoxic Activity and KIR Profiles. Front. Immunol. 2020, 11, 561553. [Google Scholar] [CrossRef]
- Silla, L.; Valim, V.; Pezzi, A.; da Silva, M.; Wilke, I.; Nobrega, J.; Vargas, A.; Amorin, B.; Correa, B.; Zambonato, B.; et al. Adoptive immunotherapy with double-bright (CD56/CD16) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: A proof-of-concept study. Br. J. Haematol. 2021, 195, 710–721. [Google Scholar] [CrossRef]
- Burger, M.; Zhang, C.; Harter, P.; Romanski, A.; Strassheimer, F.; Senft, C.; Tonn, T.; Steinbach, J.; Wels, W. CAR-Engineered NK Cells for the Treatment of Glioblastoma: Turning Innate Effectors Into Precision Tools for Cancer Immunotherapy. Front. Immunol. 2019, 10, 2683. [Google Scholar] [CrossRef] [Green Version]
- Daher, M.; Basar, R.; Gokdemir, E.; Baran, N.; Uprety, N.; Nunez Cortes, A.; Mendt, M.; Kerbauy, L.; Banerjee, P.; Shanley, M.; et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood 2021, 137, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Luanpitpong, S.; Poohadsuan, J.; Klaihmon, P.; Issaragrisil, S. Selective Cytotoxicity of Single and Dual Anti-CD19 and Anti-CD138 Chimeric Antigen Receptor-Natural Killer Cells against Hematologic Malignancies. J. Immunol. Res. 2021, 2021, 5562630. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Rong, L.; Jiang, N.; Wayne, A.; Xie, J. Targeting HLA-DR loss in hematologic malignancies with an inhibitory chimeric antigen receptor. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Roex, G.; Campillo-Davo, D.; Flumens, D.; Shaw, P.; Krekelbergh, L.; De Reu, H.; Berneman, Z.; Lion, E.; Anguille, S. Two for one: Targeting BCMA and CD19 in B-cell malignancies with off-the-shelf dual-CAR NK-92 cells. J. Transl. Med. 2022, 20, 124. [Google Scholar] [CrossRef] [PubMed]
- Hambach, J.; Riecken, K.; Cichutek, S.; Schütze, K.; Albrecht, B.; Petry, K.; Röckendorf, J.; Baum, N.; Kröger, N.; Hansen, T.; et al. Targeting CD38-Expressing Multiple Myeloma and Burkitt Lymphoma Cells In Vitro with Nanobody-Based Chimeric Antigen Receptors (Nb-CARs). Cells 2020, 9, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Guo, C.; Chen, H.; Zhang, H.; Zhi, L.; Lv, T.; Li, M.; Niu, Z.; Lu, P.; Zhu, W. A novel chimeric PD1-NKG2D-41BB receptor enhances antitumor activity of NK92 cells against human lung cancer H1299 cells by triggering pyroptosis. Mol. Immunol. 2020, 122, 200–206. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Q.; Zhong, M.; Wang, Z.; Chen, Z.; Zhang, Y.; Xing, H.; Tian, Z.; Tang, K.; Liao, X.; et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J. Hematol. Oncol. 2019, 12, 49. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, J.; Liu, T.; Xu, Q.; Song, X.; Zeng, J. DNAM1 and 2B4 Costimulatory Domains Enhance the Cytotoxicity of Anti-GPC3 Chimeric Antigen Receptor-Modified Natural Killer Cells Against Hepatocellular Cancer Cells in vitro. Cancer Manag. Res. 2020, 12, 3247–3255. [Google Scholar] [CrossRef]
- Oelsner, S.; Waldmann, A.; Billmeier, A.; Röder, J.; Lindner, A.; Ullrich, E.; Marschalek, R.; Dotti, G.; Jung, G.; Große-Hovest, L.; et al. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int. J. Cancer 2019, 145, 1935–1945. [Google Scholar] [CrossRef]
- Gurney, M.; Stikvoort, A.; Nolan, E.; Kirkham-McCarthy, L.; Khoruzhenko, S.; Shivakumar, R.; Zweegman, S.; Van de Donk, N.; Mutis, T.; Szegezdi, E.; et al. CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica 2022, 107, 437–445. [Google Scholar] [CrossRef]
- Albinger, N.; Pfeifer, R.; Nitsche, M.; Mertlitz, S.; Campe, J.; Stein, K.; Kreyenberg, H.; Schubert, R.; Quadflieg, M.; Schneider, D.; et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia. Blood Cancer J. 2022, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.; Kloos, A.; Lenz, D.; Kattre, N.; Nowak, J.; Bentele, M.; Keisker, M.; Dahlke, J.; Zimmermann, K.; Sauer, M.; et al. Improved Activity against Acute Myeloid Leukemia with Chimeric Antigen Receptor (CAR)-NK-92 Cells Designed to Target CD123. Viruses 2021, 13, 1365. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, I.; Ho, W.; Marple, A.; Ravich, J.; Tam, A.; Rahnama, R.; Fearnow, A.; Rietberg, C.; Yanik, S.; Solomou, E.; et al. Engineering CAR-NK cells to secrete IL-15 sustains their anti-AML functionality but is associated with systemic toxicities. J. Immunother. Cancer 2021, 9, e003894. [Google Scholar] [CrossRef] [PubMed]
