Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives
Abstract
:1. Introduction
2. Indolent PCBCL
2.1. Primary Cutaneous Marginal Zone Lymphoma
2.1.1. Epidemiology/Prognosis
2.1.2. Diagnosis
2.1.3. Histology
2.1.4. Immunohistochemistry, Cytogenetic and Molecular Features
2.1.5. Etiology
2.2. Primary Cutaneous Follicle Center Lymphoma
2.2.1. Epidemiology/Prognosis
2.2.2. Diagnosis
2.2.3. Histology
2.2.4. Immunohistochemistry, Cytogenetic and Molecular Features
2.3. Treatment of Indolent Lymphoma
3. Aggressive PCBCL
3.1. Epidemiology/Prognosis
3.2. Diagnosis
3.3. Histology
3.4. Immunohistochemistry, Cytogenetic and Molecular Features
3.5. Tumor Microenvironment
3.6. Treatment
4. Therapeutic Perspectives in Indolent and Aggressive PCBCL
4.1. Small Molecule Inhibitors
4.2. Monoclonal Antibodies
4.3. Antibody-Drug Conjugates
4.4. Bi-Specific T-Cell Engaging (BiTE) Antibodies
4.5. Fusion Proteins
4.6. Tumor Vaccines
4.7. Immune Checkpoint Inhibitors
4.8. Chimeric Antigen Receptor T Cells (CAR T Cells)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Willemze, R. WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105, 3768–3785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 2019, 133, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.T.; Devesa, S.S.; Anderson, W.F.; Toro, J.R. Cutaneous lymphoma incidence patterns in the United States: A population-based study of 3884 cases. Blood 2009, 113, 5064–5073. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Willemze, R.; Pimpinelli, N.; Whittaker, S.; Olsen, E.A.; Ranki, A.; Dummer, R.; Hoppe, R.T. ISCL and the EORTC TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: A proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007, 110, 479–484. [Google Scholar] [CrossRef]
- Senff, N.J.; Noordijk, E.M.; Kim, Y.H.; Bagot, M.; Berti, E.; Cerroni, L.; Dummer, R.; Duvic, M.; Hoppe, R.T.; Pimpinelli, N.; et al. European Organization for Research and Treatment of Cancer and International Society for Cutaneous Lymphoma consensus recommendations for the management of cutaneous B-cell lymphomas. Blood 2008, 112, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Amitay-Laish, I.; Tavallaee, M.; Kim, J.; Hoppe, R.T.; Million, L.; Feinmesser, M.; Fenig, E.; Wolfe, M.E.L.; Hodak, E.; Kim, Y.H. Paediatric primary cutaneous marginal zone B-cell lymphoma: Does it differ from its adult counterpart? Br. J. Dermatol. 2017, 176, 1010–1020. [Google Scholar] [CrossRef]
- Servitje, O.; Gallardo, F.; Estrach, T.; Pujol, R.M.; Blanco, A.; Fernandez-Sevilla, A.; Petriz, L.; Peyri, J.; Romagosa, V. Primary cutaneous marginal zone B-cell lymphoma: A clinical, histopathological, immunophenotypic and molecular genetic study of 22 cases. Br. J. Dermatol. 2002, 147, 1147–1158. [Google Scholar] [CrossRef]
- Jubert, C.; Cosnes, A.; Clerici, T.; Gaulard, P.; André, P.; Revuz, J.; Bagot, M. Sjögren’s syndrome and cutaneous B cell lymphoma revealed by anetoderma. Arthritis Rheum. 1993, 36, 133–134. [Google Scholar] [CrossRef]
- Dangien, A.; Beylot-Barry, M.; Battistella, M.; Ram-Wolff, C.; Talbot, A.; Rybojad, M.; Vergier, B.; Jachiet, M.; Bouaziz, J.-D.; Arnulf, B.; et al. Clinical presentation, therapeutic approach and outcome of primary cutaneous marginal zone B-cell lymphoma presenting as AL amyloidoma of the skin. Br. J. Dermatol. 2019, 181, 607–609. [Google Scholar] [CrossRef]
- Kempf, W.; Zimmermann, A.; Mitteldorf, C. Cutaneous lymphomas—An update 2019. Hematol. Oncol. 2019, 37, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Magro, C.M.; Yang, A.; Fraga, G. Blastic marginal zone lymphoma: A Clinical and pathological study of 8 cases and review of the literature. Am. J. Dermatopathol. 2013, 35, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H. Cutaneous marginal zone lymphomas. Semin. Diagn. Pathol. 2017, 34, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Edinger, J.T.; Kant, J.A.; Swerdlow, S.H. Cutaneous marginal zone lymphomas have distinctive features and Include 2 subsets. Am. J. Surg. Pathol. 2010, 34, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Van Maldegem, F.; van Dijk, R.; Wormhoudt, T.A.M.; Kluin, P.M.; Willemze, R.; Cerroni, L.; van Noesel, C.J.M.; Bende, R.J. The majority of cutaneous marginal zone B-cell lymphomas expresses class-switched immunoglobulins and develops in a T-helper type 2 inflammatory environment. Blood 2008, 112, 3355–3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.R.; Nong, L.; Liu, X.Q.; Tu, P.; Wang, Y. Frequent immunoglobulin G4 expression in a common variant of primary cutaneous marginal zone B-cell lymphoma. Australas. J. Dermatol. 2018, 59, 141–145. [Google Scholar] [CrossRef]
- Machan, S.; Medina, C.; Rodríguez-Pinilla, S.M.; Suárez-Peñaranda, J.M.; Castro, Y.; Molés, P.; Requena, C.; Saus, C.; Requena, L.; Santonja, C. Primary cutaneous marginal IgG4 Lymphoma and rosai–dorfman’s disease coexisting in several lesions of the same patient. Am. J. Dermatopathol. 2015, 37, 413–418. [Google Scholar] [CrossRef]
