Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Differential Gene Expression in BCC at Gene Level:
3.2. Differential Gene Expression in BCC at Pathway Level
3.3. Level of As Exposure and Differential Expression of Genes
3.4. Level of As Exposure and Differential Expression of Selected Cancer Related Gene-Sets
3.5. Level of As Exposure and Differential Expression of Selected DNA Damage Related Gene-Sets
3.6. Level of As Exposure and Differential Expression of Replication Stress Gene-Sets
3.7. Gene Expression of Tumor Tissue in Low and High As Exposure
3.8. Level of As Exposure and Potential Therapeutic Implication
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakayama, M.; Tabuchi, K.; Nakamura, Y.; Hara, A. Basal cell carcinoma of the head and neck. J. Ski. Cancer 2011, 2011, 496910. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Nishigori, C.; Yagi, T.; Imamura, S.; Takebe, H. Characterization of p53 gene mutations in basal-cell carcinomas: Comparison between sun-exposed and less-exposed skin areas. Int. J. Cancer 1996, 65, 778–780. [Google Scholar] [CrossRef]
- Bertozzi, N.; Simonacci, F.; Greco, M.P.; Grignaffini, E.; Raposio, E. Single center evidence for the treatment of basal cell carcinoma of the head and neck. Acta Biomed. 2019, 90, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Gloster, H.M., Jr.; Neal, K. Skin cancer in skin of color. J. Am. Acad. Dermatol. 2006, 55, 741–760. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.C.; Jin, A.; Koh, W.-P. Trends of cutaneous basal cell carcinoma, squamous cell carcinoma, and melanoma among the Chinese, Malays, and Indians in Singapore from 1968–2016. JAAD Int. 2021, 4, 39–45. [Google Scholar] [CrossRef]
- Halilovic, E.; Hasic, M.; Kurtovic, N. A Clinical Study of Basal Cell Carcinoma. Med. Arch. 2019, 73, 394–398. [Google Scholar] [CrossRef]
- Boonchai, W.; Walsh, M.; Cummings, M.; Chenevix-Trench, G. Expression of p53 in Arsenic-Related and Sporadic Basal Cell Carcinoma. Arch. Dermatol. 2000, 136, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef]
- Verkouteren, J.A.C.; Ramdas, K.H.R.; Wakkee, M.; Nijsten, T. Epidemiology of basal cell carcinoma: Scholarly review. Br. J. Dermatol. 2017, 177, 359–372. [Google Scholar] [CrossRef]
- Moore, M.G.; Bennett, R.G. Basal Cell Carcinoma in Asians: A Retrospective Analysis of Ten Patients. J. Ski. Cancer 2012, 2012, 741397. [Google Scholar] [CrossRef]
- Surdu, S.; Fitzgerald, E.F.; Bloom, M.S.; Boscoe, F.P.; Carpenter, D.O.; Haase, R.F.; Gurzau, E.; Rudnai, P.; Koppova, K.; Févotte, J.; et al. Occupational exposure to arsenic and risk of nonmelanoma skin cancer in a multinational European study. Int. J. Cancer 2013, 133, 2182–2191. [Google Scholar] [CrossRef] [PubMed]
- Harms, P.W.; Fullen, D.R.; Patel, R.M.; Chang, D.; Shalin, S.C.; Ma, L.; Wood, B.; Beer, T.W.; Siddiqui, J.; Carskadon, S.; et al. Cutaneous basal cell carcinosarcomas: Evidence of clonality and recurrent chromosomal losses. Hum. Pathol. 2015, 46, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Merterns, F.; Persson, B.; Gullestad, H.P.; Jin, C.; Warloe, T.; Salemark, L.; Jonsson, N.; Risberg, B.; Mandahl, N.; et al. The reciprocal translocation t(9;16)(q22;p13) is a primary chromosome abnormality in basal cell carcinomas. Cancer Res. 1997, 57, 404–406. [Google Scholar] [PubMed]
