Modified Albumin-Bilirubin Grade and Alpha-Fetoprotein Score (mALF Score) for Predicting the Prognosis of Hepatocellular Carcinoma after Hepatectomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Underlying Liver Disease
2.3. Liver Function and Nutritional Status Assessments
2.4. Clinicopathologic Variables, Treatment Algorithm for HCC, and Surgical Procedures
2.5. Modified ALBI Grade and AFP Score (mALF Score)
2.6. Evaluation of Complications Following Surgical Resection
2.7. Statistical Analysis
3. Results
3.1. Comparison of Perioperative Characteristics in Three Groups Classified by the mALF Scoring System
3.2. Long-Term Survival
3.3. Univariate and Multivariate Analysis of Prognostic Factors for Long-Term Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Estimating the world cancer burden: Globocan 2000. Int. J. Cancer 2001, 94, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005, (Abstract in English). [Google Scholar] [PubMed]
- Broggi, M.S.; Patil, D.; Baum, Y.; Nieh, P.T.; Alemozaffar, M.; Pattaras, J.G.; Ogan, K.; Master, V.A. Onodera’s Prognostic Nutritional Index as an independent prognostic factor in clear cell renal cell carcinoma. Urology 2016, 96, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Motomura, T.; Shirabe, K.; Mano, Y.; Muto, J.; Toshima, T.; Umemoto, Y.; Fukuhara, T.; Uchiyama, H.; Ikegami, T.; Yoshizumi, T.; et al. Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J. Hepatol. 2013, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Onoda, H.; Imai, N.; Iwaku, A.; Oishi, M.; Fushiya, N.; Koike, K.; Nishino, H.; Tajiri, H. Comparison of the prognostic value of inflammation-based prognostic scores in patients with hepatocellular carcinoma. Br. J. Cancer 2012, 107, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Forrest, L.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Dunlop, D.J. Evaluation of cumulative prognostic scores based on the systemic inflammatory response in patients with inoperable non-small-cell lung cancer. Br. J. Cancer 2003, 89, 1028–1030. [Google Scholar] [CrossRef] [Green Version]
- Elahi, M.M.; McMillan, D.C.; McArdle, C.S.; Angerson, W.J.; Sattar, N. Score based on hypoalbuminemia and elevated C-reactive protein predicts survival in patients with advanced gastrointestinal cancer. Nutr. Cancer 2004, 48, 171–173. [Google Scholar] [CrossRef]
- Crumley, A.B.; McMillan, D.C.; McKernan, M.; McDonald, A.C.; Stuart, R.C. Evaluation of an inflammation-based prognostic score in patients with inoperable gastro-oesophageal cancer. Br. J. Cancer 2006, 94, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, Y.; Fujikawa, H.; Komori, K.; Watanabe, H.; Kano, K.; Yamada, T.; Shiozawa, M.; Morinaga, S.; Katsumata, K.; Tsuchida, A.; et al. Preoperative utility of the Glasgow Prognostic Score on outcomes of patients with locally advanced gastric cancer. J. Gastrointest. Cancer 2022, 53, 265–271. [Google Scholar] [CrossRef]