- Jamali, A.; Hadjati, J.; Madjd, Z.; Mirzaei, H.; Thalheimer, F.; Agarwal, S.; Bonig, H.; Ullrich, E.; Hartmann, J. Highly Efficient Generation of Transgenically Augmented CAR NK Cells Overexpressing CXCR4. Front. Immunol. 2020, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Tong, Y.; Dotti, G.; Shaim, H.; Savoldo, B.; Mukherjee, M.; Orange, J.; Wan, X.; Lu, X.; Reynolds, A.; et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018, 32, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Ng, Y.; Zha, S.; Wang, S. piggyBac system to co-express NKG2D CAR and IL-15 to augment the in vivo persistence and anti-AML activity of human peripheral blood NK cells. Mol. Therapy. Methods Clin. Dev. 2021, 23, 582–596. [Google Scholar] [CrossRef]
- Dehbashi, M.; Hojati, Z.; Motovali-Bashi, M.; Ganjalikhany, M.; Cho, W.; Shimosaka, A.; Navabi, P.; Ganjalikhani-Hakemi, M. A Novel CAR Expressing NK Cell Targeting CD25 With the Prospect of Overcoming Immune Escape Mechanism in Cancers. Front. Oncol. 2021, 11, 649710. [Google Scholar] [CrossRef]
- Yu, M.; Luo, H.; Fan, M.; Wu, X.; Shi, B.; Di, S.; Liu, Y.; Pan, Z.; Jiang, H.; Li, Z. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 366–378. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Kumagai, A.; Iriguchi, S.; Yasui, Y.; Miyasaka, T.; Nakagoshi, K.; Nakane, K.; Saito, K.; Takahashi, M.; Sasaki, A.; et al. Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 2020, 111, 1478–1490. [Google Scholar] [CrossRef]
- Ao, X.; Yang, Y.; Li, W.; Tan, Y.; Guo, W.; Ao, L.; He, X.; Wu, X.; Xia, J.; Xu, X.; et al. Anti-αFR CAR-engineered NK-92 Cells Display Potent Cytotoxicity Against αFR-positive Ovarian Cancer. J. Immunother. 2019, 42, 284–296. [Google Scholar] [CrossRef]
- Cao, B.; Liu, M.; Wang, L.; Liang, B.; Feng, Y.; Chen, X.; Shi, Y.; Zhang, J.; Ye, X.; Tian, Y.; et al. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem. Biophys. Res. Commun. 2020, 524, 96–102. [Google Scholar] [CrossRef]
- Cao, B.; Liu, M.; Huang, J.; Zhou, J.; Li, J.; Lian, H.; Huang, W.; Guo, Y.; Yang, S.; Lin, L.; et al. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 2021, 17, 3850–3861. [Google Scholar] [CrossRef]
- Hu, Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci. Rep. 2020, 10, 2815. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Huang, K.; Fang, X.; Li, Y.; Wang, F.; An, L.; Chen, Q.; Zhang, Y.; Shi, A.; et al. Targeting epidermal growth factor-overexpressing triple-negative breast cancer by natural killer cells expressing a specific chimeric antigen receptor. Cell Prolif. 2020, 53, e12858. [Google Scholar] [CrossRef]
- Xiao, L.; Cen, D.; Gan, H.; Sun, Y.; Huang, N.; Xiong, H.; Jin, Q.; Su, L.; Liu, X.; Wang, K.; et al. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Leivas, A.; Valeri, A.; Córdoba, L.; García-Ortiz, A.; Ortiz, A.; Sánchez-Vega, L.; Graña-Castro, O.; Fernández, L.; Carreño-Tarragona, G.; Pérez, M.; et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma. Blood Cancer J. 2021, 11, 146. [Google Scholar] [CrossRef]
- Ng, Y.; Tay, J.; Wang, S. CXCR1 Expression to Improve Anti-Cancer Efficacy of Intravenously Injected CAR-NK Cells in Mice with Peritoneal Xenografts. Mol. Ther. Oncolytics 2020, 16, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Portillo, A.; Hogg, R.; Poznanski, S.; Rojas, E.; Cashell, N.; Hammill, J.; Chew, M.; Shenouda, M.; Ritchie, T.; Cao, Q.; et al. Expanded human NK cells armed with CAR uncouple potent anti-tumor activity from off-tumor toxicity against solid tumors. iScience 2021, 24, 102619. [Google Scholar] [CrossRef]
- Jan, C.; Huang, S.; Canoll, P.; Bruce, J.; Lin, Y.; Pan, C.; Lu, H.; Chiu, S.; Cho, D. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. J. Immunother. Cancer 2021, 9, e003050. [Google Scholar] [CrossRef]