- Ouhtit, A.; Nakazawa, H.; Yamasaki, H.; Armstrong, B.K.; Kricker, A.; Tan, E.; English, D.R. UV-Radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J. Natl. Cancer Inst. 1998, 90, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Nawrocka, P.M.; Galka-Marciniak, P.; Urbanek-Trzeciak, M.O.; M-Thirusenthilarasan, I.; Szostak, N.; Philips, A.; Susok, L.; Sand, M.; Kozlowski, P. Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations—Focus on Gene-Associated Noncoding Variants. Front. Oncol. 2021, 11, 752579. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cao, J.; Wu, W.; Zhu, Q.; Tang, Y.; Zhu, C.; Dai, J.; Li, Z.; Wang, J.; Xue, L.; et al. Genome-wide copy number variation analysis identified ANO1 as a novel oncogene and prognostic biomarker in esophageal squamous cell cancer. Carcinogenesis 2019, 40, 1198–1208. [Google Scholar] [CrossRef]
- Ahsan, H.; Chen, Y.; Parvez, F.; Zablotska, L.; Argos, M.; Hussain, I.; Momotaj, H.; Levy, D.; Cheng, Z.; Slavkovich, V.; et al. Arsenic Exposure from Drinking Water and Risk of Premalignant Skin Lesions in Bangladesh: Baseline Results from the Health Effects of Arsenic Longitudinal Study. Am. J. Epidemiol. 2006, 163, 1138–1148. [Google Scholar] [CrossRef]
- Kibriya, M.G.; Jasmine, F.; Parvez, F.; Argos, M.; Roy, S.; Paul-Brutus, R.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Shinkle, J.; et al. Association between genome-wide copy number variation and arsenic-induced skin lesions: A prospective study. Environ. Health 2017, 16, 75. [Google Scholar] [CrossRef]
- Argos, M.; Rahman, M.; Parvez, F.; Dignam, J.; Islam, T.; Quasem, I.; Hore, S.K.; Haider, A.T.; Hossain, M.Z.; Patwary, T.I.; et al. Baseline comorbidities in a skin cancer prevention trial in Bangladesh. Eur. J. Clin. Investig. 2013, 43, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Nixon, D.E.; Mussmann, G.V.; Eckdahl, S.J.; Moyer, T.P. Total arsenic in urine: Palladium-persulfate vs nickel as a matrix modifier for graphite furnace atomic absorption spectrophotometry. Clin Chem. 1991, 37, 1575–1579. [Google Scholar] [CrossRef]
- Heinegård, D.; Tiderström, G. Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta 1973, 43, 305–310. [Google Scholar] [CrossRef]
- Downey, T. Analysis of a Multifactor Microarray Study Using Partek Genomics Solution. Methods Enzymol. 2006, 411, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Ayotte, J.D.; Medalie, L.; Qi, S.L.; Backer, L.C.; Nolan, B.T. Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environ. Sci. Technol. 2017, 51, 12443–12454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argos, M.; Kalra, T.; Rathouz, P.J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R.; et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 2010, 376, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, R.; Mazumder, D.N.G.; Samanta, S.; Ghosh, N.; Kalman, D.; Smith, M.M.; Mitra, S.; Santra, A.; Lahiri, S.; Das, S.; et al. Arsenic in drinking water and skin lesions: Dose-response data from West Bengal, India. Epidemiology 2003, 14, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.M.; Ferreccio, C.; Romo, J.A.; Yuan, Y.; Cortes, S.; Marshall, G.; Moore, L.E.; Balmes, J.R.; Liaw, J.; Golden, T.; et al. Drinking water arsenic in Northern Chile: High cancer risks 40 years after exposure cessation. Cancer Epidemiol. Biomark. Prev. 2013, 22, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Yu, H.; Hu, H.; Monson, R.R. Arsenic in drinking water and skin cancers: Cell-type specificity (Taiwan, R.O.C.). Cancer Causes Control 2001, 12, 909–916. [Google Scholar] [CrossRef]