- Kaibori, M.; Hiraoka, A.; Matsui, K.; Matsushima, H.; Kosaka, H.; Yamamoto, H.; Yamaguchi, T.; Yoshida, K.; Sekimoto, M. Predicting complications following surgical resection of hepatocellular carcinoma using newly developed Neo-Glasgow Prognostic Score with ALBI grade: Comparison of open and laparoscopic surgery cases. Cancers 2022, 14, 1402. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kato, M.; Marui, K.; Murakami, T.; Onishi, K.; Adachi, T.; Matsuoka, J.; Ueki, H.; Yoshino, T.; Tsuruta, M.; et al. Easy clinical predictor for low BCAA to tyrosine ratio in chronic liver disease patients with hepatocellular carcinoma: Usefulness of ALBI score as nutritional prognostic marker. Cancer Med. 2021, 10, 3584–3592. [Google Scholar] [CrossRef]
- Kaibori, M.; Matsui, Y.; Yanagida, H.; Yokoigawa, N.; Kwon, A.H.; Kamiyama, Y. Positive status of alpha-fetoprotein and des-gamma-carboxy prothrombin: Important prognostic factor for recurrent hepatocellular carcinoma. World J. Surg. 2004, 28, 702–707. [Google Scholar] [CrossRef]
- Toyoda, H.; Kumada, T.; Tada, T.; Niinomi, T.; Ito, T.; Kaneoka, Y.; Maeda, A. Prognostic significance of a combination of pre- and post-treatment tumor markers for hepatocellular carcinoma curatively treated with hepatectomy. J. Hepatol. 2012, 57, 1251–1257. [Google Scholar] [CrossRef]
- Kamiyama, T.; Yokoo, H.; Kakisaka, T.; Orimo, T.; Wakayama, K.; Kamachi, H.; Tsuruga, Y.; Yamashita, K.; Shimamura, T.; Todo, S.; et al. Multiplication of alpha-fetoprotein and protein induced by vitamin K absence-II is a powerful predictor of prognosis and recurrence in hepatocellular carcinoma patients after a hepatectomy. Hepatol. Res. 2015, 45, E21–E31. [Google Scholar] [CrossRef]
- EASL clinical practical guidelines: Management of alcoholic liver disease. J. Hepatol. 2012, 57, 399–420. [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Michitaka, K.; Toyoda, H.; Tada, T.; Ueki, H.; Kaneto, M.; Aibiki, T.; Okudaira, T.; Kawakami, T.; et al. Usefulness of albumin-bilirubin grade for evaluation of prognosis of 2584 Japanese patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1031–1036. [Google Scholar] [CrossRef]
- Hiraoka, A.; Michitaka, K.; Kumada, T.; Izumi, N.; Kadoya, M.; Kokudo, N.; Kubo, S.; Matsuyama, Y.; Nakashima, O.; Sakamoto, M.; et al. Validation and potential of albumin-bilirubin grade and prognostication in a nationwide survey of 46,681 hepatocellular carcinoma patients in Japan: The need for a more detailed evaluation of hepatic function. Liver Cancer 2017, 6, 325–336. [Google Scholar] [CrossRef]
- Kokudo, N.; Takemura, N.; Hasegawa, K.; Takayama, T.; Kubo, S.; Shimada, M.; Nagano, H.; Hatano, E.; Izumi, I.; Kaneko, S.; et al. Clinical practice guidelines for hepatocellular carcinoma: The Japan Society of Hepatology 2017 (4th JSH-HCC guidelines) 2019 update. Hepatol. Res. 2019, 49, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Strasberg, S.M.; Belghiti, J.; Clavien, P.A.; Gadzijev, E.; Garden, J.O.; Lau, W.Y.; Makuuchi, M.; Strong, R.W. The Brisbane 2000 Terminology of Liver Anatomy and Resections. HPB. 2000, 2, 333–339. [Google Scholar] [CrossRef]
- Couinaud, C. Le Foie: Études Anatomiques et Chirurgicales; Masson: Paris, France, 1957. [Google Scholar]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Pravisani, R.; Mocchegiani, F.; Isola, M.; Lorenzin, D.; Adani, G.L.; Cherchi, V.; Righi, E.; Terrosu, G.; Vivarelli, M.; Risaliti, A.; et al. Controlling nutritional status score does not predict patients’ overall survival or hepatocellular carcinoma recurrence after deceased donor liver transplantation. Clin. Transplant. 2020, 34, e13786. [Google Scholar] [CrossRef] [PubMed]