- Maurus, K.; Appenzeller, S.; Roth, S.; Kuper, J.; Rost, S.; Meierjohann, S.; Arampatzi, P.; Goebeler, M.; Rosenwald, A.; Geissinger, E.; et al. Panel Sequencing shows recurrent genetic FAS Alterations in Primary cutaneous marginal zone lymphoma. J. Investig. Dermatol. 2018, 138, 1573–1581. [Google Scholar] [CrossRef] [Green Version]
- Streubel, B.; Simonitsch-Klupp, I.; Müllauer, L.; Lamprecht, A.; Huber, D.; Siebert, R.; Stolte, M.; Trautinger, F.; Lukas, J.; Püspök, A.; et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 2004, 18, 1722–1726. [Google Scholar] [CrossRef] [Green Version]
- Cerroni, L.; Zöchling, N.; Pütz, B.; Kerl, H. Infection by Borrelia burgdorferi and cutaneous B-cell lymphoma. J. Cutan. Pathol. 1997, 24, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Mandekou-Lefaki, I.; Delli, F.; Kountouras, I.; Athanasiou, E.; Mattheou-Vakali, G. Primary cutaneous MALT-type lymphoma and Helicobacter pylori: A possible relationship. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 606–608. [Google Scholar] [CrossRef]
- Hoefnagel, J.J.; Dijkman, R.; Basso, K.; Jansen, P.M.; Hallermann, C.; Willemze, R.; Tensen, C.P.; Vermeer, M.H. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 2005, 105, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- May, S.A.; Netto, G.; Domiati-Saad, R.; Kasper, C. Cutaneous lymphoid hyperplasia and marginal zone B-cell lymphoma following vaccination. J. Am. Acad. Dermatol. 2005, 53, 511–515. [Google Scholar] [CrossRef]
- Guitart, J.; Deonizio, J.; Bloom, T.; Martinez-Escala, M.E.; Kuzel, T.M.; Gerami, P.; Kwasny, M.; Rosen, S.T. High incidence of gastrointestinal tract disorders and autoimmunity in primary cutaneous marginal zone B-Cell Lymphomas. JAMA Dermatol. 2014, 150, 412. [Google Scholar] [CrossRef] [PubMed]
- Senff, N.J.; Hoefnagel, J.J.; Jansen, P.M.; Vermeer, M.H.; van Baarlen, J.; Blokx, W.A.; Canninga-van Dijk, M.R.; Geerts, M.-L.; Hebeda, K.M.; Kluin, P.M.; et al. Reclassification of 300 primary cutaneous B-Cell Lymphomas according to the new WHO–EORTC classification for cutaneous lymphomas: Comparison with previous classifications and identification of prognostic markers. J. Clin. Oncol. 2007, 25, 1581–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Masson, A.; Bouaziz, J.-D.; Ram-Wolff, C.; Brice, P.; Moulonguet, I.; Vignon-Pennamen, M.-D.; Herms, F.; Verneuil, L.; Rivet, J.; Bagot, M.; et al. Alopecic patches of the scalp: A variant of primary cutaneous follicle centre B-cell lymphoma reported in a series of 14 cases. J. Eur. Acad. Dermatol. Venereol. JEADV 2019, 33, e209–e211. [Google Scholar] [CrossRef] [PubMed]
- Aldarweesh, F.A.; Treaba, D.O. Primary cutaneous follicle centre lymphoma with hodgkin and reed-sternberg like cells: A case report and review of the literature. Case Rep. Hematol. 2017, 2017, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassisa, A.; Colpani, F.; Rinaldi, R.; Cima, L. Primary cutaneous follicle center lymphoma clear cell variant: Expanding the Spectrum of cutaneous clear cell neoplasms. Am. J. Dermatopathol. 2018, 40, 849–853. [Google Scholar] [CrossRef]
- Oschlies, I.; Kohler, C.W.; Szczepanowski, M.; Koch, K.; Gontarewicz, A.; Metze, D.; Hillen, U.; Richter, J.; Spang, R.; Klapper, W. Spindle-Cell variants of primary cutaneous follicle center B-Cell lymphomas are germinal center B-Cell lymphomas by gene expression profiling using a formalin-fixed paraffin-embedded specimen. J. Investig. Dermatol. 2017, 137, 2450–2453. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.D.; Smith, G.L.; Cooper, D.L.; Wilson, L.D. The cutaneous B-cell lymphoma prognostic index: A novel prognostic index derived from a population-based registry. J. Clin. Oncol. 2005, 23, 3390–3395. [Google Scholar] [CrossRef]
- Pham-Ledard, A.; Cowppli-Bony, A.; Doussau, A.; Prochazkova-Carlotti, M.; Laharanne, E.; Jouary, T.; Belaud-Rotureau, M.-A.; Vergier, B.; Merlio, J.-P.; Beylot-Barry, M. Diagnostic and prognostic value of BCL2 Rearrangement in 53 patients with follicular lymphoma presenting as primary skin lesions. Am. J. Clin. Pathol. 2015, 143, 362–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinard, E.; Alenezi, F.; Lamant, L.; Szablewski, V.; Laurent, C.; Paul, C.; Meyer, N.; Dereure, O. Staging of Primary cutaneous follicle centre B-cell Lymphoma: Bone Marrow Biopsy, CD10, BCL2 and t (14;18) Are not relevant prognostic factors. Eur. J. Dermatol. 2019, 1. [Google Scholar] [CrossRef]
- Goodlad, J.R.; Davidson, M.M.; Hollowood, K.; Ling, C.; MacKenzie, C.; Christie, I.; Batstone, P.J.; Ho-Yen, D.O. Primary cutaneous B-Cell lymphoma and borrelia burgdorferi infection in patients from the highlands of scotland. Am. J. Surg. Pathol. 2000, 24, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.S.; Kamath, N.V.; Guitart, J.; Heald, P.; Kohler, S.; Smoller, B.R.; Cerroni, L. Absence of Borrelia burgdorferi DNA in cutaneous B-cell lymphomas from the United States. J. Cutan. Pathol. 2001, 28, 502–507. [Google Scholar] [CrossRef] [PubMed]
- NCCN. Available online: https://www.nccn.org/professionals/physician_gls/default.aspx#pcbcl (accessed on 6 January 2020).