- Leonardi, G.; Vahter, M.; Clemens, F.; Goessler, W.; Gurzau, E.; Hemminki, K.; Hough, R.; Koppova, K.; Kumar, R.; Rudnai, P.; et al. Inorganic Arsenic and Basal Cell Carcinoma in Areas of Hungary, Romania, and Slovakia: A Case–Control Study. Environ. Health Perspect. 2012, 120, 721–726. [Google Scholar] [CrossRef]
- Maloney, M.E. Arsenic in Dermatology. Dermatol. Surg. 1996, 22, 301–304. [Google Scholar] [CrossRef]
- Lupu, M.; Caruntu, C.; Ghita, M.A.; Voiculescu, V.; Voiculescu, S.; Rosca, A.E.; Caruntu, A.; Moraru, L.; Popa, I.M.; Calenic, B.; et al. Gene Expression and Proteome Analysis as Sources of Biomarkers in Basal Cell Carcinoma. Dis. Markers 2016, 2016, 9831237. [Google Scholar] [CrossRef]
- Takada, T. Activation of the Hedgehog and Wnt/β-Catenin Signaling Pathways in Basal Cell Carcinoma. Case Rep. Dermatol. 2021, 13, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Grachtchouk, M.; Mo, R.; Yu, S.; Zhang, X.; Sasaki, H.; Hui, C.-C.; Dlugosz, A.A. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat. Genet. 2000, 24, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.; Undèn, A.B.; Krause, D.; Malmqwist, U.; Raza, K.; Zaphiropoulos, P.G.; Toftgård, R. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. USA 2000, 97, 3438–3443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gailani, M.R.; Ståhle-Bäckdahl, M.; Leffell, D.J.; Glyn, M.; Zaphiropoulos, P.; Undén, A.B.; Dean, M.; Brash, D.E.; Bale, A.E.; Toftgård, R. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet. 1996, 14, 78–81. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.S.; Lee, C.; Shin, M.S.; Kim, J.W.; Jang, B.G. Expression profile of sonic hedgehog signaling-related molecules in basal cell carcinoma. PLoS ONE 2019, 14, e0225511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houcine, Y.; Chelly, I.; Zehani, A.; Kacem, L.B.; Azzouz, H.; Rekik, W.; Haouet, S.; Kchir, N. Neuroendocrine differentiation in basal cell carcinoma. J. Immunoass. Immunochem. 2016, 38, 487–493. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yu, L.; Sakakura, K.; Visus, C.; Schwab, J.; Ferrone, C.; Favoino, E.; Koya, Y.; Campoli, M.; et al. CSPG4 in Cancer: Multiple Roles. Curr. Mol. Med. 2010, 10, 419–429. [Google Scholar] [CrossRef]
- Greco, M.; Arcidiacono, B.; Chiefari, E.; Vitagliano, T.; Ciriaco, A.G.; Brunetti, F.S.; Cuda, G.; Brunetti, A. HMGA1 and MMP-11 Are Overexpressed in Human Non-melanoma Skin Cancer. Anticancer Res. 2018, 38, 771–778. [Google Scholar] [CrossRef]
- Pompei, V.; Salvolini, E.; Rubini, C.; Lucarini, G.; Molinelli, E.; Brisigotti, V.; Pozzi, V.; Sartini, D.; Campanati, A.; Offidani, A.; et al. Nicotinamide N-methyltransferase in nonmelanoma skin cancers. Eur. J. Clin. Investig. 2019, 49, e13175. [Google Scholar] [CrossRef]
- Neinaa, Y.M.E.; El-Ashmawy, A.A.; Alshenawy, H.A.; Msc, E.E.A.A. Significance of SOX18 expression in nonmelanoma skin cancers for prediction of high-risk patients: A preliminary study. Int. J. Dermatol. 2020, 59, 1117–1124. [Google Scholar] [CrossRef]