- Pravisani, R.; Mocchegiani, F.; Isola, M.; Lorenzin, D.; Adani, G.L.; Cherchi, V.; De Martino, M.; Risaliti, A.; Lai, Q.; Vivarelli, M.; et al. Postoperative trends and prognostic values of inflammatory and nutritional biomarkers after liver transplantation for hepatocellular carcinoma. Cancers 2021, 13, 513. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Kudo, M.; Hirooka, M.; Tsuji, K.; Itobayashi, E.; Kariyama, K.; Ishikawa, T.; Tajiri, K.; Ochi, H.; et al. Albumin-bilirubin (ALBI) grade as part of the Evidence-Based Clinical Practice Guideline for HCC of the Japan Society of Hepatology: A comparison with the Liver Damage and Child-Pugh Classifications. Liver Cancer 2017, 6, 204–215. [Google Scholar] [CrossRef]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M.; et al. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 2021, 7, 6. [Google Scholar] [CrossRef]
- Notarpaolo, A.; Layese, R.; Magistri, P.; Gambato, M.; Colledan, M.; Magini, G.; Miglioresi, L.; Vitale, A.; Vennarecci, G.; Ambrosio, C.D.; et al. Validation of the AFP model as a predictor of HCC recurrence in patients with viral hepatitis-related cirrhosis who had received a liver transplant for HCC. J. Hepatol. 2017, 66, 552–559. [Google Scholar] [CrossRef]
- Montal, R.; Andreu-Oller, C.; Bassaganyas, L.; Esteban-Fabró, R.; Moran, S.; Montironi, C.; Moeini, A.; Pinyol, R.; Peix, J.; Cabellos, L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: Implications for biomarker-driven clinical trials. Br. J. Cancer 2019, 121, 340–343. [Google Scholar] [CrossRef] [Green Version]
- Kaido, T.; Ogawa, K.; Fujimoto, Y.; Ogura, Y.; Hata, K.; Ito, T.; Tomiyama, K.; Yagi, S.; Mori, A.; Uemoto, S. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am. J. Transplant. 2013, 13, 1549–1556. [Google Scholar] [CrossRef]
- Chang, K.V.; Chen, J.D.; Wu, W.T.; Huang, K.C.; Hsu, C.T.; Han, D.S. Association between loss of skeletal muscle mass and mortality and tumor recurrence in hepatocellular harcinoma: A systematic review and meta-analysis. Liver Cancer 2018, 7, 90–103. [Google Scholar] [CrossRef]
- Hiraoka, A.; Michitaka, K.; Ueki, H.; Kaneto, M.; Aibiki, T.; Okudaira, T.; Kawakami, T.; Yamago, H.; Suga, Y.; Tomida, H.; et al. Sarcopenia and two types of presarcopenia in Japanese patients with chronic liver disease. Eur. J. Gastroenterol. Hepatol. 2016, 28, 940–947. [Google Scholar] [CrossRef]
- Granito, A.; Bolondi, L. Non-transplant therapies for patients with hepatocellular carcinoma and Child-Pugh-Turcotte class B cirrhosis. Lancet Oncol. 2017, 18, e101–e112. [Google Scholar] [CrossRef]
- D’Avola, D.; Granito, A.; de la Torre-Aláez, M.; Piscaglia, F. The importance of liver functional reserve in the non-surgical treatment of hepatocellular carcinoma. J. Hepatol. 2022, 76, 1185–1198. [Google Scholar] [CrossRef]
Variable | 0 Points (n = 289) | 1 Point (n = 157) | 2 Points (n = 34) | p | Variable | 0 Points (n = 289) | 1 Point (n = 157) | 2 Points (n = 34) | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age, Years | 0.423 | PIVKA-II (mAU/mL) | 0.004 | ||||||||||||
