Investigating the Impact of Immune-Related Adverse Events, Glucocorticoid Use and Immunotherapy Interruption on Long-Term Survival Outcomes
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Patients, Disease and Treatment Characteristics
3.2. Immune-Related Adverse Events Characteristics and Glucocorticoid Use
3.3. Association between Immune-Related Adverse Events and Long-Term Outcomes
3.4. Association between Glucocorticoid Use and Long-Term Outcomes
3.5. Association between Immunotherapy Interruption and Long-Term Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velcheti, V.; Schalper, K. Basic Overview of Current Immunotherapy Approaches in Cancer. Am. Soc. Clin. Oncol. Educ. Book 2016, 36, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Şenler, F.Ç.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet Lond. Engl. 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Michot, J.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer Oxf. Engl. 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Arnaud-Coffin, P.; Maillet, D.; Gan, H.K.; Stelmes, J.-J.; You, B.; Dalle, S.; Péron, J. A systematic review of adverse events in randomized trials assessing immune checkpoint inhibitors. Int. J. Cancer 2019, 145, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Attia, P.; Phan, G.Q.; Maker, A.V.; Robinson, M.R.; Quezado, M.M.; Yang, J.C.; Sherry, R.M.; Topalian, S.L.; Kammula, U.S.; Royal, R.E.; et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 6043–6053. [Google Scholar] [CrossRef] [PubMed]
- Teulings, H.E.; Limpens, J.; Jansen, S.N.; Zwinderman, A.H.; Reitsma, J.B.; Spuls, P.I.; Luiten, R.M. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: A systematic review and meta-analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, M.; Tomasini, P.; Chaleat, S.; Jeanson, A.; Souquet-Bressand, M.; Khobta, N.; Bermudez, J.; Trigui, Y.; Greillier, L.; Blanchon, M.; et al. Association Between Immune-related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in Non-small-cell Lung Cancer. Clin. Lung. Cancer 2019, 20, 201–207. [Google Scholar] [CrossRef]
- Rogado, J.; Sánchez-Torres, J.; Romero-Laorden, N.; Ballesteros, A.; Pacheco-Barcia, V.; Ramos-Leví, A.; Arranz, R.; Lorenzo, A.; Gullón, P.; Donnay, O.; et al. Immune-related adverse events predict the therapeutic efficacy of anti-PD-1 antibodies in cancer patients. Eur. J. Cancer Oxf. Engl. 2019, 109, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Genova, C.; De Giglio, A.; Bassanelli, M.; Bello, M.G.D.; Metro, G.; Brambilla, M.; Baglivo, S.; Grossi, F.; Chiari, R. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: Long-term outcomes from a multi-institutional analysis. J. Cancer Res. Clin. Oncol. 2019, 145, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Verzoni, E.; on behalf of the Italian Nivolumab Renal Cell Cancer Early Access Program Group; Cartenì, G.; Cortesi, E.; Giannarelli, D.; De Giglio, A.; Sabbatini, R.; Buti, S.; Rossetti, S.; Cognetti, F.; et al. Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between immune-related adverse events and survival: The Italian expanded access program. J. Immunother. Cancer 2019, 7, 99. [Google Scholar]
- Eggermont, A.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Khattak, A.; Carlino, M.S.; Sandhu, S.; Suciu, S.; et al. Association Between Immune-Related Adverse Events and Recurrence-Free Survival Among Patients With Stage III Melanoma Randomized to Receive Pembrolizumab or Placebo: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2020, 6, 519–527. [Google Scholar] [CrossRef]