- Caprio, C.; Varricchio, S.; Bilio, M.; Feo, F.; Ferrentino, R.; Russo, D.; Staibano, S.; Alfano, D.; Missero, C.; Ilardi, G.; et al. TBX1 and Basal Cell Carcinoma: Expression and Interactions with Gli2 and Dvl2 Signaling. Int. J. Mol. Sci. 2020, 21, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifas, J.M.; Epstein, E.H.; Pennypacker, S.; Chuang, P.-T.; McMahon, A.P.; Williams, M.; Rosenthal, A.; de Sauvage, F.J. Activation of Expression of Hedgehog Target Genes in Basal Cell Carcinomas. J. Investig. Dermatol. 2001, 116, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.C.; Hsiao, Y.P.; Lu, C.T.; Huang, C.H.; Chao, W.R.; Lin, Y.T.; Su, H.-A.; Chang, S.-L.; Chung, J.-G. Xeroderma pigmentosum complementation group C pro-tein (XPC) expression in basal cell carcinoma. In Vivo 2015, 29, 35–38. [Google Scholar] [PubMed]
- Young, L.; Listgarten, J.; Trotter, M.; Andrew, S.; Tron, V. Evidence that dysregulated DNA mismatch repair characterizes human nonmelanoma skin cancer. Br. J. Dermatol. 2007, 158, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Cordero, J.; Wu, X.; Kossatz, S.; Harris, U.; Franca, P.D.D.; Kurtansky, N.R.; Everett, N.; Dusza, S.; Monnier, J.; et al. Combined PARP1-targeted nuclear contrast and reflectance contrast enhances confocal microscopic detection of basal cell carcinoma. J. Nucl. Med. 2021, 63, 912–918. [Google Scholar] [CrossRef]
- Avci, C.B.; Kaya, I.; Ozturk, A.; Ay, N.P.Ö.; Sezgin, B.; Kurt, C.C.; Akyildiz, N.S.; Bozan, A.; Yaman, B.; Akalin, T.; et al. The role of EGFR overexpression on the recurrence of basal cell carcinomas with positive surgical margins. Gene 2018, 687, 35–38. [Google Scholar] [CrossRef]
- Florescu, D.E.; Stepan, A.E.; Mărgăritescu, C.; Ciurea, R.N.; Stepan, M.D.; Simionescu, C.E. The involvement of EGFR, HER2 and HER3 in the basal cell carcinomas aggressiveness. Rom. J. Morphol. Embryol. 2018, 59, 479–484. [Google Scholar]
- Paul, S.; Banerjee, N.; Chatterjee, A.; Sau, T.J.; Das, J.K.; Mishra, P.K.; Chakrabarti, P.; Bandyopadhyay, A.; Giri, A.K. Arsenic-induced promoter hypomethylation and over-expression of ERCC2 reduces DNA repair capacity in humans by non-disjunction of the ERCC2–Cdk7 complex. Metallomics 2014, 6, 864–873. [Google Scholar] [CrossRef]
- Wang, A.; Wolf, D.C.; Sen, B.; Knapp, G.W.; Holladay, S.D.; Huckle, W.R.; Caceci, T.; Robertson, J.L. Dimethylarsinic Acid in Drinking Water Changed the Morphology of Urinary Bladder but Not the Expression of DNA Repair Genes of Bladder Transitional Epithelium in F344 Rats. Toxicol. Pathol. 2009, 37, 425–437. [Google Scholar] [CrossRef]
- Ding, X.; Zhou, X.; Cooper, K.L.; Huestis, J.; Hudson, L.G.; Liu, K.J. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue. Toxicol. Appl. Pharmacol. 2017, 331, 108–115. [Google Scholar] [CrossRef]
- Holcomb, N.; Goswami, M.; Han, S.G.; Scott, T.; D’Orazio, J.; Orren, D.K.; Gairola, C.G.; Mellon, I. Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC. DNA Repair 2017, 52, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Nollen, M.; Ebert, F.; Moser, J.; Mullenders, L.H.F.; Hartwig, A.; Schwerdtle, T. Impact of arsenic on nucleotide excision repair: XPC function, protein level, and gene expression. Mol. Nutr. Food Res. 2009, 53, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Choi, J.-A.; Kim, T.-H.; Yoo, Y.-D.; Kim, J.-I.; Lee, Y.J.; Yoo, S.-Y.; Cho, C.-K.; Lee, Y.-S.; Lee, S.-J. Involvement of p38 mitogen-activated protein kinase in the cell growth inhibition by sodium arsenite. J. Cell. Physiol. 2001, 190, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; States, J.C.; Ceresa, B.P. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol. Vitr. 2020, 67, 104925. [Google Scholar] [CrossRef]
