Abstract
Real-time monitoring of hazardous gas emissions in open environments remains a critical challenge. Conventional spectrometers and filter wheel systems acquire spectral and spatial information sequentially, which limits their ability to capture multiple gas species and dynamic dispersion patterns rapidly. A High-Resolution Snapshot Multispectral Imaging System (HRSMIS) is proposed to integrate high spatial fidelity with multispectral capability for near real-time plume visualization, gas species identification, and concentration retrieval. Operating across the 7–14 m spectral range, the system employs a dual-path optical configuration in which a high-resolution imaging path and a multispectral snapshot path share a common telescope, allowing for the simultaneous acquisition of fine two-dimensional spatial morphology and comprehensive spectral fingerprint information. Within the multispectral path, two microlens arrays (MLAs) combined with a corresponding narrowband filter array generate 25 distinct spectral channels, allowing concurrent detection of up to 25 gas species in a single snapshot. The high-resolution imaging path provides detailed spatial information, facilitating spatio-spectral super-resolution fusion for multispectral data without complex image registration. The HRSMIS demonstrates modulation transfer function (MTF) values of at least 0.40 in the high-resolution channel and 0.29 in the multispectral channel. Monte Carlo tolerance analysis confirms imaging stability, enabling the real-time visualization of gas plumes and the accurate quantification of dispersion dynamics and temporal concentration variations.