- Berner, F.; Bomze, D.; Diem, S.; Ali, O.H.; Fässler, M.; Ring, S.; Niederer, R.; Ackermann, C.J.; Baumgaertner, P.; Pikor, N.; et al. Association of Checkpoint Inhibitor-Induced Toxic Effects With Shared Cancer and Tissue Antigens in Non-Small Cell Lung Cancer. JAMA Oncol. 2019, 5, 1043–1047. [Google Scholar] [CrossRef]
- Akamatsu, H.; Murakami, E.; Oyanagi, J.; Shibaki, R.; Kaki, T.; Takase, E.; Tanaka, M.; Harutani, Y.; Yamagata, N.; Okuda, Y.; et al. Immune-Related Adverse Events by Immune Checkpoint Inhibitors Significantly Predict Durable Efficacy Even in Responders with Advanced Non-Small Cell Lung Cancer. Oncologist 2020, 25, e679–e683. [Google Scholar] [CrossRef] [PubMed]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients with Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Garant, A.; Guilbault, C.; Ekmekjian, T.; Greenwald, Z.; Murgoi, P.; Vuong, T. Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with hematologic or solid neoplasms: A systematic review. Crit. Rev. Oncol. Hematol. 2017, 120, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Maillet, D.; Corbaux, P.; Stelmes, J.-J.; Dalle, S.; Locatelli-Sanchez, M.; Perier-Muzet, M.; Duruisseaux, M.; Kiakouama-Maleka, L.; Freyer, G.; Boespflug, A.; et al. Association between immune-related adverse events and long-term survival outcomes in patients treated with immune checkpoint inhibitors. Eur. J. Cancer Oxf. Engl. 2020, 132, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Haratani, K.; Hayashi, H.; Nakagawa, K. Association of immune-related adverse events with immune checkpoint inhibitor efficacy: Real or imaginary? BMC Med. 2020, 18, 111. [Google Scholar] [CrossRef]
- Kobayashi, K.; Suzuki, K.; Hiraide, M.; Aoyama, T.; Yokokawa, T.; Shikibu, S.; Hashimoto, K.; Iikura, Y.; Sato, H.; Sugiyama, E.; et al. Association of Immune-Related Adverse Events with Pembrolizumab Efficacy in the Treatment of Advanced Urothelial Carcinoma. Oncology 2020, 98, 237–242. [Google Scholar] [CrossRef]
- Okada, N.; Kawazoe, H.; Takechi, K.; Matsudate, Y.; Utsunomiya, R.; Zamami, Y.; Goda, M.; Imanishi, M.; Chuma, M.; Hidaka, N.; et al. Association between Immune-Related Adverse Events and Clinical Efficacy in Patients with Melanoma Treated With Nivolumab: A Multicenter Retrospective Study. Clin. Ther. 2019, 41, 59–67. [Google Scholar] [CrossRef]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non-Small-Cell Lung Cancer. JAMA. Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef]
- Yee, C.; Thompson, J.A.; Roche, P.; Byrd, D.R.; Lee, P.P.; Piepkorn, M.; Kenyon, K.; Davis, M.M.; Riddell, R.; Greenberg, P.D. Melanocyte destruction after antigen-specific immunotherapy of melanoma: Direct evidence of t cell-mediated vitiligo. J. Exp. Med. 2000, 192, 1637–1644. [Google Scholar] [CrossRef]
- Patel, V.; Elias, R.; Formella, J.; Schwartzman, W.; Christie, A.; Cai, Q.; Malladi, V.; Kapur, P.; Vazquez, M.; McKay, R.; et al. Acute interstitial nephritis, a potential predictor of response to immune checkpoint inhibitors in renal cell carcinoma. J. Immunother. Cancer 2020, 8, e001198. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Haanen JB, A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29 (Suppl. S4), iv264–iv266. [Google Scholar] [CrossRef]