- Andrew, A.S.; Karagas, M.R.; Hamilton, J.W. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int. J. Cancer 2003, 104, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Suetomi, K.; Takahashi, S.; Kubota, Y.; Fujimori, A. Identification of Genes Responding to Low-Dose Arsenite Using HiCEP. Toxicol. Mech. Methods 2008, 18, 605–611. [Google Scholar] [CrossRef]
- Chen, S.-J.; Nakahara, T.; Takahara, M.; Kido, M.; Dugu, L.; Uchi, H.; Takeuchi, S.; Tu, Y.-T.; Moroi, Y.; Furue, M. Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br. J. Dermatol. 2009, 160, 442–445. [Google Scholar] [CrossRef]
- Kuźbicki, L.; Lange, D.; Stanek-Widera, A.; Chwirot, B.W. Cyclin-dependent Kinase 2 (CDK-2) Expression in Nonmelanocytic Human Cutaneous Lesions. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 357–364. [Google Scholar] [CrossRef]
- Xie, K.; Doles, J.; Hemann, M.T.; Walker, G.C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl. Acad. Sci. USA 2010, 107, 20792–20797. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Chen, Y.-W.; Liu, X.; Chu, P.; Loria, S.; Wang, Y.; Yen, Y.; Chou, K.-M. Expression of DNA Translesion Synthesis Polymerase η in Head and Neck Squamous Cell Cancer Predicts Resistance to Gemcitabine and Cisplatin-Based Chemotherapy. PLoS ONE 2013, 8, e83978. [Google Scholar] [CrossRef]
- Sokol, A.; Cruet-Hennequart, S.; Pasero, P.; Carty, M.P. DNA polymerase η modulates replication fork progression and DNA damage responses in platinum-treated human cells. Sci. Rep. 2013, 3, 3277. [Google Scholar] [CrossRef] [PubMed]
Stratification | Interaction p | Low UACR | High UACR | ||||
---|---|---|---|---|---|---|---|
Fold Change | (95% CI) | p | Fold Change | (95% CI) | p | ||
DNA Repair | 1.84 × 10−6 | 2.79 | (1.98–3.93) | 7.08 × 10−9 | 1.01 | (−1.26–1.27) | 0.96 |
Growth Factor Receptors | 6.16 × 10−3 | 3.44 | (1.51–7.84) | 3.64 × 10−3 | −1.19 | (1.49–−2.09) | 0.55 |
Pro-Apoptosis | 2.79 × 10−2 | 8.37 | (2.54–27.60) | 5.74 × 10−4 | 1.65 | (−1.38–3.75) | 0.23 |
Caspases Initiator | 3.22 × 10−2 | 4.44 | (1.68–11.75) | 2.98 × 10−3 | 1.22 | (−1.60–2.39) | 0.55 |
Anti-TSG | 4.43 × 10−2 | 10.21 | (3.75–27.77) | 9.11 × 10−6 | 2.94 | (1.48–5.86) | 2.29 × 10−3 |
Anti-Apoptosis | 0.07 | 3.84 | (1.33–11.10) | 1.35 × 10−2 | 1.19 | (−1.75–2.46) | 0.64 |
Tumor Suppressor Gene | 0.13 | 3.42 | (1.65–7.13) | 1.13 × 10−3 | 1.72 | (1.04–2.85) | 3.51 × 10−2 |
Caspases Executioner | 0.16 | 4.10 | (1.21–13.88) | 2.35 × 10−2 | 1.42 | (−1.63–3.29) | 0.41 |
Stratification | Interaction p | Low UACR | High UACR | ||||
---|---|---|---|---|---|---|---|
Fold Change | (95% CI) | p | Fold Change | (95% CI) | p | ||
Translesion Synthesis (TLS) | 2.68 × 10−5 | 3.67 | (2.34–5.74) | 2.00 × 10−8 | 1.14 | (−1.19–1.55) | 0.41 |
Fanconi Anemia (FA) | 4.22 × 10−5 | 5.82 | (3.09–10.97) | 7.22 × 10−8 | 1.16 | (−1.33–1.80) | 0.50 |
Nucleotide Excision Repair (NER) | 1.61 × 10−4 | 2.35 | (1.71–3.24) | 1.81 × 10−7 | 1.12 | (−1.12–1.39) | 0.33 |
Base Excision Repair (BER) | 5.67 × 10−4 | 3.19 | (1.91–5.32) | 1.07 × 10−5 | 1.07 | (−1.33–1.52) | 0.72 |