- Jonak, C.; Porkert, S.; Oerlemans, S.; Papadavid, E.; Molloy, K.; Lehner-Baumgartner, E.; Cozzio, A.; Efficace, F.; Scarisbrick, J. Health-related quality of life in cutaneous lymphomas: Past, present and future. Acta Derm. Venereol. 2019, 99, 640–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gauci, M.-L.; Quero, L.; Ram-Wolff, C.; Guillerm, S.; M’Barek, B.; Lebbé, C.; Bagot, M.; Hennequin, C. Outcomes of radiation therapy of indolent cutaneous B-cell lymphomas and literature review. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1668–1673. [Google Scholar] [CrossRef]
- Goyal, A.; Carter, J.B.; Pashtan, I.; Gallotto, S.; Wang, I.; Isom, S.; Ng, A.; Winkfield, K.M. Very low-dose versus standard dose radiation therapy for indolent primary cutaneous B-cell lymphomas: A retrospective study. J. Am. Acad. Dermatol. 2018, 78, 408–410. [Google Scholar] [CrossRef] [Green Version]
- Oertel, M.; Elsayad, K.; Weishaupt, C.; Steinbrink, K.; Eich, H.T. De-escalated radiotherapy for indolent primary cutaneous B-cell lymphoma. Strahlentherapie Und Onkologie 2020, 196, 126–131. [Google Scholar] [CrossRef]
- Willemze, R.; Hodak, E.; Zinzani, P.L.; Specht, L.; Ladetto, M. Primary cutaneous lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv30–iv40. [Google Scholar] [CrossRef]
- Parbhakar, S.; Cin, A.D. Primary cutaneous B-cell lymphoma: Role of surgery. Can. J. Plast. Surg. 2011, 19, 12–14. [Google Scholar] [CrossRef]
- Fernández-Guarino, M.; Ortiz-Romero, P.L.; Fernández-Misa, R.; Montalbán, C. Rituximab in the treatment of primary cutaneous B-cell lymphoma: A review. Actas Dermosifiliogr. 2014, 105, 438–445. [Google Scholar] [CrossRef]
- Eberle, F.C.; Holstein, J.; Scheu, A.; Fend, F.; Yazdi, A.S. Intralesional anti-CD20 antibody for low-grade primary cutaneous B-cell lymphoma: Adverse reactions correlate with favorable clinical outcome: Intralesional anti-CD20 in primary cutaneous B-cell lymphoma. JDDG J. Ger. Soc. Dermatol. 2017, 15, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Kerl, K.; Prins, C.; Saurat, J.H.; French, L.E. Intralesional and intravenous treatment of cutaneous B-cell lymphomas with the monoclonal anti-CD20 antibody rituximab: Report and follow-up of eight cases. Br. J. Dermatol. 2006, 155, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Peñate, Y.; Hernández-Machín, B.; Pérez-Méndez, L.I.; Santiago, F.; Rosales, B.; Servitje, O.; Estrach, T.; Fernández-Guarino, M.; Calzado, L.; Acebo, E.; et al. Intralesional rituximab in the treatment of indolent primary cutaneous B-cell lymphomas: An epidemiological observational multicentre study. The Spanish Working Group on Cutaneous Lymphoma. Br. J. Dermatol. 2012, 167, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Vandersee, S.; Terhorst, D.; Humme, D.; Beyer, M. Treatment of indolent primary cutaneous B-cell lymphomas with subcutaneous interferon-alfa. J. Am. Acad. Dermatol. 2014, 70, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Cozzio, A.; Kempf, W.; Schmid-Meyer, R.; Gilliet, M.; Michaelis, S.; Schärer, L.; Burg, G.; Dummer, R. Intra-lesional low-dose interferon alpha2a therapy for primary cutaneous marginal zone B-cell lymphoma. Leuk. Lymphoma 2006, 47, 865–869. [Google Scholar] [CrossRef]
- Maza, S.; Gellrich, S.; Assaf, C.; Beyer, M.; Spilker, L.; Orawa, H.; Munz, D.L.; Sterry, W.; Steinhoff, M. Yttrium-90 ibritumomab tiuxetan radioimmunotherapy in primary cutaneous B-cell lymphomas: First results of a prospective, monocentre study. Leuk. Lymphoma 2008, 49, 1702–1709. [Google Scholar] [CrossRef]
- Di, M.; Ollila, T.A.; Olszewski, A.J. Exposure to ibritumomab tiuxetan and incidence of treatment-related myeloid neoplasms among older patients with B-cell lymphoma: A population-based study. Leukemia 2020. [Google Scholar] [CrossRef]
- Leonard, J.P.; Trneny, M.; Izutsu, K.; Fowler, N.H.; Hong, X.; Zhu, J.; Zhang, H.; Offner, F.; Scheliga, A.; Nowakowski, G.S.; et al. AUGMENT: A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J. Clin. Oncol. 2019, 37, 1188–1199. [Google Scholar] [CrossRef]
- Dummer, R.; Eichmüller, S.; Gellrich, S.; Assaf, C.; Dreno, B.; Schiller, M.; Dereure, O.; Baudard, M.; Bagot, M.; Khammari, A.; et al. Phase II clinical trial of intratumoral application of TG1042 (Adenovirus-interferon-γ) in patients with advanced cutaneous T-cell lymphomas and multilesional cutaneous B-cell lymphomas. Mol. Ther. 2010, 18, 1244–1247. [Google Scholar] [CrossRef] [Green Version]
- Dummer, R.; Hassel, J.C.; Fellenberg, F.; Eichmüller, S.; Maier, T.; Slos, P.; Acres, B.; Bleuzen, P.; Bataille, V.; Squiban, P.; et al. Adenovirus-mediated intralesional interferon-γ gene transfer induces tumor regressions in cutaneous lymphomas. Blood 2004, 104, 1631–1638. [Google Scholar] [CrossRef] [PubMed]