- Patil, P.; Jia, X.; Hobbs, B.; Pennell, N. MA03.01 The Impact of Early Steroids on Clinical Outcomes in Patients with Advanced NSCLC Treated with Immune Checkpoint Inhibitors- A Cancerlinq Cohort. J Thorac. Oncol. 2019, 14, S256. [Google Scholar] [CrossRef]
- Hegde, P.S.; Chen, D.S. Top 10 Challenges in Cancer Immunotherapy. Immunity 2020, 52, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B. Toxicities and outcomes: Do steroids matter? Cancer 2018, 124, 3638–3640. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Signorelli, D.; Ghidini, M.; Ghidini, A.; Pizzutilo, E.G.; Ruggieri, L.; Cabiddu, M.; Borgonovo, K.; Dognini, G.; Brighenti, M.; et al. Association of Steroids use with Survival in Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Cancers 2020, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Song, J.M.; Behera, T.R.; Demski, K.; Yurco, A.; Patil, P.D.; Funchain, P. Prognosis of patients developing immune-related adverse events with immune checkpoint inhibitors in melanoma influenced by the ability to resume therapy. J. Clin. Oncol. 2020, 38 (Suppl. S5), 61. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; Frontera, O.A.; Melichar, B.; Powles, T.; Donskov, F.; Plimack, E.R.; Barthélémy, P.; Hammers, H.J.; et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J. Immunother. Cancer 2020, 8, e000891. [Google Scholar] [CrossRef]
- Santini, F.C.; Rizvi, H.; Plodkowski, A.J.; Ni, A.; Lacouture, M.E.; Gambarin-Gelwan, M.; Wilkins, O.; Panora, E.; Halpenny, D.F.; Long, N.M.; et al. Safety and Efficacy of Re-treating with Immunotherapy after Immune-Related Adverse Events in Patients with NSCLC. Cancer Immunol. Res. 2018, 6, 1093–1099. [Google Scholar] [CrossRef]
- Wong, F.; Al Ibrahim, B.; Walsh, J.; Qumosani, K. Infliximab-induced autoimmune hepatitis requiring liver transplantation. Clin. Case Rep. 2019, 7, 2135–2139. [Google Scholar] [CrossRef] [PubMed]
- Kok, B.; for the United States Acute Liver Failure Study Group; Lester, E.L.W.; Lee, W.M.; Hanje, A.J.; Stravitz, R.T.; Girgis, S.; Patel, V.; Peck, J.R.; Esber, C.; et al. Acute Liver Failure from Tumor Necrosis Factor-α Antagonists: Report of Four Cases and Literature Review. Dig. Dis. Sci. 2018, 63, 1654–1666. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Marabelle, A.; Herrscher, H.; Caramella, C.; Rouby, P.; Fizazi, K.; Besse, B. Immunotherapy discontinuation—How, and when? Data from melanoma as a paradigm. Nat. Rev. Clin. Oncol. 2020, 17, 707–715. [Google Scholar] [CrossRef] [PubMed]
Variable | All Treatment Types (n = 864) | CTLA-4 Inhibitor (n = 84) | PD(L)1 Inhibitor (n = 780) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All Patients | Patients without Grade ≥ 3 Immune Related AE (n = 786) | Grade ≥ 3 Immune Related AE (n = 78) | p | All Patients | Patients without Grade ≥ 3 Immune Related AE (n = 64) | Grade ≥ 3 Immune Related AE (n = 20) | p | All Patients | Patients without Grade ≥ 3 Immune Related AE (n = 722) | Grade ≥ 3 Immune Related AE (n = 58) | p | |
Age, years, median (25th–75th) NA = 0 | 66 (58–73) | 66 (57–73) | 65 (56–72) | 0.41 | 63 (49–70) | 63 (50–73) | 61 (49–69) | 0.58 | 66 (58–73) | 66 (58–73) | 65 (59–75) | 0.97 |
Gender (%) NA = 0 | 0.12 | 0.41 | 0.047 | |||||||||
Male | 603 (70%) | 555 (71%) | 48 (62%) | 50 (60%) | 36 (56%) | 14 (70%) | 553 (71%) | 519 (72%) | 34 (59%) | |||
Female | 261 (30%) | 231 (29%) | 30 (38%) | 34 (40%) | 28 (44%) | 6 (30%) | 227 (29%) | 203 (28%) | 24 (41%) | |||