- Klopotowska, M.; Bajor, M.; Graczyk-Jarzynka, A.; Kraft, A.; Pilch, Z.; Zhylko, A.; Firczuk, M.; Baranowska, I.; Lazniewski, M.; Plewczynski, D.; et al. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified NK cells under oxidative stress. Cancer Immunol. Res. 2021, 10, 228–244. [Google Scholar] [CrossRef]
- Imai, C.; Iwamoto, S.; Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005, 106, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, E.; Han, X.; Tribouley, C.; Wood, P.; Leary, R.; Riester, M.; Levine, J.; Qayed, M.; Grupp, S.; Boyer, M.; et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Horenstein, A.; Bracci, C.; Morandi, F.; Malavasi, F. CD38 in Adenosinergic Pathways and Metabolic Re-programming in Human Multiple Myeloma Cells: In-tandem Insights from Basic Science to Therapy. Front. Immunol. 2019, 10, 760. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.R.; Schmidt, F.I.; Ploegh, H.L. Exploiting Nanobodies’ Singular Traits. Annu. Rev. Immunol. 2018, 36, 695–715. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Shen, R.; Campbell, A.; McMichael, E.; Yu, L.; Ramaswamy, B.; London, C.; Xu, T.; Carson, W. Targeting Tissue Factor for Immunotherapy of Triple-Negative Breast Cancer Using a Second-Generation ICON. Cancer Immunol. Res. 2018, 6, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Waldhauer, I.; Goehlsdorf, D.; Gieseke, F.; Weinschenk, T.; Wittenbrink, M.; Ludwig, A.; Stevanovic, S.; Rammensee, H.; Steinle, A. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 2008, 68, 6368–6376. [Google Scholar] [CrossRef] [Green Version]
- Boutet, P.; Agüera-González, S.; Atkinson, S.; Pennington, C.; Edwards, D.; Murphy, G.; Reyburn, H.; Valés-Gómez, M. Cutting edge: The metalloproteinase ADAM17/TNF-alpha-converting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J. Immunol. 2009, 182, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Luo, W.; Zhu, Q.; Huang, H.; Peng, H.; Liu, R.; Xie, M.; Li, S.; Li, M.; Hu, X.; et al. Tumor-Derived Soluble MICA Obstructs the NKG2D Pathway to Restrain NK Cytotoxicity. Aging Dis. 2020, 11, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Ferrari de Andrade, L.; Tay, R.; Pan, D.; Luoma, A.; Ito, Y.; Badrinath, S.; Tsoucas, D.; Franz, B.; May, K.; Harvey, C.; et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 2018, 359, 1537–1542. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Luo, W.; Guo, J.; Luo, Q.; Deng, M.; Lu, Z.; Fang, Y.; Zhang, C. NK cell-mediated anti-leukemia cytotoxicity is enhanced using a NKG2D ligand MICA and anti-CD20 scfv chimeric protein. Eur. J. Immunol. 2018, 48, 1750–1763. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Ni, Z.; Wu, J.; Higgins, L.; Markowski, T.; Kaufman, D.; Walcheck, B. Identification of an ADAM17 cleavage region in human CD16 (FcγRIII) and the engineering of a non-cleavable version of the receptor in NK cells. PLoS ONE 2015, 10, e0121788. [Google Scholar] [CrossRef] [Green Version]
- Snyder, K.; Hullsiek, R.; Mishra, H.; Mendez, D.; Li, Y.; Rogich, A.; Kaufman, D.; Wu, J.; Walcheck, B. Expression of a Recombinant High Affinity IgG Fc Receptor by Engineered NK Cells as a Docking Platform for Therapeutic mAbs to Target Cancer Cells. Front. Immunol. 2018, 9, 2873. [Google Scholar] [CrossRef] [Green Version]
- Hintz, H.; Snyder, K.; Wu, J.; Hullsiek, R.; Dahlvang, J.; Hart, G.; Walcheck, B.; LeBeau, A. Simultaneous Engagement of Tumor and Stroma Targeting Antibodies by Engineered NK-92 Cells Expressing CD64 Controls Prostate Cancer Growth. Cancer Immunol. Res. 2021, 9, 1270–1282. [Google Scholar] [CrossRef]
- Mensali, N.; Dillard, P.; Hebeisen, M.; Lorenz, S.; Theodossiou, T.; Myhre, M.; Fåne, A.; Gaudernack, G.; Kvalheim, G.; Myklebust, J.; et al. NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 2019, 40, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Parlar, A.; Sayitoglu, E.; Ozkazanc, D.; Georgoudaki, A.; Pamukcu, C.; Aras, M.; Josey, B.; Chrobok, M.; Branecki, S.; Zahedimaram, P.; et al. Engineering antigen-specific NK cell lines against the melanoma-associated antigen tyrosinase via TCR gene transfer. Eur. J. Immunol. 2019, 49, 1278–1290. [Google Scholar] [CrossRef]