- Dreno, B.; Urosevic-Maiwald, M.; Kim, Y.; Guitart, J.; Duvic, M.; Dereure, O.; Khammari, A.; Knol, A.-C.; Derbij, A.; Lusky, M.; et al. TG1042 (Adenovirus-interferon-γ) in primary cutaneous B-cell lymphomas: A Phase II clinical trial. PLoS ONE 2014, 9, e83670. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Johnson, A.; Fabbro, S.; Hastings, J.; Haverkos, B.; Chung, C.; Porcu, P.; William, B. Topical imiquimod monotherapy for indolent primary cutaneous B-cell lymphomas: A single-institution experience. Br. J. Dermatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.H.; Geelen, F.A.; van Haselen, C.W.; van Voorst Vader, P.C.; Geerts, M.L.; van Vloten, W.A.; Willemze, R. Primary cutaneous large B-cell lymphomas of the legs. A distinct type of cutaneous B-cell lymphoma with an intermediate prognosis. Arch. Dermatol. 1996, 132, 1304–1308. [Google Scholar] [CrossRef]
- Grange, F.; Joly, P.; Barbe, C.; Bagot, M.; Dalle, S.; Ingen-Housz-Oro, S.; Maubec, E.; D’Incan, M.; Ram-Wolff, C.; Dalac, S.; et al. Improvement of Survival in Patients With Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type, in France. JAMA Dermatol. 2014, 150, 535. [Google Scholar] [CrossRef] [Green Version]
- Paulli, M.; Viglio, A.; Vivenza, D.; Capello, D.; Rossi, D.; Riboni, R.; Lucioni, M.; Incardona, P.; Boveri, E.; Bellosta, M.; et al. Primary cutaneous large B-cell lymphoma of the leg: Histogenetic analysis of a controversial clinicopathologic entity. Hum. Pathol. 2002, 33, 937–943. [Google Scholar] [CrossRef]
- Brogan, B.L.; Zic, J.A.; Kinney, M.C.; Hu, J.Y.; Hamilton, K.S.; Greer, J.P. Large B-cell lymphoma of the leg: Clinical and pathologic characteristics in a north american series. J. Am. Acad. Dermatol. 2003, 49, 223–228. [Google Scholar] [CrossRef]
- Menguy, S.; Frison, E.; Prochazkova-Carlotti, M.; Dalle, S.; Dereure, O.; Boulinguez, S.; Dalac, S.; Machet, L.; Ram-Wolff, C.; Verneuil, L.; et al. Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas. Mod. Pathol. 2018, 31, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Koens, L.; Vermeer, M.H.; Willemze, R.; Jansen, P.M. IgM Expression on paraffin sections distinguishes primary cutaneous large B-cell lymphoma, leg type from primary cutaneous follicle center lymphoma. Am. J. Surg. Pathol. 2010, 34, 1043–1048. [Google Scholar] [CrossRef]
- Mareschal, S.; Pham-Ledard, A.; Viailly, P.J.; Dubois, S.; Bertrand, P.; Maingonnat, C.; Fontanilles, M.; Bohers, E.; Ruminy, P.; Tournier, I.; et al. Identification of somatic mutations in primary cutaneous diffuse large B-Cell Lymphoma, leg type by massive parallel sequencing. J. Investig. Dermatol. 2017, 137, 1984–1994. [Google Scholar] [CrossRef] [Green Version]
- Grange, F.; Beylot-Barry, M.; Courville, P.; Maubec, E.; Bagot, M.; Vergier, B.; Souteyrand, P.; Machet, L.; Dalac, S.; Esteve, E.; et al. Primary cutaneous diffuse large B-Cell Lymphoma, leg type. Arch. Dermatol. 2007, 143, 7. [Google Scholar] [CrossRef] [PubMed]
- Pham-Ledard, A.; Cappellen, D.; Martinez, F.; Vergier, B.; Beylot-Barry, M.; Merlio, J.-P. MYD88 Somatic Mutation is a genetic feature of primary cutaneous diffuse large B-Cell Lymphoma, leg type. J. Investig. Dermatol. 2012, 132, 2118–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham-Ledard, A.; Prochazkova-Carlotti, M.; Andrique, L.; Cappellen, D.; Vergier, B.; Martinez, F.; Grange, F.; Petrella, T.; Beylot-Barry, M.; Merlio, J.-P. Multiple genetic alterations in primary cutaneous large B-cell lymphoma, leg type support a common lymphomagenesis with activated B-cell-like diffuse large B-cell lymphoma. Mod. Pathol. 2014, 27, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, R.; Tensen, C.P.; Jordanova, E.S.; Knijnenburg, J.; Hoefnagel, J.J.; Mulder, A.A.; Rosenberg, C.; Raap, A.K.; Willemze, R.; Szuhai, K.; et al. Array-Based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-Cell Lymphoma. J. Clin. Oncol. 2006, 24, 296–305. [Google Scholar] [CrossRef]
- Senff, N.J.; Zoutman, W.H.; Vermeer, M.H.; Assaf, C.; Berti, E.; Cerroni, L.; Espinet, B.; de Misa Cabrera, R.F.; Geerts, M.-L.; Kempf, W.; et al. Fine-Mapping chromosomal loss at 9p21: Correlation with prognosis in primary cutaneous diffuse large B-Cell Lymphoma, leg type. J. Investig. Dermatol. 2009, 129, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Schrader, A.M.R.; Jansen, P.M.; Vermeer, M.H.; Kleiverda, J.K.; Vermaat, J.S.P.; Willemze, R. High incidence and clinical significance of MYC Rearrangements in primary cutaneous diffuse large B-Cell Lymphoma, leg type. Am. J. Surg. Pathol. 2018, 42, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.A.; Louissaint, A.; Wenzel, A.; Yang, J.; Martinez-Escala, M.E.; Moy, A.P.; Morgan, E.A.; Paxton, C.N.; Hong, B.; Andersen, E.F.; et al. Genomic Analyses identify recurrent alterations in immune evasion genes in diffuse large B-Cell Lymphoma, leg type. J. Investig. Dermatol. 2018, 138, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Mitteldorf, C.; Berisha, A.; Pfaltz, M.C.; Broekaert, S.M.C.; Schön, M.P.; Kerl, K.; Kempf, W. Tumor microenvironment and checkpoint molecules in primary cutaneous diffuse large B-Cell Lymphoma—New therapeutic targets. Am. J. Surg. Pathol. 2017, 41, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Menguy, S.; Prochazkova-Carlotti, M.; Beylot-Barry, M.; Saltel, F.; Vergier, B.; Merlio, J.-P.; Pham-Ledard, A. PD-L1 and PD-L2 are differentially expressed by macrophages or tumor cells in primary cutaneous diffuse large B-Cell Lymphoma, leg type. Am. J. Surg. Pathol. 2018, 42, 326–334. [Google Scholar] [CrossRef]