PS ≥ 2 (%) NA = 34 | 207 (25%) | 193 (26%) | 14 (19%) | 0.21 | 15 (18%) | 12 (19%) | 3 (15%) | 1.0 | 192 (26%) | 181 (26%) | 11 (20%) | 0.34 |
BMI (%) NA = 8 | 0.77 | 0.57 | ||||||||||
<18 | 63 (7%) | 56 (7%) | 7 (9%) | 3 (4%) | 3 (5%) | 0 (0%) | 60 (8%) | 53 (7%) | 7 (12%) | |||
18–30 | 684 (80%) | 623 (80%) | 61 (79%) | 68 (81%) | 50 (78%) | 18 (90%) | 616 (79%) | 573 (80%) | 43 (75%) | |||
>30 | 109 (13%) | 100 (13%) | 9 (12%) | 13 (16%) | 11 (17%) | 2 (10%) | 96 (12%) | 89 (12%) | 7 (12%) | 0.36 | ||
Primary tumor | <0.0065 | 1 | 0.74 | |||||||||
Lung cancer | 555 (64%) | 515 (65%) | 40 (51%) | 0 (0%) | 0 (0%) | 0 (0%) | 555 (71%) | 515 (71%) | 40 (69%) | |||
Melanoma | 230 (27%) | 197 (25%) | 33 (42%) | 84 (100%) | 64 (100%) | 20 (100%) | 146 (19%) | 133 (18%) | 13 (22%) | |||
Urologic cancer | 79 (9%) | 74 (9%) | 5 (6%) | 0 (0%) | 0 (0%) | 0 (0%) | 79 (10%) | 74 (10%) | 5 (9%) | |||
≥ 3 metastatic sites (%) NA = 0 | 306 (35%) | 276 (35%) | 30 (39%) | 0.62 | 44 (52%) | 32 (50%) | 12 (60%) | 0.46 | 262 (34%) | 244 (34%) | 18 (31%) | 0.77 |
Known brain metastases (%) NA = 0 | 229 (27%) | 212 (27%) | 17 (22%) | 0.39 | 23 (27%) | 18 (28%) | 5 (25%) | 1 | 206 (26%) | 194 (27%) | 12 (21%) | 0.38 |
Bone metastases (%) NA = 0 | 282 (33%) | 256 (33%) | 26 (33%) | 0.99 | 14 (17%) | 9 (14%) | 5 (25%) | 0.42 | 268 (34%) | 247 (34%) | 21 (36%) | 0.87 |
Visceral metastases (%) NA = 0 | 646 (75%) | 586 (75%) | 60 (77%) | 0.75 | 71 (85%) | 54 (84%) | 17 (85%) | 1 | 575 (74%) | 532 (74%) | 43 (74%) | 1.0 |
≥3rd line in metastatic setting (%) NA = 7 | 224 (26%) | 207 (27%) | 17 (22%) | 0.43 | 16 (19%) | 14 (22%) | 2 (10%) | 0.73 | 208 (27%) | 193 (27%) | 15 (26%) | 0.97 |
Smoking habits (%) NA = 41 | 0.73 | 0.15 | 0.51 | |||||||||
Active | 249 (30%) | 224 (30%) | 25 (33%) | 14 (17%) | 11 (18%) | 3 (15%) | 235 (32%) | 213 (31%) | 22 (39%) | |||
Stopped > 1 year | 366 (45%) | 335 (45%) | 31 (40%) | 16 (20%) | 9 (15%) | 7 (35%) | 350 (47%) | 326 (48%) | 24 (42%) | |||
Never | 208 (25%) | 187 (25%) | 21 (27%) | 52 (63%) | 42 (68%) | 10 (50%) | 156 (21%) | 145 (21%) | 11 (19%) | |||
Any history of autoimmune disorder (%) NA = 6 | 85 (10%) | 73 (9%) | 12 (15%) | 0.19 | 11 (13%) | 8 (13%) | 3 (15%) | 0.72 | 74 (10%) | 65 (9%) | 9 (15%) | 0.22 |
Any immune related AE (%) NA = 0 | 410 (47%) | _ | _ | _ | 54 (64%) | _ | _ | _ | 356 (46%) | _ | _ | _ |
Variable | CTLA-4 Inhibitors | PD(L)-1 Inhibitors | |||
---|---|---|---|---|---|
Melanoma (n = 84) | All Tumor Types (n = 780) | Lung Cancer (n = 555) | Melanoma (n = 146) | Urologic Cancer (n = 79) | |
Immune AE, grade ≥ 3 (%) | 20 (24%) | 58 (7%) | 40 (7%) | 13 (9%) | 5 (6%) |
Immune colitis, grade ≥ 3 (%) | 9 (11%) | 15 (2%) | 7 (1%) | 4 (3%) | 4 (5%) |
Immune rash, grade ≥ 3 (%) | 2 (2%) | 9 (1%) | 8 (1%) | 1 (1%) | 0 (0%) |
Hypophysitis, grade ≥ 3 (%) | 4 (5%) | 6 (1%) | 2 (0%) | 3 (2%) | 1 (1%) |
Immune hepatitis, grade ≥ 3 (%) NA = 0 | 6 (7%) | 6 (1%) | 4 (1%) | 2 (1%) | 0 (0%) |
Immune pneumopathy, grade ≥ 3 (%) | 1 (5%) | 5 (1%) | 8 (1%) | 1 (1%) | 1 (1%) |
Immune cardiac AE, grade ≥ 3 (%) | 0 (0%) | 4 (1%) | 4 (1%) | 0 (0%) | 0 (0%) |
Immune nephritis, grade ≥ 3 (%) | 0 (0%) | 1 (0%) | 0 (0%) | 1 (1%) | 0 (0%) |
Other immune AE, grade ≥ 3 (%) | 3 (4%) | 17 (2%) | 13 (2%) | 3 (2%) | 1 (1%) |
Management | CTLA-4 Inhibitors | PD(L)-1 Inhibitors | Gr ≥ 3 Colitis | Gr ≥ 3 Hypophysitis | Gr ≥ 3 Dermatitis | Gr ≥ 3 Hepatitis |
---|---|---|---|---|---|---|