<70 | 97 | (34%) | 58 | (37%) | 15 | (44%) | <107 | 151 | (54%) | 74 | (47%) | 8 | (24%) | ||
≥70 | 192 | (66%) | 99 | (63%) | 19 | (56%) | ≥107 | 127 | (46%) | 82 | (53%) | 25 | (76%) | ||
Gender | 0.224 | ICGR15 (%) | 0.017 | ||||||||||||
Male | 227 | (79%) | 112 | (71%) | 25 | (74%) | <14.8 | 157 | (55%) | 65 | (42%) | 14 | (41%) | ||
Female | 62 | (21%) | 45 | (29%) | 9 | (26%) | ≥14.8 | 129 | (45%) | 91 | (58%) | 20 | (59%) | ||
BMI, kg/m2 | 0.685 | ALBI score | <0.001 | ||||||||||||
<24 | 161 | (56%) | 94 | (60%) | 20 | (59%) | Grade 1 | 206 | (71%) | 46 | (29%) | 0 | (0%) | ||
≥24 | 128 | (44%) | 63 | (40%) | 14 | (41%) | Grade 2 | 83 | (29%) | 106 | (68%) | 30 | (88%) | ||
Alcohol | 0.481 | Grade 3 | 0 | (0%) | 5 | (3%) | 4 | (12%) | |||||||
None | 189 | (65%) | 111 | (71%) | 24 | (71%) | Fib4-index | 0.001 | |||||||
Positive | 100 | (35%) | 46 | (29%) | 10 | (29%) | Low | 22 | (8%) | 4 | (3%) | 4 | (12%) | ||
HBsAg | 0.976 | Middle | 112 | (39%) | 39 | (25%) | 9 | (26%) | |||||||
Negative | 251 | (87%) | 135 | (86%) | 30 | (88%) | High | 155 | (54%) | 113 | (72%) | 21 | (62%) | ||
Positive | 38 | (13%) | 22 | (14%) | 4 | (12%) | Child–Pugh score | <0.001 | |||||||
HCV Ab | 0.375 | <6 | 248 | (86%) | 75 | (48%) | 1 | (3%) | |||||||
Negative | 186 | (65%) | 92 | (59%) | 19 | (56%) | ≥6 | 41 | (14%) | 82 | (52%) | 33 | (97%) | ||
Positive | 102 | (35%) | 64 | (41%) | 15 | (44%) | Fibrosis stage | 0.002 | |||||||
Platelet (×104/μL) | 0.007 | f0 or 1 or 2 or 3 | 206 | (72%) | 87 | (57%) | 25 | (81%) | |||||||
<15.5 | 130 | (45%) | 94 | (60%) | 14 | (41%) | f4 | 80 | (28%) | 65 | (43%) | 6 | (19%) | ||
≥15.5 | 159 | (55%) | 63 | (40%) | 20 | (59%) | Degree of differentiation | 0.043 | |||||||
Albumin, g/dL | <0.001 | Well or moderate | 8 | (3%) | 6 | (4%) | 4 | (13%) | |||||||
<3.9 | 70 | (24%) | 103 | (66%) | 34 | (100%) | Poor | 263 | (97%) | 139 | (96%) | 27 | (87%) | ||
≥3.9 | 219 | (76%) | 54 | (34%) | 0 | (0%) | Tumor size, cm | 0.292 | |||||||
Total bilirubin, mg/dL | 0.372 | <3.0 | 116 | (40%) | 59 | (38%) | 9 | (26%) | |||||||
<0.8 | 149 | (52%) | 73 | (46%) | 14 | (41%) | ≥3.0 | 173 | (60%) | 98 | (62%) | 25 | (74%) | ||
≥0.8 | 140 | (48%) | 84 | (54%) | 20 | (59%) | Number of tumors | <0.001 | |||||||
ALT, IU/L | 0.355 | Solitary | 243 | (84%) | 111 | (71%) | 22 | (65%) | |||||||
<29 | 147 | (51%) | 75 | (48%) | 13 | (38%) | Multiple | 46 | (16%) | 46 | (29%) | 12 | (35%) | ||
≥29 | 142 | (49%) | 82 | (52%) | 21 | (62%) | Portal vein invasion | 0.028 | |||||||
Prothrombin time, % | 0.002 | Negative | 119 | (42%) | 52 | (35%) | 7 | (21%) | |||||||
<87 | 123 | (43%) | 89 | (57%) | 23 | (68%) | Positive | 163 | (58%) | 98 | (65%) | 27 | (79%) | ||
≥87 | 165 | (57%) | 68 | (43%) | 11 | (32%) | Hepatic vein invasion | 0.031 | |||||||
CRP, mg/dL | <0.001 | Negative | 196 | (70%) | 89 | (61%) | 17 | (50%) | |||||||
<0.1 | 162 | (56%) | 69 | (44%) | 5 | (15%) | Positive | 86 | (30%) | 57 | (39%) | 17 | (50%) | ||
≥0.1 | 127 | (44%) | 88 | (56%) | 29 | (85%) | mALBI | <0.001 | |||||||
AFP, ng/mL | <0.001 | 1 or 2a | 289 | (100%) | 84 | (54%) | 0 | (0%) | |||||||