- Felcht, M.; Heck, M.; Weiss, C.; Becker, J.C.; Dippel, E.; Müller, C.S.L.; Nashan, D.; Sachse, M.M.; Nicolay, J.P.; Booken, N.; et al. Expression of the T-cell regulatory marker FOXP3 in primary cutaneous large B-cell lymphoma tumour cells. Br. J. Dermatol. 2012, 167, 348–358. [Google Scholar] [CrossRef]
- Hamilton, S.N.; Wai, E.S.; Tan, K.; Alexander, C.; Gascoyne, R.D.; Connors, J.M. Treatment and outcomes in patients with primary cutaneous B-Cell Lymphoma: The BC Cancer agency experience. Int. J. Radiat. Oncol. 2013, 87, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Grange, F.; Maubec, E.; Bagot, M.; Beylot-Barry, M.; Joly, P.; Dalle, S.; Delaporte, E.; Dereure, O.; Bachelez, H.; Vergier, B.; et al. Treatment of cutaneous B-Cell Lymphoma, leg type, with age-adapted combinations of chemotherapies and rituximab. Arch. Dermatol. 2009, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulini, S.; Rupoli, S.; Goteri, G.; Pimpinelli, N.; Alterini, R.; Bettacchi, A.; Mulattieri, S.; Picardi, P.; Tassetti, A.; Scortechini, A.R.; et al. Efficacy and safety of pegylated liposomal doxorubicin in primary cutaneous B-cell lymphomas and comparison with the commonly used therapies. Eur. J. Haematol. 2009, 82, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.; Cencini, E.; Alterini, R.; Rubegni, P.; Rigacci, L.; Delfino, C.; Puccini, B.; Fimiani, M.; Bosi, A.; Bocchia, M.; et al. Rituximab plus liposomal pegylated doxorubicin in the treatment of primary cutaneous B-cell lymphomas. Eur. J. Haematol. 2014, 93, 129–136. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yoon, D.H.; Suh, C.; Kim, W.S.; Kim, S.J.; Jo, J.-C.; Kim, J.S.; Lee, W.-S.; Oh, S.Y.; Park, Y.; et al. Bendamustine plus rituximab for relapsed or refractory diffuse large B cell lymphoma: A multicenter retrospective analysis. Ann. Hematol. 2018, 97, 1437–1443. [Google Scholar] [CrossRef]
- Zeremski, V.; Jentsch-Ullrich, K.; Kahl, C.; Mohren, M.; Eberhardt, J.; Fischer, T.; Schalk, E. Is bendamustine-rituximab a reasonable treatment in selected older patients with diffuse large B cell lymphoma? Results from a multicentre, retrospective study. Ann. Hematol. 2019, 98, 2729–2737. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U.; Schmidt, N.; Schönlebe, J.; Vojvodic, A.; Hansel, G.; Koch, A.; Lotti, T. Large B-Cell Lymphoma of the Leg—Unfavourable Course with Rituximab/Bendamustin. Open Access Maced. J. Med. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Kobold, S.; Killic, N.; Lütkens, T.; Bokemeyer, C.; Fiedler, W. Isolated limb perfusion with melphalan for the treatment of intractable primary cutaneous diffuse large B-Cell Lymphoma leg type. Acta Haematol. 2010, 123, 179–181. [Google Scholar] [CrossRef]
- Ducharme, O.; Beylot-Barry, M.; Pham-Ledard, A.; Bohers, E.; Viailly, P.-J.; Bandres, T.; Faur, N.; Frison, E.; Vergier, B.; Jardin, F.; et al. Mutations of the B-Cell receptor pathway confer chemoresistance in primary cutaneous diffuse large B-Cell Lymphoma leg type. J. Investig. Dermatol. 2019, 139, 2334–2342.e8. [Google Scholar] [CrossRef]
- Wilson, W.H.; Young, R.M.; Schmitz, R.; Yang, Y.; Pittaluga, S.; Wright, G.; Lih, C.-J.; Williams, P.M.; Shaffer, A.L.; Gerecitano, J.; et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 2015, 21, 922–926. [Google Scholar] [CrossRef]
- Kuo, H.-P.; Ezell, S.A.; Hsieh, S.; Schweighofer, K.J.; Cheung, L.W.; Wu, S.; Apatira, M.; Sirisawad, M.; Eckert, K.; Liang, Y.; et al. The role of PIM1 in the ibrutinib-resistant ABC subtype of diffuse large B-cell lymphoma. Am. J. Cancer Res. 2016, 6, 2489–2501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, E.; Accurso, J.; Sluzevich, J.; Menke, D.M.; Tun, H.W. Excellent outcome of immunomodulation or bruton’s tyrosine kinase inhibition in highly refractory primary cutaneous diffuse large B-Cell Lymphoma, Leg type. Rare Tumors 2015, 7, 164–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beylot-Barry, M.; Mermin, D.; Maillard, A.; Bouabdallah, R.; Bonnet, N.; Duval-Modeste, A.-B.; Mortier, L.; Ingen-Housz-Oro, S.; Ram-Wolff, C.; Barete, S.; et al. A Single-Arm Phase II trial of lenalidomide in relapsing or refractory primary cutaneous large B-Cell Lymphoma, leg type. J. Investig. Dermatol. 2018, 138, 1982–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Raimondo, C.; Abdulla, F.R.; Zain, J.; Querfeld, C.; Rosen, S.T. Rituximab, lenalidomide and pembrolizumab in refractory primary cutaneous diffuse large B-cell lymphoma, leg type. Br. J. Haematol. 2019, 187. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Rule, S.; Zinzani, P.L.; Goy, A.; Casasnovas, O.; Smith, S.D.; Damaj, G.; Doorduijn, J.; Lamy, T.; Morschhauser, F.; et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): A single-arm, multicentre, phase 2 trial. Lancet 2018, 391, 659–667. [Google Scholar] [CrossRef]
- Li, C.J.; Jiang, C.; Liu, Y.; Bell, T.; Ma, W.; Ye, Y.; Huang, S.; Guo, H.; Zhang, H.; Wang, L.; et al. Pleiotropic Action of Novel Bruton’s Tyrosine kinase inhibitor BGB-3111 in mantle cell lymphoma. Mol. Cancer Ther. 2019, 18, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, C.S.; Trotman, J.; Opat, S.; Burger, J.A.; Cull, G.; Gottlieb, D.; Harrup, R.; Johnston, P.B.; Marlton, P.; Munoz, J.; et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 2019, 134, 851–859. [Google Scholar] [CrossRef] [Green Version]
