Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering
Conflicts of Interest
References
- Han, F.; Meng, Q.; Xie, E.; Li, K.; Hu, J.; Chen, Q.; Li, J.; Han, F. Engineered Biomimetic Micro/Nano-Materials for Tissue Regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1205792. [Google Scholar] [CrossRef]
- Limongi, T.; Tirinato, L.; Pagliari, F.; Giugni, A.; Allione, M.; Perozziello, G.; Candeloro, P.; Di Fabrizio, E. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Lett. 2016, 9, 1. [Google Scholar] [CrossRef]
- Xiang, T.; Hou, J.; Xie, H.; Liu, X.; Gong, T.; Zhou, S. Biomimetic Micro/Nano Structures for Biomedical Applications. Nano Today 2020, 35, 100980. [Google Scholar] [CrossRef]
- Carotenuto, F.; Politi, S.; Ul Haq, A.; De Matteis, F.; Tamburri, E.; Terranova, M.L.; Teodori, L.; Pasquo, A.; Di Nardo, P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. Micromachines 2022, 13, 780. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Innovative Micro- and Nano-Architectures in Biomedical Engineering for Therapeutic and Diagnostic Applications. Micromachines 2025, 16, 419. [Google Scholar] [CrossRef]
- Filippi, M.; Dasen, B.; Guerrero, J.; Garello, F.; Isu, G.; Born, G.; Ehrbar, M.; Martin, I.; Scherberich, A. Magnetic Nanocomposite Hydrogels and Static Magnetic Field Stimulate the Osteoblastic and Vasculogenic Profile of Adipose-Derived Cells. Biomaterials 2019, 223, 119468. [Google Scholar] [CrossRef]
- Filippi, M.; Garello, F.; Yasa, O.; Kasamkattil, J.; Scherberich, A.; Katzschmann, R.K. Engineered Magnetic Nanocomposites to Modulate Cellular Function. Small 2022, 18, 2104079. [Google Scholar] [CrossRef]
- Filippi, M.; Balciunaite, A.; Katzschmann, R. Biohybrid Nanointerfaces for Neuromodulation. Nano Today 2024, 54, 102094. [Google Scholar] [CrossRef]
- Khan, T.; Vadivel, G.; Ayyasamy, K.; Murugesan, G.; Sebaey, T.A. Advances in Conductive Biomaterials for Cardiac Tissue Engineering: Design, Fabrication, and Functional Integration. Polymers 2025, 17, 620. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, K.; Nazari, H.; Ko, H.; Tebon, P.; Akhshik, M.; Akbari, M.; Naghavi Alhosseini, S.; Mozafari, M.; Mehravi, B.; Soleimani, M.; et al. Electrically Conductive Nanomaterials for Cardiac Tissue Engineering. Adv. Drug Deliv. Rev. 2019, 144, 162–179. [Google Scholar] [CrossRef]
- Agarwal, T.; Onesto, V.; Banerjee, D.; Guo, S.; Polini, A.; Vogt, C.; Viswanath, A.; Esworthy, T.; Cui, H.; O’Donnell, A.; et al. 3D Bioprinting in Tissue Engineering: Current State-of-the-Art and Challenges towards System Standardization and Clinical Translation. Biofabrication 2025, 17, 042003. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Wang, Z.; Liu, M.; Zhao, Y.; Tan, Y.; Qu, Z.; Du, L.; Wu, C. The Cutting-Edge Progress in Bioprinting for Biomedicine: Principles, Applications, and Future Perspectives. MedComm 2024, 5, e753. [Google Scholar] [CrossRef]
- Ullah, M.W.; Ul-Islam, M.; Shehzad, A.; Manan, S.; Islam, S.U.; Fatima, A.; Al-Saidi, A.K.; Nokab, M.E.H.E.; Sanchez, J.Q.; Sebakhy, K.O. From Bioinks to Functional Tissues and Organs: Advances, Challenges, and the Promise of 3D Bioprinting. Macromol. Mater. Eng. 2025, e00251. [Google Scholar] [CrossRef]
- Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D Bioprinting of Tissues/Organs for Regenerative Medicine and in-Vitro Models. Biomaterials 2022, 287, 121639. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yao, K.; An, J.; Jing, L.; Huang, K.; Huang, D. Machine Learning and 3D Bioprinting. Int. J. Bioprint 2023, 9, 717. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Deep, A.; Tamayol, A.; Kamaraj, A.; Mahajan, C.; Madihally, S. Advancing 3D Bioprinting through Machine Learning and Artificial Intelligence. Bioprinting 2024, 38, e00331. [Google Scholar] [CrossRef]
- Filippi, M.; Mekkattu, M.; Katzschmann, R.K. Sustainable Biofabrication: From Bioprinting to AI-Driven Predictive Methods. Trends Biotechnol. 2025, 43, 290–303. [Google Scholar] [CrossRef]