- Wang, X.; Lang, S.; Tian, Y.; Zhang, J.; Yan, X.; Fang, Z.; Weng, J.; Lu, N.; Wu, X.; Li, T.; et al. Glycoengineering of Natural Killer Cells with CD22 Ligands for Enhanced Anticancer Immunotherapy. ACS Cent. Sci. 2020, 6, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Shaim, H.; Shanley, M.; Basar, R.; Daher, M.; Gumin, J.; Zamler, D.; Uprety, N.; Wang, F.; Huang, Y.; Gabrusiewicz, K.; et al. Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J. Clin. Investig. 2021, 131, e142116. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, P.; Lian, G.; Li, C.; Li, J.; Huang, X.; To, K.; Lan, H. Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunol. Res. 2018, 6, 965–977. [Google Scholar] [CrossRef] [Green Version]
- Burga, R.; Yvon, E.; Chorvinsky, E.; Fernandes, R.; Cruz, C.; Bollard, C. Engineering the TGFβ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clin. Cancer Res. An. Off. J. Am. Assoc. Cancer Res. 2019, 25, 4400–4412. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Mahlakõiv, T.; Ye, Q.; Somanchi, S.; He, S.; Rana, H.; DiFiglia, A.; Gleason, J.; van der Touw, W.; Hariri, R.; et al. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J. Immunother. Cancer 2021, 9, e001975. [Google Scholar] [CrossRef]
- Sayitoglu, E.; Georgoudaki, A.; Chrobok, M.; Ozkazanc, D.; Josey, B.; Arif, M.; Kusser, K.; Hartman, M.; Chinn, T.; Potens, R.; et al. Boosting Natural Killer Cell-Mediated Targeting of Sarcoma Through DNAM-1 and NKG2D. Front. Immunol. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Levy, E.; Reger, R.; Segerberg, F.; Lambert, M.; Leijonhufvud, C.; Baumer, Y.; Carlsten, M.; Childs, R. Enhanced Bone Marrow Homing of Natural Killer Cells Following mRNA Transfection with Gain-of-Function Variant CXCR4. Front. Immunol. 2019, 10, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanswangphuwana, C.; Allan, D.; Chakraborty, M.; Reger, R.; Childs, R. Augmentation of NK Cell Proliferation and Anti-tumor Immunity by Transgenic Expression of Receptors for EPO or TPO. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Naeimi Kararoudi, M.; Nagai, Y.; Elmas, E.; de Souza Fernandes Pereira, M.; Ali, S.; Imus, P.; Wethington, D.; Borrello, I.; Lee, D.; Ghiaur, G. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2020, 136, 2416–2427. [Google Scholar] [CrossRef] [PubMed]
- Clara, J.; Levy, E.; Reger, R.; Barisic, S.; Chen, L.; Cherkasova, E.; Chakraborty, M.; Allan, D.; Childs, R. High-affinity CD16 integration into a CRISPR/Cas9-edited CD38 locus augments CD38-directed antitumor activity of primary human natural killer cells. J. Immunother. Cancer 2022, 10, e003804. [Google Scholar] [CrossRef]
- Bruhns, P.; Jönsson, F. Mouse and human FcR effector functions. Immunol. Rev. 2015, 268, 25–51. [Google Scholar] [CrossRef]
- Lanier, L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 2008, 9, 495–502. [Google Scholar] [CrossRef]
- Romee, R.; Foley, B.; Lenvik, T.; Wang, Y.; Zhang, B.; Ankarlo, D.; Luo, X.; Cooley, S.; Verneris, M.; Walcheck, B.; et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 2013, 121, 3599–3608. [Google Scholar] [CrossRef] [Green Version]
- Lajoie, L.; Congy-Jolivet, N.; Bolzec, A.; Gouilleux-Gruart, V.; Sicard, E.; Sung, H.; Peiretti, F.; Moreau, T.; Vié, H.; Clémenceau, B.; et al. ADAM17-mediated shedding of FcγRIIIA on human NK cells: Identification of the cleavage site and relationship with activation. J. Immunol. 2014, 192, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Koene, H.; Kleijer, M.; Algra, J.; Roos, D.; von dem Borne, A.; de Haas, M. Fc gammaRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood 1997, 90, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002, 99, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Bibeau, F.; Lopez-Crapez, E.; Di Fiore, F.; Thezenas, S.; Ychou, M.; Blanchard, F.; Lamy, A.; Penault-Llorca, F.; Frébourg, T.; Michel, P.; et al. Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 1122–1129. [Google Scholar] [CrossRef]
- DiLillo, D.; Ravetch, J. Fc-Receptor Interactions Regulate Both Cytotoxic and Immunomodulatory Therapeutic Antibody Effector Functions. Cancer Immunol. Res. 2015, 3, 704–713. [Google Scholar] [CrossRef]