- De Groen, R.A.L.; Schrader, A.M.R.; Kersten, M.J.; Pals, S.T.; Vermaat, J.S.P. MYD88 in the driver’s seat of B-cell lymphomagenesis: From molecular mechanisms to clinical implications. Haematologica 2019, 104, 2337–2348. [Google Scholar] [CrossRef] [Green Version]
- Forero-Torres, A.; Ramchandren, R.; Yacoub, A.; Wertheim, M.S.; Edenfield, W.J.; Caimi, P.; Gutierrez, M.; Akard, L.; Escobar, C.; Call, J.; et al. Parsaclisib, a potent and highly selective PI3Kδ inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood 2019, 133, 1742–1752. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, J.; Ding, N.; Wang, X.; Deng, L.; Xie, Y.; Ying, Z.; Liu, W.; Ping, L.; Zhang, C.; et al. Combination of Enzastaurin and Ibrutinib synergistically induces anti-tumor effects in diffuse large B cell lymphoma. J. Exp. Clin. Cancer Res. 2019, 38, 86. [Google Scholar] [CrossRef]
- Crump, M.; Leppä, S.; Fayad, L.; Lee, J.J.; Di Rocco, A.; Ogura, M.; Hagberg, H.; Schnell, F.; Rifkin, R.; Mackensen, A.; et al. Randomized, double-blind, Phase III trial of enzastaurin versus placebo in patients achieving remission after first-line therapy for high-risk diffuse large B-Cell Lymphoma. J. Clin. Oncol. 2016, 34, 2484–2492. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Rao, N.L.; Venable, J.; Thurmond, R.; Karlsson, L. TLR7/9 antagonists as therapeutics for immune-mediated inflammatory disorders. Inflamm. Allergy Drug Targets 2007, 6, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Balak, D.M.W.; van Doorn, M.B.A.; Arbeit, R.D.; Rijneveld, R.; Klaassen, E.; Sullivan, T.; Brevard, J.; Thio, H.B.; Prens, E.P.; Burggraaf, J.; et al. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin. Immunol. 2017, 174, 63–72. [Google Scholar] [CrossRef]
- Wang, X.; Waschke, B.C.; Woolaver, R.A.; Chen, S.M.Y.; Chen, Z.; Wang, J.H. HDAC inhibitors overcome immunotherapy resistance in B-cell lymphoma. Protein Cell 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crisci, S.; Di Francia, R.; Mele, S.; Vitale, P.; Ronga, G.; De Filippi, R.; Berretta, M.; Rossi, P.; Pinto, A. Overview of targeted drugs for mature B-Cell non-hodgkin lymphomas. Front. Oncol. 2019, 9, 443. [Google Scholar] [CrossRef] [Green Version]
- Batlevi, C.L.; Crump, M.; Andreadis, C.; Rizzieri, D.; Assouline, S.E.; Fox, S.; van der Jagt, R.H.C.; Copeland, A.; Potvin, D.; Chao, R.; et al. A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br. J. Haematol. 2017, 178, 434–441. [Google Scholar] [CrossRef]
- Cang, S.; Iragavarapu, C.; Savooji, J.; Song, Y.; Liu, D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J. Hematol. Oncol. 2015, 8, 129. [Google Scholar] [CrossRef]
- Kater, A.P.; Seymour, J.F.; Hillmen, P.; Eichhorst, B.; Langerak, A.W.; Owen, C.; Verdugo, M.; Wu, J.; Punnoose, E.A.; Jiang, Y.; et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: Post-Treatment follow-up of the MURANO Phase III study. J. Clin. Oncol. 2019, 37, 269–277. [Google Scholar] [CrossRef]
- Khan, N.; Kahl, B. Targeting BCL-2 in hematologic malignancies. Target Oncol. 2018, 13, 257–267. [Google Scholar] [CrossRef]
- Davids, M.S.; Roberts, A.W.; Seymour, J.F.; Pagel, J.M.; Kahl, B.S.; Wierda, W.G.; Puvvada, S.; Kipps, T.J.; Anderson, M.A.; Salem, A.H.; et al. Phase I First-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J. Clin. Oncol. 2017, 35, 826–833. [Google Scholar] [CrossRef] [Green Version]
- Tadiotto Cicogna, G.; Ferranti, M.; Lazzarotto, A.; Alaibac, M. Biological Approaches to Aggressive Cutaneous B-Cell Lymphomas. Front. Oncol. 2019, 9, 1238. [Google Scholar] [CrossRef]
- Gupta, I.V.; Jewell, R.C. Ofatumumab, the first human anti-CD20 monoclonal antibody for the treatment of B cell hematologic malignancies. Ann. N. Y. Acad. Sci. 2012, 1263, 43–56. [Google Scholar] [CrossRef]
- Rosenbaum, C.A.; Jung, S.; Pitcher, B.; Bartlett, N.L.; Smith, S.M.; Hsi, E.; Wagner-Johnston, N.; Thomas, S.P.; Leonard, J.P.; Cheson, B.D. Phase 2 multicentre study of single-agent ofatumumab in previously untreated follicular lymphoma: CALGB 50901 (Alliance). Br. J. Haematol. 2019, 185, 53–64. [Google Scholar] [CrossRef]
- Galanina, N.; Jasielec, J.; Peace, D.; Smith, S.M.; Nabhan, C. Ofatumumab monotherapy in relapsed/refractory diffuse large B-cell non-Hodgkin lymphoma. Leuk. Lymphoma 2017, 58, 752–753. [Google Scholar] [CrossRef] [PubMed]
- Salles, G.; Duell, J.; Barca, E.G.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; Andre, M.; Kalakonda, N.; et al. Primary analysis results of the single-arm phase Ii Study of Mor208 Plus Lenalidomide in patients with relapsed or refractory diffuse large B-Cell Lymphoma (l-Mind). Hematol. Oncol. 2019, 37, 173–174. [Google Scholar] [CrossRef] [Green Version]
- Advani, R.; Forero-Torres, A.; Furman, R.R.; Rosenblatt, J.D.; Younes, A.; Ren, H.; Harrop, K.; Whiting, N.; Drachman, J.G. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J. Clin. Oncol. Am. Soc. Clin. Oncol. J. 2009, 27, 4371–4377. [Google Scholar] [CrossRef] [PubMed]