Direct Reversal Repair (DRR) | 1.01 × 10−2 | 11.41 | (2.65–49.16) | 1.28 × 10−3 | 1.10 | (−2.47–3.01) | 0.85 |
Microhomology mediated end joining (MMEJ) | 1.82 × 10−2 | 3.48 | (1.43–8.46) | 6.16 × 10−3 | −1.05 | (1.75– −1.94) | 0.87 |
Homologous Recombination (HR) | 3.00 × 10−2 | 2.57 | (1.64–4.03) | 3.97 × 10−5 | 1.41 | (1.04–1.92) | 2.92 × 10−2 |
Non-homologous end joining (NHEJ) | 3.39 × 10−2 | 3.34 | (1.81–6.14) | 1.23 × 10−4 | 1.50 | (−1.01–2.28) | 0.06 |
Mismatch Repair (MMR) | 3.97 × 10−2 | 2.67 | (1.47–4.85) | 1.34 × 10−3 | 1.25 | (−1.21–1.88) | 0.29 |
Checkpoint Signaling | 0.051 | 2.93 | (1.58–5.43) | 7.12 × 10−4 | 1.39 | (−1.10–2.12) | 0.13 |
Stratification | Interaction p | Low UACR | High UACR | ||||
---|---|---|---|---|---|---|---|
Fold Change | (95% CI) | p | Fold Change | (95% CI) | p | ||
RNA Processing | 9.27 × 10−20 | 2.56 | (2.19–2.98) | 1.69 × 10−31 | 1.06 | (−1.05–1.18) | 0.27 |
Protein Translation | 1.26 × 10−14 | 3.05 | (2.46–3.78) | 1.54 × 10−23 | 1.09 | (−1.07–1.26) | 0.28 |
Chromatin TF Transcription | 1.03 × 10−13 | 3.51 | (2.78–4.41) | 7.29 × 10−26 | 1.21 | (1.03–1.41) | 2.03 × 10−2 |
DNA Replication Repair | 2.28 × 10−11 | 3.55 | (2.78–4.53) | 9.75 × 10−24 | 1.29 | (1.09–1.52) | 3.22 × 10−3 |
Cell Survival | 2.79 × 10−8 | 2.81 | (2.16–3.66) | 2.90 × 10−14 | 1.13 | (−1.06–1.36) | 0.19 |
Immune Regulation | 1.65 × 10−5 | 3.37 | (2.36–4.80) | 2.96 × 10−11 | 1.31 | (1.02–1.67) | 3.18 × 10−2 |
Cell Cycle | 4.47 × 10−5 | 3.14 | (2.35–4.20) | 2.49 × 10−14 | 1.50 | (1.23–1.84) | 6.72 × 10−5 |
GF Signaling | 1.26 × 10−4 | 2.76 | (1.84–4.15) | 1.13 × 10−6 | 1.05 | (−1.26–1.39) | 0.72 |
Cell Movement | 3.54 × 10−4 | 2.29 | (1.74–3.00) | 3.35 × 10−9 | 1.25 | (1.04–1.51) | 1.87 × 10−2 |
Stress Responses | 2.15 × 10−3 | 4.44 | (2.60–7.59) | 7.44 × 10−8 | 1.61 | (1.11–2.32) | 1.16 × 10−2 |
Metabolism | 1.95 × 10−2 | 3.70 | (1.79–7.64) | 4.52 × 10−4 | 1.30 | (−1.27–2.14) | 0.30 |
Development Regulation | 2.04 × 10−2 | 2.26 | (1.31–3.89) | 3.37 × 10−3 | 1.04 | (−1.40–1.51) | 0.85 |
Angiogenesis | 0.06 | 4.87 | (1.53–15.48) | 7.72 × 10−3 | 1.30 | (−1.71–2.87) | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kibriya, M.G.; Jasmine, F.; Munoz, A.; Islam, T.; Ahmed, A.; Tong, L.; Rakibuz-Zaman, M.; Shahriar, M.; Kamal, M.; Shea, C.R.; et al. Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma. Cancers 2022, 14, 5598. https://doi.org/10.3390/cancers14225598
Kibriya MG, Jasmine F, Munoz A, Islam T, Ahmed A, Tong L, Rakibuz-Zaman M, Shahriar M, Kamal M, Shea CR, et al. Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma. Cancers. 2022; 14(22):5598. https://doi.org/10.3390/cancers14225598
Chicago/Turabian StyleKibriya, Muhammad G., Farzana Jasmine, Aaron Munoz, Tariqul Islam, Alauddin Ahmed, Lin Tong, Muhammad Rakibuz-Zaman, Mohammad Shahriar, Mohammed Kamal, Christopher R. Shea, and et al. 2022. "Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma" Cancers 14, no. 22: 5598. https://doi.org/10.3390/cancers14225598
APA StyleKibriya, M. G., Jasmine, F., Munoz, A., Islam, T., Ahmed, A., Tong, L., Rakibuz-Zaman, M., Shahriar, M., Kamal, M., Shea, C. R., Graziano, J. H., Argos, M., & Ahsan, H. (2022). Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma. Cancers, 14(22), 5598. https://doi.org/10.3390/cancers14225598