- Xing, F.; Xiang, Z.; Rommens, P.M.; Ritz, U. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. Materials 2020, 13, 2278. [Google Scholar] [CrossRef]
- Filippi, M.; Yasa, O.; Giachino, J.; Graf, R.; Balciunaite, A.; Stefani, L.; Katzschmann, R.K. Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue. Adv. Healthc. Mater. 2023, 12, e230015. [Google Scholar] [CrossRef]
- Dell, A.C.; Maresca, J.; Davis, B.A.; Isaji, T.; Dardik, A.; Geibel, J.P. Development and Deployment of a Functional 3D-Bioprinted Blood Vessel. Sci. Rep. 2025, 15, 11668. [Google Scholar] [CrossRef]
- Tsai, Y.-L.; Theato, P.; Huang, C.-F.; Hsu, S. A 3D-Printable, Glucose-Sensitive and Thermoresponsive Hydrogel as Sacrificial Materials for Constructs with Vascular-like Channels. Appl. Mater. Today 2020, 20, 100778. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Z.; Lin, Z.; Qiu, J.; Liu, Y.; Liu, A.; Wang, Y.; Xiang, M.; Chen, B.; Fu, J.; et al. 3D Bioprinting of Vessel-like Structures with Multilevel Fluidic Channels. ACS Biomater. Sci. Eng. 2017, 3, 399–408. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Li, Y.; Zhong, Z.; Li, W.; Luo, H.; Liu, Y.; Ouyang, L.; Jiang, Z.; Sun, Y.; et al. Multiscale Organization of Neural Networks in a 3D Bioprinted Matrix. Adv. Sci. 2025, 12, e04455. [Google Scholar] [CrossRef]
- Willerth, S.M. Bioprinting Functional Neural Networks. Cell Stem Cell 2024, 31, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, X.; Gao, Y.; Mathivanan, S.; Kong, L.; Tao, Y.; Dong, Y.; Li, X.; Bhattacharyya, A.; Zhao, X.; et al. 3D Bioprinting of Human Neural Tissues with Functional Connectivity. Cell Stem Cell 2024, 31, 260–274.e7. [Google Scholar] [CrossRef]
- Yao, Y.; Coleman, H.A.; Meagher, L.; Forsythe, J.S.; Parkington, H.C. 3D Functional Neuronal Networks in Free-Standing Bioprinted Hydrogel Constructs. Adv. Health Healthc. Mater. 2023, 12, e2300801. [Google Scholar] [CrossRef]
- Roversi, K.; Ebrahimi Orimi, H.; Falchetti, M.; Lummertz da Rocha, E.; Talbot, S.; Boutopoulos, C. Bioprinting of Adult Dorsal Root Ganglion (DRG) Neurons Using Laser-Induced Side Transfer (LIST). Micromachines 2021, 12, 865. [Google Scholar] [CrossRef]
- Koch, L.; Deiwick, A.; Chichkov, B. Capillary-like Formations of Endothelial Cells in Defined Patterns Generated by Laser Bioprinting. Micromachines 2021, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Sabetkish, S.; Currie, P.; Meagher, L. Recent Trends in 3D Bioprinting Technology for Skeletal Muscle Regeneration. Acta Biomater. 2024, 181, 46–66. [Google Scholar] [CrossRef]
- García-Lizarribar, A.; Villasante, A.; Lopez-Martin, J.A.; Flandez, M.; Soler-Vázquez, M.C.; Serra, D.; Herrero, L.; Sagrera, A.; Efeyan, A.; Samitier, J. 3D Bioprinted Functional Skeletal Muscle Models Have Potential Applications for Studies of Muscle Wasting in Cancer Cachexia. Biomater. Adv. 2023, 150, 213426. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.; Jin, E.-J.; Ryu, D.; Kim, G.H. 3D Bioprinting Using a New Photo-Crosslinking Method for Muscle Tissue Restoration. npj Regen. Med. 2023, 8, 18. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.H.; Lee, J.S.; Lee, Y.J.; Lee, O.J.; Ajiteru, O.; Sultan, M.T.; Lee, S.W.; Park, C.H. Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting. Adv. Healthc. Mater. 2023, 12, e2202664. [Google Scholar] [CrossRef]
- Alave Reyes-Furrer, A.; De Andrade, S.; Bachmann, D.; Jeker, H.; Steinmann, M.; Accart, N.; Dunbar, A.; Rausch, M.; Bono, E.; Rimann, M.; et al. Matrigel 3D Bioprinting of Contractile Human Skeletal Muscle Models Recapitulating Exercise and Pharmacological Responses. Commun. Biol. 2021, 4, 1183. [Google Scholar] [CrossRef]
- Garcia-Lizarribar, A.; Fernandez-Garibay, X.; Velasco-Mallorquí, F.; Castano, A.G.; Samitier, J.; Ramon-Azcon, J. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. Macromol. Biosci. 2018, 18, 1800167. [Google Scholar] [CrossRef]
- Ostrovidov, S.; Salehi, S.; Costantini, M.; Suthiwanich, K.; Ebrahimi, M.; Sadeghian, R.B.; Fujie, T.; Shi, X.; Cannata, S.; Gargioli, C.; et al. 3D Bioprinting in Skeletal Muscle Tissue Engineering. Small 2019, 15, 1805530. [Google Scholar] [CrossRef]