- De Vos, S.; Forero-Torres, A.; Ansell, S.M.; Kahl, B.; Cheson, B.D.; Bartlett, N.L.; Furman, R.R.; Winter, J.N.; Kaplan, H.; Timmerman, J.; et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 2014, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Diefenbach, C.S. Polatuzumab Vedotin: A New target for B Cell malignancies. Curr. Hematol. Malig. Rep. 2020. [Google Scholar] [CrossRef]
- Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; Chen, A.I.; et al. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: Final results from a phase 2 randomised study (ROMULUS). Lancet Haematol. 2019, 6, e254–e265. [Google Scholar] [CrossRef]
- Jen, E.Y.; Ko, C.-W.; Lee, J.E.; Del Valle, P.L.; Aydanian, A.; Jewell, C.; Norsworthy, K.J.; Przepiorka, D.; Nie, L.; Liu, J.; et al. FDA approval: Gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-Positive acute myeloid leukemia. Clin. Cancer Res. 2018, 24, 3242–3246. [Google Scholar] [CrossRef] [Green Version]
- Viardot, A.; Goebeler, M.-E.; Hess, G.; Neumann, S.; Pfreundschuh, M.; Adrian, N.; Zettl, F.; Libicher, M.; Sayehli, C.; Stieglmaier, J.; et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016, 127, 1410–1416. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bartlett, N.L.; Assouline, S.; Yoon, S.-S.; Bosch, F.; Sehn, L.H.; Cheah, C.Y.; Shadman, M.; Gregory, G.P.; Ku, M.; et al. Mosunetuzumab induces complete remissions in poor prognosis non-hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-Cell (CAR-T) Therapies, and Is active in treatment through multiple lines. Blood 2019, 134, 6. [Google Scholar] [CrossRef]
- Albertini, M.R.; Yang, R.K.; Ranheim, E.A.; Hank, J.A.; Zuleger, C.L.; Weber, S.; Neuman, H.; Hartig, G.; Weigel, T.; Mahvi, D.; et al. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol. Immunother. 2018, 67, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Lin, Y. Immunotherapy of lymphomas. J. Clin. Investig. 2020, 130, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Ganjoo, K.N.; Leonard, J.P.; Vose, J.M.; Flinn, I.W.; Ambinder, R.F.; Connors, J.M.; Berinstein, N.L.; Belch, A.R.; Bartlett, N.L.; et al. Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J. Clin. Oncol. Am. Soc. Clin. Oncol. J. 2014, 32, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Freedman, A.; Neelapu, S.S.; Nichols, C.; Robertson, M.J.; Djulbegovic, B.; Winter, J.N.; Bender, J.F.; Gold, D.P.; Ghalie, R.G.; Stewart, M.E.; et al. Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J. Clin. Oncol. Am. Soc. Clin. Oncol. J. 2009, 27, 3036–3043. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.K.; Cha, S.-C.; Smith, D.L.; Kim, K.H.; Parshottam, S.R.; Rao, S.; Popescu, M.; Lee, V.Y.; Neelapu, S.S.; Kwak, L.W. Phase I study of an active immunotherapy for asymptomatic phase Lymphoplasmacytic lymphoma with DNA vaccines encoding antigen-chemokine fusion: Study protocol. BMC Cancer 2018, 18, 187. [Google Scholar] [CrossRef] [Green Version]
- Meleshko, A.N.; Petrovskaya, N.A.; Savelyeva, N.; Vashkevich, K.P.; Doronina, S.N.; Sachivko, N.V. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Hum. Vaccines Immunother. 2017, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.J.; Benike, C.; Fagnoni, F.; Liles, T.M.; Czerwinski, D.; Taidi, B.; Engleman, E.G.; Levy, R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996, 2, 52–58. [Google Scholar] [CrossRef]
- Timmerman, J.M.; Czerwinski, D.K.; Davis, T.A.; Hsu, F.J.; Benike, C.; Hao, Z.M.; Taidi, B.; Rajapaksa, R.; Caspar, C.B.; Okada, C.Y.; et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: Clinical and immune responses in 35 patients. Blood 2002, 99, 1517–1526. [Google Scholar] [CrossRef]
- Di Nicola, M.; Zappasodi, R.; Carlo-Stella, C.; Mortarini, R.; Pupa, S.M.; Magni, M.; Devizzi, L.; Matteucci, P.; Baldassari, P.; Ravagnani, F.; et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: A pilot study. Blood 2009, 113, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Hammerich, L.; Marron, T.U.; Upadhyay, R.; Svensson-Arvelund, J.; Dhainaut, M.; Hussein, S.; Zhan, Y.; Ostrowski, D.; Yellin, M.; Marsh, H.; et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 2019, 25, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Tuscano, J.M.; Maverakis, E.; Groshen, S.; Tsao-Wei, D.; Luxardi, G.; Merleev, A.A.; Beaven, A.; DiPersio, J.F.; Popplewell, L.; Chen, R.; et al. A Phase I Study of the Combination of Rituximab and Ipilimumab in Patients with Relapsed/Refractory B-Cell Lymphoma. Clin. Cancer Res. 2019, 25, 7004–7013. [Google Scholar] [CrossRef] [Green Version]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Boyiadzis, M.M.; Dhodapkar, M.V.; Brentjens, R.J.; Kochenderfer, J.N.; Neelapu, S.S.; Maus, M.V.; Porter, D.L.; Maloney, D.G.; Grupp, S.A.; Mackall, C.L.; et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: Clinical perspective and significance. J. Immunother. Cancer 2018, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Turtle, C.J. Chimeric Antigen Receptor (CAR) T Cells: Lessons learned from targeting of CD19 in B-Cell malignancies. Drugs 2017, 77, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Bao, F.; Wan, W.; He, T.; Qi, F.; Liu, G.; Hu, K.; Lu, X.-A.; Yang, P.; Dong, F.; Wang, J.; et al. Autologous CD19-directed chimeric antigen receptor-T cell is an effective and safe treatment to refractory or relapsed diffuse large B-cell lymphoma. Cancer Gene Ther. 2019, 26, 248–255. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, W.; Sun, R.; Jin, X.; Cheng, L.; He, X.; Wang, L.; Yuan, T.; Lyu, C.; Zhao, M. Anti-CD19 chimeric antigen receptor T Cells in combination with nivolumab are safe and effective against relapsed/refractory B-Cell non-hodgkin lymphoma. Front. Oncol. 2019, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Neelapu, S.S. The promise of CAR T-cell therapy in aggressive B-cell lymphoma. Best Pract. Res. Clin. Haematol. 2018, 31, 293–298. [Google Scholar] [CrossRef]