- Lu, J.; Sun, P. Structural mechanism of high affinity FcγRI recognition of immunoglobulin G. Immunol. Rev. 2015, 268, 192–200. [Google Scholar] [CrossRef]
- Chen, Y.; You, F.; Jiang, L.; Li, J.; Zhu, X.; Bao, Y.; Sun, X.; Tang, X.; Meng, H.; An, G.; et al. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-ζ or CD64-BB-ζ receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget 2017, 8, 37128–37139. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Sun, Z.; Zhu, X.; Zheng, X.; Zhou, Y.; Lu, Y.; Yan, P.; Wang, H.; Liu, H.; Jin, J.; et al. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood 2022. [Google Scholar] [CrossRef]
- Usmani, S.; Weiss, B.; Plesner, T.; Bahlis, N.; Belch, A.; Lonial, S.; Lokhorst, H.; Voorhees, P.; Richardson, P.; Chari, A.; et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood 2016, 128, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Casneuf, T.; Xu, X.; Adams, H.; Axel, A.; Chiu, C.; Khan, I.; Ahmadi, T.; Yan, X.; Lonial, S.; Plesner, T.; et al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv. 2017, 1, 2105–2114. [Google Scholar] [CrossRef] [Green Version]
- Woan, K.; Kim, H.; Bjordahl, R.; Davis, Z.; Gaidarova, S.; Goulding, J.; Hancock, B.; Mahmood, S.; Abujarour, R.; Wang, H.; et al. Harnessing features of adaptive NK cells to generate iPSC-derived NK cells for enhanced immunotherapy. Cell Stem Cell 2021, 28, 2062–2075. [Google Scholar] [CrossRef]
- Hoerster, K.; Uhrberg, M.; Wiek, C.; Horn, P.; Hanenberg, H.; Heinrichs, S. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for “Off-the-Shelf” Immunotherapy. Front. Immunol. 2020, 11, 586168. [Google Scholar] [CrossRef] [PubMed]
- Cooley, S.; He, F.; Bachanova, V.; Vercellotti, G.; DeFor, T.; Curtsinger, J.; Robertson, P.; Grzywacz, B.; Conlon, K.; Waldmann, T.; et al. First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv. 2019, 3, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Grzywacz, B.; Moench, L.; McKenna, D.; Tessier, K.; Bachanova, V.; Cooley, S.; Miller, J.; Courville, E. Natural Killer Cell Homing and Persistence in the Bone Marrow After Adoptive Immunotherapy Correlates with Better Leukemia Control. J. Immunother. 2019, 42, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, R.; Wu, H.; Pounds, S.; Inaba, H.; Ribeiro, R.; Cullins, D.; Rooney, B.; Bell, T.; Lacayo, N.; Heym, K.; et al. A phase II clinical trial of adoptive transfer of haploidentical natural killer cells for consolidation therapy of pediatric acute myeloid leukemia. J. Immunother. Cancer 2019, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Builes, M.; Vela Cuenca, M.; Fuster Soler, J.; Astigarraga, I.; Pascual Martínez, A.; Vagace Valero, J.; Tong, H.; Valentín Quiroga, J.; Fernández Casanova, L.; Escudero López, A.; et al. Study protocol for a phase II, multicentre, prospective, non-randomised clinical trial to assess the safety and efficacy of infusing allogeneic activated and expanded natural killer cells as consolidation therapy for paediatric acute myeloblastic leukaemia. BMJ Open 2020, 10, e029642. [Google Scholar] [CrossRef] [Green Version]
- Khatua, S.; Cooper, L.; Sandberg, D.; Ketonen, L.; Johnson, J.; Rytting, M.; Liu, D.; Meador, H.; Trikha, P.; Nakkula, R.; et al. Phase I study of intraventricular infusions of autologous ex vivo expanded NK cells in children with recurrent medulloblastoma and ependymoma. Neuro-Oncology 2020, 22, 1214–1225. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.; Ahn, J.; Sim, J.; Kang, S.; Hwang, S.; Chun, J.; Choi, H.; Kim, S.; Chun, D.; et al. Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: An open label, phase I/IIa trial. PLoS ONE 2021, 16, e0247293. [Google Scholar] [CrossRef]
- Multhoff, G.; Pfister, K.; Gehrmann, M.; Hantschel, M.; Gross, C.; Hafner, M.; Hiddemann, W. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 2001, 6, 337–344. [Google Scholar] [CrossRef]
- Kokowski, K.; Stangl, S.; Seier, S.; Hildebrandt, M.; Vaupel, P.; Multhoff, G. Radiochemotherapy combined with NK cell transfer followed by second-line PD-1 inhibition in a patient with NSCLC stage IIIb inducing long-term tumor control: A case study. Strahlenther. Onkol. 2019, 195, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Hoogstad-van Evert, J.; Bekkers, R.; Ottevanger, N.; Schaap, N.; Hobo, W.; Jansen, J.; Massuger, L.; Dolstra, H. Intraperitoneal infusion of ex vivo-cultured allogeneic NK cells in recurrent ovarian carcinoma patients (a phase I study). Medicine 2019, 98, e14290. [Google Scholar] [CrossRef]