Melanoma (n = 20) | All Tumors Type (n = 58) | n = 24 | n = 10 | n = 11 | n = 12 | |
Glucocorticoids use, number of patients | 13 (65%) | 32 (55%) | 14 (74%) | 4 (40%) | 6 (55%) | 7 (58%) |
Glucocorticoid dose | ||||||
≤0.5 μγ/κγ | 0 (0%) | 7 (22%) | 0 (0%) | 0 (0%) | 1 (17%) | 0 (0%) |
1 mg/kg | 5 (38%) | 20 (62%) | 10 (71%) | 2 (50%) | 3 (50%) | 3 (43%) |
≥2 μγ/κγ | 8 (61%) | 5 (16%) | 4 (29%) | 2 (50%) | 2 (33%) | 4 (57%) |
Glucocorticoids attack treatment duration in days, median (25th–75th) | 42 (30–58) | 47 (29–84) | 40 (30–77) | 20 (8–33) | 39 (35–52) | 42 (30–44) |
Glucocorticoids maintenance, number of patients | 5 (25%) | 18 (31%) | 6 (25%) | 1 (10%) | 3 (27%) | 4 (33%) |
Other immunosuppressive treatment | 2 (10%) | 6 (10%) | 2 (8%) | 1 (10%) | 2 (18%) | 1 (8%) |
ICI interruption | 14 (70%) | 50 (86%) | 16 (84%) | 5 (50%) | 8 (73%) | 10 (83%) |
ICI reintroduction | 4 (29%) | 16 (32%) | 3 (19%) | 3 (60%) | 3 (38%) | 3 (30%) |
Time to reintroduction, in days, median (25th–75th) | 36 (31–42) | 39 (24–72) | 28 (28–48) | 45 (37–85) | 31 (26–96) | 41 (36–45) |
New irAE after reintroduction | 2 (50%) | 7 (32%) | 0 (0%) | 3 (100%) | 0 (0%) | 1 (33%) |
<2016, n = 25 | 2016–2017 , n = 32 | >2017, n = 21 | p | |
---|---|---|---|---|
ICI interruption | 18 (72%) | 30 (94%) | 16 (76%) | 0.069 |
CTC use | 16 (64%) | 17 (53%) | 12 (57%) | 0.71 |
(a) p value Fisher test = 0.0056 | ||
No CTC | CTC | |
No interruption | 11 (79%) | 3 (21%) |
Interruption | 22 (34%) | 42 (66%) |
(b) p value Fisher test = 1.0 | ||
Other irAE | Colitis, myositis, pneumonitis, hepatitis | |
No interruption | 10 (71%) | 4 (29%) |
Interruption | 43 (67%) | 21 (33%) |
(c) p value Fisher test = 0.029 | ||
Other gr3-4 irAE | Gr 3-4 Colitis, myositis, pneumonitis, hepatitis | |
No CTC | 27 (82%) | 6 (18%) |
CTC | 26 (58%) | 19 (42%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruyère, C.L.d.l.; Souquet, P.-J.; Dalle, S.; Corbaux, P.; Boespflug, A.; Duruisseaux, M.; Kiakouama-Maleka, L.; Reverdy, T.; Maugeais, M.; Sahin, G.; et al. Investigating the Impact of Immune-Related Adverse Events, Glucocorticoid Use and Immunotherapy Interruption on Long-Term Survival Outcomes. Cancers 2021, 13, 2365. https://doi.org/10.3390/cancers13102365
Bruyère CLdl, Souquet P-J, Dalle S, Corbaux P, Boespflug A, Duruisseaux M, Kiakouama-Maleka L, Reverdy T, Maugeais M, Sahin G, et al. Investigating the Impact of Immune-Related Adverse Events, Glucocorticoid Use and Immunotherapy Interruption on Long-Term Survival Outcomes. Cancers. 2021; 13(10):2365. https://doi.org/10.3390/cancers13102365
Chicago/Turabian StyleBruyère, Charline Lafayolle de la, Pierre-Jean Souquet, Stéphane Dalle, Pauline Corbaux, Amélie Boespflug, Michaël Duruisseaux, Lize Kiakouama-Maleka, Thibaut Reverdy, Madeleine Maugeais, Gulsum Sahin, and et al. 2021. "Investigating the Impact of Immune-Related Adverse Events, Glucocorticoid Use and Immunotherapy Interruption on Long-Term Survival Outcomes" Cancers 13, no. 10: 2365. https://doi.org/10.3390/cancers13102365
APA StyleBruyère, C. L. d. l., Souquet, P.-J., Dalle, S., Corbaux, P., Boespflug, A., Duruisseaux, M., Kiakouama-Maleka, L., Reverdy, T., Maugeais, M., Sahin, G., Maillet, D., & Péron, J. (2021). Investigating the Impact of Immune-Related Adverse Events, Glucocorticoid Use and Immunotherapy Interruption on Long-Term Survival Outcomes. Cancers, 13(10), 2365. https://doi.org/10.3390/cancers13102365