<100 | 289 | (100%) | 73 | (46%) | 0 | (0%) | 2b or 3 | 0 | (0%) | 73 | (46%) | 34 | (100%) | ||
≥100 | 0 | (0%) | 84 | (54%) | 34 | (100%) |
Variable | 0 Points (n = 289) | 1 Point (n = 157) | 2 Points (n = 34) | p | |||
---|---|---|---|---|---|---|---|
Surgical Procedure | 0.077 | ||||||
Non-anatomic or segmentectomy | 141 | (49%) | 79 | (50%) | 10 | (29%) | |
Sectionectomy or more than hemihepatectomy | 148 | (51%) | 78 | (50%) | 24 | (71%) | |
Open, Laparoscopic | 0.344 | ||||||
Open | 206 | (71%) | 110 | (70%) | 28 | (82%) | |
Laparoscopic | 83 | (29%) | 47 | (30%) | 6 | (18%) | |
Operative time, min | 0.016 | ||||||
<330 | 151 | (52%) | 81 | (52%) | 9 | (26%) | |
≥330 | 138 | (48%) | 76 | (48%) | 25 | (74%) | |
Operative blood loss, ml | 0.090 | ||||||
<617 | 151 | (52%) | 78 | (50%) | 11 | (32%) | |
≥617 | 138 | (48%) | 79 | (50%) | 23 | (68%) | |
Postoperative complications (Clavien–Dindo classification ≥3) | <0.001 | ||||||
No | 249 | (86%) | 111 | (71%) | 21 | (62%) | |
Yes | 40 | (14%) | 46 | (29%) | 13 | (38%) | |
Postoperative hospital stay, days | <0.001 | ||||||
<14 | 153 | (53%) | 67 | (43%) | 5 | (15%) | |
≥14 | 136 | (47%) | 90 | (57%) | 29 | (85%) | |
Readmission within 30 days | 0.008 | ||||||
No | 272 | (95%) | 144 | (92%) | 24 | (80%) | |
Yes | 13 | (5%) | 13 | (8%) | 6 | (20%) |
Variable | Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | (95% CI) | p | HR | (95% CI) | p | HR | (95% CI) | p | HR | (95% CI) | p | |
Age ≥ 70 years (versus < 70 years) | 0.99 | (0.78–1.25) | 0.918 | 0.95 | (0.71–1.25) | 0.695 | 1.18 | (0.87–1.60) | 0.287 | 1.09 | (0.75–1.56) | 0.655 |
HCV Ab Positive (versus Negative) | 1.05 | (0.83–1.33) | 0.669 | 0.96 | (0.73–1.28) | 0.796 | 1.10 | (0.81–1.48) | 0.536 | 0.84 | (0.58–1.22) | 0.363 |
Platelets ≥ 15.5 (versus <15.5 × 104/μL) | 1.13 | (0.90–1.42) | 0.295 | 1.27 | (0.92–1.77) | 0.146 | 1.14 | (0.85–1.53) | 0.364 | 1.39 | (0.92–2.12) | 0.122 |
Albumin ≥ 3.9 (versus <3.9 g/dL) | 0.54 | (0.43–0.69) | <0.001 | 0.42 | (0.31–0.56) | <0.001 | ||||||
ALT ≥ 29 (versus <29 IU/L) | 1.09 | (0.87–1.37) | 0.461 | 1.03 | (0.79–1.35) | 0.806 | 1.00 | (0.74–1.33) | 0.973 | 0.97 | (0.69–1.38) | 0.884 |
Prothrombin time ≥ 87 (versus < 87 %) | 0.66 | (0.53–0.83) | <0.001 | 0.69 | (0.52–0.90) | 0.007 | 0.63 | (0.47–0.84) | 0.002 | 0.68 | (0.48–0.97) | 0.034 |
AFP ≥ 100 (versus < 100 ng/mL) | 1.72 | (1.34–2.22) | <0.001 | 2.16 | (1.59–2.94) | <0.001 | ||||||
PIVKA-II ≥ 107 (versus < 107 mAU/mL) | 1.68 | (1.33–2.12) | <0.001 | 1.48 | (1.12–1.94) | 0.005 | 2.04 | (1.51–2.77) | <0.001 | 1.67 | (1.16–2.42) | 0.006 |
ICGR15 ≥ 14.8 (versus < 14.8%) | 1.14 | (0.91–1.44) | 0.253 | 0.87 | (0.65–1.17) | 0.361 | 1.40 | (1.04–1.88) | 0.025 | 1.16 | (0.80–1.69) | 0.430 |
ALBI score Grade 2 (versus 1) | 1.88 | (1.49–2.37) | <0.001 | 2.61 | (1.92–3.55) | <0.001 | ||||||
ALBI score Grade 3 (versus 1) | 2.59 | (1.14–5.90) | 0.023 | 3.24 | (1.18–8.94) | 0.023 | ||||||
Fib4-index Middle (versus Low) | 1.12 | (0.67–1.87) | 0.675 | 1.21 | (0.68–2.15) | 0.524 | 1.46 | (0.70–3.06) | 0.317 | 1.55 | (0.68–3.50) | 0.296 |
Fib4-index High (versus Low) | 1.35 | (0.82–2.22) | 0.235 | 1.58 | (0.84–2.98) | 0.154 | 1.86 | (0.91–3.81) | 0.089 | 2.42 | (0.99–5.93) | 0.053 |