- Sutlu, T.; Nyström, S.; Gilljam, M.; Stellan, B.; Applequist, S.; Alici, E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy. Hum. Gene Ther. 2012, 23, 1090–1100. [Google Scholar] [CrossRef]
Cell Source | Target | Generation | Activation Signal | Transduction | Model | Malignancy | Ref. |
---|---|---|---|---|---|---|---|
NK-92 | FLT3 | Second | CD28-CD3ζ | LV | B-ALL CDX model in NOD-SCID IL2R γnull mice | B-ALL | [22] |
NK-92 | CD38 | Third | CD28-4-1BB-CD3ζ | RV | None | MM, BL | [135] |
KHYG1, PB-NK | CD38 | Second | CD28-CD3ζ | Electroporation | None | AML | [140] |
NK-92 | CD5 | Second | 4-1BB-CD3ζ, 2B4-CD3ζ | LV | CD5+T-ALL CDX model in NSG mice | T-ALL | [137] |
NK-92MI | CD7 | Third | CD28-4-1BB-CD3ζ | Electroporation | T-ALL PDX model in NSG mice | T-ALL | [96] |
PB-NK | CD33 | Second | 4-1BB-CD3ζ | LV | AML CDX model in NSG mice | AML | [141] |
NK-92 | CD123 | Third | CD28-4-1BB-CD3ζ | RV | AML PDX model in NSG mice | AML | [142] |
PB-NK | CD123 | Second | 2B4-CD3ζ | RV | AML CDX model in NSG mice | AML | [143] |
PB-NK | CD19, SDF-1 | Second | 4-1BB-CD3ζ | LV | None | B-cell malignancies | [144] |
CB-NK | CD19 | Second | CD28-CD3ζ | RV | BL CDX model in NSG mice | CD19+leukemia/lymphoma | [145] |
CB-NK | CD19 | Second | CD28-CD3ζ | RV | BL CDX model in NSG mice | CD19+leukemia/lymphoma | [131] |
PB-NK | NKG2DL | Third | CD28-4-1BB-CD3ζ | Electroporation | AML CDX model in NSG mice | AML | [146] |
NK-92 | CD25 | Third | CD28-4-1BB-CD3ζ | LV | None | CD25+T-ALL | [147] |
NK-92, PB-NK | GPC3 | Second | CD28-CD3ζ | LV | HCC orthotopic CDX model in NOD/SCID mice | HCC | [148] |
NK-92 | GPC3 | Third | DNAM1-2B4-CD3ζ | LV | None | HCC | [138] |
iPSC-NK | GPC3 | Third | CD28-4-1BB-CD3ζ | LV | GPC3+OC CDX model in NSG/NOG mice | OC | [149] |
NK-92 | αFR | Three | CD3ζ, CD28-CD3ζ, CD28-CD137-CD3ζ | LV | OC CDX model in B-NDG mice | OC | [150] |
NK-92 | MSLN | Third | CD28-4-1BB-CD3ζ | LV | OC CDX model in NSG mice | OC | [151] |
NK-92 | MSLN | Second | 2B4-CD3ζ | LV | GC CDX and PDX model in NSG mice | GC | [152] |
NK-92MI | TF | Third | CD28-4-1BB-CD3ζ | LV | TNBC CDX and PDX model in NSG mice | TNBC | [153] |
PB-NK | EGFR | Third | CD28-4-1BB-CD3ζ | LV | TNBC CDX and PDX model in female nude mice | TNBC | [154] |
PB-NK | NKG2DL | First | DAP-12 | Electroporation | CRC CDX model in NSG mice; Three patients with chemotherapy-refractory metastatic CRC | CRC | [155] |
PB-NK | NKG2DL | Second | 4-1BB-CD3ζ | LV | MM CDX model in NSG mice | MM | [156] |
PB-NK | NKG2DL, IL-8 | First | CD3ζ | Electroporation | OC and HNC CDX model in NSG mice | OC, HNC | [157] |
PB-NK | HER2 | Second | CD28-CD3ζ | LV | None | BC | [158] |
NK-92 | PDL1 | First | 4-1BB | LV | Lung cancer CDX model in NOG mice | Lung cancer | [136] |
NK-92MI | B7-H3 | Second | 4-1BB-CD3ζ | LV | NSCLC CDX model in NOD/SCID mice | NSCLC | [125] |
NK-92 | B7-H3 | Second | CD28-CD3ζ | LV | None | Melanoma | [118] |
PB-NK | HLA-G | First | DAP-12 | LV | MDA-MB-231 and U87 orthotopic xenograft model in NSG mice | Solid tumors | [159] |
NK-92MI | PD-L1 | Second | CD28-CD3ζ | LV, Electroporation | BC CDX model in female WT Balb/c, C57BL/6, and NSG mice | BC | [160] |
Cell Source | Modifications | Transduction | Model | Malignancy | Ref. |
---|---|---|---|---|---|
NK-92 | CD16(158V): CD16(allotype-V158)-CD8-4-1BB-CD3ζ | LV | None | Multiple cancers | [122] |
NK-92, iPSC-NK | CD16a/S197P: convert the serine at position 197 to a proline in CD16 | RV, SB transposon | None | - | [171] |
iPSC-NK | hnCD16: high-affinity CD16a 158V variant | SB transposon | B-cell lymphoma/OC CDX model in NSG mice | Multiple cancers | [98] |
NK-92, iPSC-NK | CD64/16a: CD64 ECD-CD16(TM + ICD) | RV, SB transposon | None | - | [172] |
NK-92MI | CD64 | RV | mCRPC CDX model in NSG mice | mCRPC | [173] |