Target | Treatment | Phase | Nb of pts | Pathology | ORR (%) | CR (%) | Median PFS (mo) | DOR (mo) | Median f-u (mo) | Adverse Effects | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Small Molecule Inhibitors | |||||||||||
BTK | Ibrutinib | case report | 1 | PCDLBCL, LT | 100 | 100 | ND | 18 | ND | ND | Gupta et al. |
BTK | Acalabrutinib | II | 124 | R/R MCL | 81 | 40 | NR | NR | 15,2 | headache, gd 3 hematologic events, pneumonia | Wang et al. |
BTK | Zanubrutinib | I | 78 | R/R CLL/SLL | 96.2 | 2.6 | NR | ND | 13.7 | neutropenia, subcutaneous hemorrhage | Tam et al. |
PI3Kδ | Parsaclisib | I/II | 72 | R/R NHL | 20 to 100 | 0 to 44 | ND | 4.4 to 13.5 | ND | diarrhea, nausea, neutropenia | Forero Torres et al. |
PKCβ | Enzastaurin | III | 758 | DLBCL | 80 | ND | ND | ND | 48 | urine color change, prolonged QTc interval | Crump et al. |
TLRs 7,8,9 | IMO-8400 | I/II | 6 | R/R DLBCL | Gastrointestinal disorders, hematologic events | NCT02252146 | |||||
HDAC | Mocetinostat | II | 72 | R/R DLBCL, FL | 18.9/11.5 | 2.7/3.8 | 2.1/3.7 | ND | ND | fatigue, nausea, diarrhea | Batlevi et al. |
Bcl-2 | Venetoclax | I | 106 | R/R NHL | 44 | 13 | 6 | ND | ND | gd 3 hematologic events | Davids et al. |
Monoclonal Antibodies | |||||||||||
CD20 | Ofatumumab | III | 36 | FL | 84 | 16 | 1.9 | 23.7 | 30.7 | gd 3 infusion reactions | Rosenbaum et al. |
CD20 | Ofatumumab | II | 11 | R/R DLBCL | 18 | 0 | 2 | ND | 38 | diarrhea, anorexia, hyponatremia, fatigue | Galanina et al. |
CD19 (+proteasome) | MOR-208 (+ lenalidomide) | II | 81 | R/R DLBCL | 54 | 32 | 16,2 | NR | 12 | gd 3 neutropenia | Salles et al. |
CD40 | Dacetuzumab | II | 46 | R/R DLBCL | 9 | 4 | 1.2 | ND | ND | thrombosis, ocular events, gd 3/4 hematologic events | Sven de Vos et al. |
CD79 b (+ CD20) | Polatuzumab vedotin (+ rituximab) | II | 59 | R/R DLBCL, FL | 54/70 | 21/45 | 5.6/15.3 | 13.4/9.4 | 17.4/NE | hematologic events, diarrhea | Morschhauser et al. |
BiTE Antibodies | |||||||||||
CD19/CD3 | Blinatumomab | II | 21 | R/R DLBCL | 43 | 19 | 3.7 | 13.4 | ND | tremor, gd 3 neurologic events | Viardot et al. |
CD20/CD3 | Mosunetuzumab | I/Ib | 218 | R/R NHL | 43.8 | 25 | ND | ND | ND | CRS 28.4%, neurological events 44% | Schuster et al. |
Fusion Proteins | |||||||||||
CD20 | DI-Leu16-IL2 | I | 9 | NHL | NCT00720135 | ||||||
Tumor Vaccine | |||||||||||
Idiotype protein | Mitumprotimut T | III | 174 | FL | 64 | 40 | ND | ND | ND | injection site reactions | Freedman et al. |
Idiotype gene | DNA vaccine | I | ND | NHL | ISRCTN31090206 | ||||||
APCs | Cellular vaccine | pilot | 18 | NHL | 33.3 | 16% | ND | ND | 50.5 | injection site reactions | Di Nicola et al. |
Dendritic cells | In situ vaccine | I/II | 30 | Indolent BCL | NCT01976585 | ||||||
Immune Check Point Inhibitors | |||||||||||
CTLA-4 (+ CD20) | Ipilimumab (+ rituximab) | I | 33 | R/R NHL | 24 | 6 | 2.6 | ND | ND | diarrhea, rash, abdominal pain | Tuscano et al. |
CAR T-Cell | |||||||||||
CD19 CAR-T cells | Axicel | II | 111 | R/R LBCL | 82 | 54 | 5.8 | 8.1 | 15.4 | CRS 13%, neurological events 28% | Neelapu et al. |
CD19 CAR-T cells | Tisagenlecleucel | II | 93 | R/R DLBCL | 52 | 40 | NR | ND | ND | CRS 22%, neurological events 12% | Schuster et al. |
CD19 CAR-T cells (+ PD-1) | CD19 CAR-T cells (+ Nivolumab) | 11 | R/R DLBCL | 81.8 | 45.4 | 6 | 6 | 6 | CRS 50%, neurological events 1% | Cao et al. | |
CD19 CAR-T cells + PD-1 | Pembrolizumab | I/II | 12 | R/R NHL after CD19 CAR-T cell | NCT02650999 | ||||||
CD19 CAR-T cells | CD19 CAR-T cells + IL-2 | I | 60 | BCL | NCT00968760 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumont, M.; Battistella, M.; Ram-Wolff, C.; Bagot, M.; de Masson, A. Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives. Cancers 2020, 12, 1497. https://doi.org/10.3390/cancers12061497
Dumont M, Battistella M, Ram-Wolff C, Bagot M, de Masson A. Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives. Cancers. 2020; 12(6):1497. https://doi.org/10.3390/cancers12061497
Chicago/Turabian StyleDumont, Maëlle, Maxime Battistella, Caroline Ram-Wolff, Martine Bagot, and Adèle de Masson. 2020. "Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives" Cancers 12, no. 6: 1497. https://doi.org/10.3390/cancers12061497
APA StyleDumont, M., Battistella, M., Ram-Wolff, C., Bagot, M., & de Masson, A. (2020). Diagnosis and Treatment of Primary Cutaneous B-Cell Lymphomas: State of the Art and Perspectives. Cancers, 12(6), 1497. https://doi.org/10.3390/cancers12061497