Fibrosis stage f4 (versus f0 or 1 or 2 or 3) | 1.12 | (0.88–1.43) | 0.358 | 1.19 | (0.85–1.65) | 0.309 | 1.00 | (0.73–1.38) | 0.977 | 1.12 | (0.73–1.72) | 0.601 |
Degree of differentiation Poor (versus Well or Mode) | 0.89 | (0.48–1.68) | 0.730 | 0.93 | (0.46–1.85) | 0.826 | 0.80 | (0.35–1.81) | 0.590 | 0.63 | (0.25–1.54) | 0.309 |
Tumor size ≥3.0 (versus <3.0 cm) | 1.38 | (1.09–1.75) | 0.008 | 1.21 | (0.90–1.62) | 0.216 | 1.44 | (1.05–1.97) | 0.022 | 1.04 | (0.71–1.53) | 0.847 |
Number of tumors ≥ 2 (versus 1) | 1.90 | (1.48–2.44) | <0.001 | 1.66 | (1.24–2.21) | <0.001 | 1.75 | (1.28–2.39) | <0.001 | 1.46 | (1.01–2.11) | 0.047 |
Portal vein invasion Positive (versus Negative) | 1.42 | (1.11–1.81) | 0.006 | 1.21 | (0.91–1.61) | 0.193 | 1.77 | (1.26–2.48) | 0.001 | 1.52 | (1.01–2.28) | 0.043 |
mALBI 2b or 3 (versus 1 or 2a) | 1.77 | (1.36–2.31) | <0.001 | 2.20 | (1.60–3.02) | <0.001 | ||||||
Surgical procedure Sectionectomy or more than hemihepatectomy (versus non-anatomic or segmentectomy) | 1.32 | (1.05–1.67) | 0.016 | 0.96 | (0.72–1.28) | 0.800 | 1.50 | (1.12–2.02) | 0.007 | 1.33 | (0.91–1.93) | 0.136 |
Operative blood loss ≥ 617 (versus <617 mL) | 1.35 | (1.08–1.70) | 0.009 | 1.19 | (0.91–1.55) | 0.195 | 1.51 | (1.12–2.03) | 0.007 | 1.16 | (0.82–1.64) | 0.398 |
mALF 1 point (versus 0 points) | 1.55 | (1.21–1.98) | <0.001 | 1.35 | (1.02–1.78) | 0.036 | 2.09 | (1.53–2.86) | <0.001 | 1.95 | (1.36–2.80) | <0.001 |
mALF 2 points (versus 0 points) | 3.45 | (2.30–5.19) | <0.001 | 3.02 | (1.83–4.98) | <0.001 | 4.45 | (2.76–7.18) | <0.001 | 3.67 | (2.03–6.63) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaibori, M.; Yoshii, K.; Matsui, K.; Matsushima, H.; Kosaka, H.; Yamamoto, H.; Aoi, K.; Yamaguchi, T.; Yoshida, K.; Hatanaka, T.; et al. Modified Albumin-Bilirubin Grade and Alpha-Fetoprotein Score (mALF Score) for Predicting the Prognosis of Hepatocellular Carcinoma after Hepatectomy. Cancers 2022, 14, 5292. https://doi.org/10.3390/cancers14215292
Kaibori M, Yoshii K, Matsui K, Matsushima H, Kosaka H, Yamamoto H, Aoi K, Yamaguchi T, Yoshida K, Hatanaka T, et al. Modified Albumin-Bilirubin Grade and Alpha-Fetoprotein Score (mALF Score) for Predicting the Prognosis of Hepatocellular Carcinoma after Hepatectomy. Cancers. 2022; 14(21):5292. https://doi.org/10.3390/cancers14215292
Chicago/Turabian StyleKaibori, Masaki, Kengo Yoshii, Kosuke Matsui, Hideyuki Matsushima, Hisashi Kosaka, Hidekazu Yamamoto, Kazunori Aoi, Takashi Yamaguchi, Katsunori Yoshida, Takeshi Hatanaka, and et al. 2022. "Modified Albumin-Bilirubin Grade and Alpha-Fetoprotein Score (mALF Score) for Predicting the Prognosis of Hepatocellular Carcinoma after Hepatectomy" Cancers 14, no. 21: 5292. https://doi.org/10.3390/cancers14215292
APA StyleKaibori, M., Yoshii, K., Matsui, K., Matsushima, H., Kosaka, H., Yamamoto, H., Aoi, K., Yamaguchi, T., Yoshida, K., Hatanaka, T., Hiraoka, A., Tada, T., Kumada, T., & Sekimoto, M. (2022). Modified Albumin-Bilirubin Grade and Alpha-Fetoprotein Score (mALF Score) for Predicting the Prognosis of Hepatocellular Carcinoma after Hepatectomy. Cancers, 14(21), 5292. https://doi.org/10.3390/cancers14215292