NK-92 | TCR: hCD3(CD3γ/δ/ε/ζ dimers)-TCR (TCRα/β) | RV | CRC CDX model in NSG mice | CRC | [174] |
NK-92, YTS | TCR: hCD3(CD3γ/δ/ε/ζ dimers)-TCR (TCRα/β) | LV | Melanoma CDX model in NOD/SCID mice | Melanoma | [175] |
NK-92 | CD22 ligand | Glycoengineering | B cell lymphoma CDX model in Balb/c nude mice | B cell lymphoma | [176] |
NK-92MI | CD22 ligand and selectins | Glycoengineering | B cell lymphoma CDX model in NSG mice | B cell lymphoma | [126] |
PB-NK | TGFBR2 knockout | CRISPR/Cas9 | GBM PDX model in NSG mice | GBM | [177] |
NK-92 | SMAD3-silencing | LV | Hepatoma and melanoma CDX model in NOD/SCID mice | Hepatoma and melanoma | [178] |
CB-NK | Variant TGF-β receptors: (RBDNR: TGF-βRII-truncated CD19-Puro; NKA: TGF-βRII-DAP12-truncated CD19-Puro; NKCT: TGF-βRII-synNotch-RELA-truncated CD19-Puro) | RV | Neuroblastoma CDX model in NSG mice | Neuroblastoma | [179] |
PB-NK | CBLB knockout | CRISPR/Cas9 | AML CDX model in NSG mice | - | [180] |
NK-92 | DNAM-1 and NKG2D | LV | None | Sarcomas | [181] |
PB-NK | Gain-of-function variant CXCR4R334X | Electroporation | NSG mice | - | [182] |
iPSC-NK | CISH knockout | CRISPR/Cas9 | AML CDX model in NSG mice | AML | [97] |
NK-92, PB-NK | EPOR or c-MPL | LV | NSG mice | - | [183] |
PB-NK | CD38 knockout | CRISPR/Cas9, Electroporation | NSG mice pretreated with DARA | MM | [184] |
PB-NK | CD38 knockout and CD16 (158V) | CRISPR/Cas9, Electroporation | MM CDX model in NSG mice | MM | [185] |
Cell Source | NK Cell Preparation | Interventions | Malignancy | Response | Phase | Patient Number | Patient Age | Trial Identifiers |
---|---|---|---|---|---|---|---|---|
Haploidentical NK | K562-mb21-41BBL | Before treatment with chemotherapy | AML | MRD remission in 9 patients | - | 20 | ≥18 | - [88] |
Haploidentical NK | K562-mb21-41BBL | Before treatment with chemotherapy | Relapsed/Refractory AML | 78.6% overall response; 50.0% CR; CNS responses in 4 patients | I/II | 13 | 2–59 | NCT02809092 [129] |
UCB-NK | K562-mb21-41BBL; Modification: anti-CD19 CAR, IL-15, iC9 | Before treatment with lymphodepleting chemotherapy | CD19+lymphoma | CR in 7 patients; Richter’s transformation remission in 1 patient | I/II | 11 | 47–70 | NCT03056339 [13] |
Haploidentical NK | None | Before treatment with lymphodepleting chemotherapy; After treatment with rhIL-15 intravenously (0.3–1.0 mg/kg) | Refractory AML | Robust NK expansion in 36% of patients at day 14; CR in 32% of patients | I | 26 | ≥18 | NCT01385423 [202] |
Haploidentical NK | None | Before treatment with lymphodepleting chemotherapy and rhIL-2 subcutaneously | Pediatric AML | None | II | 21 | 0–15 | NCT00703820 [204] |
Haploidentical NK | K562-mb15-41BBL | Before treatment with lymphodepleting chemotherapy and rhIL-2 subcutaneously | Pediatric AML | CR in 6 patients | II | 7 | 0–15 | NCT02763475 [14] |
Autologous NK | TKD/IL2-activated | Before treatment with RCT | NSCLC | RCT + NK group (n = 8): 67% 1-year probabilities for PFS | II | 16 | 56–76 | - [4] |
Autologous NK | NK in vitro preparation kit | Before treatment with IRE | PLC | IRE + NK group (n = 18): median PFS (15.1 months), median 1-year OS (23.2 months) | II | 40 | 20–80 | NCT03008343 [89] |
Autologous NK | K562-mb21-41BBL | None | Recurrent pediatric MB and ependymoma | Progressive disease in 9 patients; transient radiographic response in 1 patient | I | 9 | 8–18 | - [206] |
NCT Number | Infused Cells | Diseases | Phases | Enrollment | Status |
---|---|---|---|---|---|
NCT03937895 | Allogeneic NK Cells | Biliary Tract Cancer | I/II | 40 | Completed |
NCT04616209 | Allogeneic NK Cells | Non-small Cell Lung Cancer | I/II | 24 | Recruiting |
NCT04847466 | Irradiated PD-L1 CAR-NK Cells | Recurrent/Metastatic Gastric or Head and Neck Cancer | II | 55 | Recruiting |
NCT05213195 | NKG2D CAR-NK Cells | Refractory Metastatic Colorectal Cancer | I | 38 | Recruiting |
NCT03329664 | Cytokine-induced Killer (CIK) Cells | Colon Cancer Stage IV | I/II | 20 | Recruiting |
NCT04872634 | NK01 (Super Natural Killer Cells 01) | Non-small Cell Lung Cancer | I/II | 24 | Recruiting |
NCT05194709 | Anti-5T4 CAR-NK Cells | Advanced Solid Tumors | I (early) | 40 | Recruiting |
NCT04290546 | cytokine-induced memory-like NK (CIML-NK) cells | Squamous Cell Carcinoma of the Head and Neck | I | 12 | Recruiting |
NCT05020678 | NKX019 | B-cell Malignancies | I | 60 | Recruiting |
NCT04796675 | Anti-CD19 CAR-NK Cells | B Lymphoid Malignancies | I | 27 | Recruiting |
NCT05099549 | SNK01 | Advanced/Metastatic EGFR-Expressing Cancers | I/II | 121 | Recruiting |
NCT04143711 | DF1001 | Solid Tumor, Adult | I/II | 220 | Recruiting |
NCT04319757 | ACE1702 | HER2-expressing Solid Tumors | I | 36 | Recruiting |
NCT04310592 | CYNK-001 | Acute Myeloid Leukemia, Adult | I | 94 | Recruiting |
NCT05069935 | FT538 | Solid Tumor, Adult | I | 189 | Recruiting |
NCT04634435 | CIML NK Cells | Multiple Myeloma | I/II | 25 | Recruiting |
NCT05304754 | Alloreactive NK cells | High-risk Leukemias | I/II | 18 | Recruiting |
NCT05008536 | Anti-BCMA CAR-NK Cells | Multiple Myeloma, Refractory | I (early) | 27 | Recruiting |
NCT04623944 | NKX101-CAR NK Cells | Acute Myeloid Leukemia, Adult | I | 90 | Recruiting |
NCT04558931 | Autologous NK Cells | Multiple Myeloma | II | 60 | Recruiting |
NCT04901416 | Allogeneic NK Cells | Acute Myeloid Leukemia, Adult | I | 18 | Recruiting |
NCT04309084 | CYNK-001 | Multiple Myeloma | I | 29 | Active, not recruiting |
NCT04630769 | FT516 | Ovarian Cancer | I | 3 | Completed |
NCT05379647 | NK Cells | B-Cell Malignancies | I | 24 | Recruiting |
NCT04259450 | AFM24 | Advanced Solid Tumor | I/II | 155 | Recruiting |
NCT03821519 | Cytokine-induced Killer (CIK) Cells | Relapsed Hematologic Malignancy | I/II | 20 | Recruiting |
NCT04347616 | UCB-NK Cells | Acute Myeloid Leukemia, Adult | I/II | 23 | Recruiting |
NCT05247957 | NKG2D CAR-NK Cells | Safety and Efficacy | I | 9 | Recruiting |
NCT05008575 | Anti-CD33 CAR-NK Cells | Acute Myeloid Leukemia | I | 27 | Recruiting |
NCT05215015 | Anti-CD33/CLL1 CAR-NK Cells | Acute Myeloid Leukemia | I (early) | 18 | Recruiting |
NCT04220684 | Haploidentical NK Cells | Acute Myeloid Leukemia | I | 30 | Recruiting |
NCT03539406 | UCB-NK Cells | Recurrent Ovarian Carcinoma | I | 12 | Recruiting |
NCT05333705 | Allogeneic NK Cells | Acute Myeloid Leukemia | I | 15 | Recruiting |
NCT04836390 | Haploidentical NK Cells | Acute Myeloid Leukemia | II | 30 | Enrolling by invitation |
NCT04898543 | M-CENK | Metastatic Solid Tumor | I | 30 | Recruiting |
NCT04551885 | FT516 | Solid Tumor, Adult | I | 12 | Active, not recruiting |
NCT05182073 | FT576 | Multiple Myeloma | I | 168 | Recruiting |
NCT03348033 | Autologous NK Cells | Chronic Myeloid Leukemia | I/II | 5 | Enrolling by invitation |
NCT04614636 | FT538 | Advanced Hematologic Malignancies | I | 105 | Recruiting |
NCT04162158 | Allogeneic NK Cells | Hepatocellular Carcinoma | I/II | 200 | Recruiting |
NCT05108012 | NK Cells | Glioblastoma Multiform | I | 5 | Recruiting |
NCT02573896 | NK Cells | Neuroblastoma | I | 13 | Active, not recruiting |
NCT04802070 | Autologous CIK Cells | Sarcoma | I | 36 | Recruiting |
NCT04887012 | Anti-CD19 CAR-NK Cells | B-cell Non-Hodgkin Lymphoma | I | 25 | Recruiting |
NCT04489420 | CYNK-001 | Glioblastoma | I | 3 | Terminated |
NCT04074746 | AFM13-NK | Recurrent/Refractory CD30 Positive Lymphomas | I/II | 30 | Recruiting |
NCT05137275 | Anti-5T4 CAR-raNK Cells | Locally Advanced or Metastatic Solid Tumors | I (early) | 56 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Zhang, T.; Gao, F.; Zhou, Z.; Shu, G.; Zou, Y.; Yin, G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers 2022, 14, 5657. https://doi.org/10.3390/cancers14225657
Xiao J, Zhang T, Gao F, Zhou Z, Shu G, Zou Y, Yin G. Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers. 2022; 14(22):5657. https://doi.org/10.3390/cancers14225657
Chicago/Turabian StyleXiao, Jiani, Tianxiang Zhang, Fei Gao, Zhengwei Zhou, Guang Shu, Yizhou Zou, and Gang Yin. 2022. "Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox" Cancers 14, no. 22: 5657. https://doi.org/10.3390/cancers14225657
APA StyleXiao, J., Zhang, T., Gao, F., Zhou, Z., Shu, G., Zou, Y., & Yin, G. (2022). Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox. Cancers, 14(22), 5657. https://doi.org/10.3390/cancers14225657