- Kim, W.J.; Kim, G.H. A Bioprinted Complex Tissue Model for Myotendinous Junction with Biochemical and Biophysical Cues. Bioeng. Transl. Med. 2022, 7, e10321. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Qin, C.; Zhang, H.; Han, F.; Xue, J.; Wang, Y.; Wu, J.; Xiao, Y.; Huan, Z.; Wu, C. Multicellular Bioprinting of Biomimetic Inks for Tendon-to-Bone Regeneration. Adv. Sci. 2023, 10, 2301309. [Google Scholar] [CrossRef] [PubMed]
- Khalak, F.A.-H.; Decuyper, J.M.; Khalak, K.A.-H.; Alonso, S.R.; Saenz-del-Burgo, L.; Pedraz Muñoz, J.L. 3D Bioprinting Approaches for Musculoskeletal Interfaces in Tissue Engineering. Int. J. Pharm. 2025, 682, 125939. [Google Scholar] [CrossRef] [PubMed]
- Potyondy, T.; Alfredo Uquillas, J.; Tebon, P.J.; Byambaa, B.; Hasan, A.; Tavafoghi, M.; Mary, H.; Aninwene, G.E.; Pountos, I.; Khademhosseini, A.; et al. Recent Advances in 3D Bioprinting of Musculoskeletal Tissues. Biofabrication 2021, 13, 022001. [Google Scholar] [CrossRef]
- Filippi, M.; Mock, D.; Fuentes, J.; Michelis, M.Y.; Balciunaite, A.; Paniagua, P.; Hopf, R.; Barteld, A.; Eng, S.; Badolato, A.; et al. Multicellular Muscle-Tendon Bioprinting of Mechanically Optimized Musculoskeletal Bioactuators with Enhanced Force Transmission. Sci. Adv. 2025, 11, eadv2628. [Google Scholar] [CrossRef]
- Balestri, W.; Hickman, G.J.; Morris, R.H.; Hunt, J.A.; Reinwald, Y. Triphasic 3D In Vitro Model of Bone-Tendon-Muscle Interfaces to Study Their Regeneration. Cells 2023, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.M.; Wu, D.; Bannach-Brown, A.; Dhamrait, D.; Berg, J.; Tolksdorf, B.; Lichtenstein, D.; Dressler, C.; Braeuning, A.; Kurreck, J.; et al. 3D Bioprinting of Liver Models: A Systematic Scoping Review of Methods, Bioinks, and Reporting Quality. Mater. Today Bio 2024, 26, 100991. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Zhang, S.; Yang, H.; Mao, Y. 3D Bioprinted Liver Tissue and Disease Models: Current Advances and Future Perspectives. Biomater. Adv. 2023, 152, 213499. [Google Scholar] [CrossRef]
- Cross-Najafi, A.A.; Farag, K.; Chen, A.M.; Smith, L.J.; Zhang, W.; Li, P.; Ekser, B. The Long-Road to Develop Custom-Built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024, 108, 357–368. [Google Scholar] [CrossRef]
- Blanco-Fernandez, B.; Bagci, G.; Perez-Amodio, S.; Rey-Vinolas, S.; Ximenes-Carballo, C.; Gato-Diaz, U.; Concheiro, A.; Alvarez-Lorenzo, C.; Engel, E. A Bioprinted Breast Cancer Model Using Bioinks of Decellularized Breast Tissue for Studying Cancer Stemness, Invasion, and Drug Efficacy. Acta Biomater. 2025, 203, 306–321. [Google Scholar] [CrossRef]
- Yang, J.; Wang, L.; Wu, R.; He, Y.; Zhao, Y.; Wang, W.; Gao, X.; Wang, D.; Zhao, L.; Li, W. 3D Bioprinting in Cancer Modeling and Biomedicine: From Print Categories to Biological Applications. ACS Omega 2024, 9, 44076–44100. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Zhu, W.; Tang, M.; Lawrence, N.; Yu, C.; Gou, M.; Chen, S. 3D Bioprinting of Functional Tissue Models for Personalized Drug Screening and in Vitro Disease Modeling. Adv. Drug Deliv. Rev. 2018, 132, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, L.; Vijayavenkataraman, S.; Yuan, Y.; Tan, E.C.K.; Kang, L. Recent Applications of Three-Dimensional Bioprinting in Drug Discovery and Development. Adv. Drug Deliv. Rev. 2024, 214, 115456. [Google Scholar] [CrossRef]
- Qian, L.; Zhao, H. Nanoindentation of Soft Biological Materials. Micromachines 2018, 9, 654. [Google Scholar] [CrossRef]
- Gil, C.J.; Tomov, M.L.; Theus, A.S.; Cetnar, A.; Mahmoudi, M.; Serpooshan, V. In Vivo Tracking of Tissue Engineered Constructs. Micromachines 2019, 10, 474. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.; Kerns, G.; O’Reilley, K.; Okesanjo, O.; Lozano, J.; Narendran, J.; Broeking, C.; Ma, X.; Thompson, H.; Njapa Njeuha, P.; et al. The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine. Micromachines 2022, 13, 28. [Google Scholar] [CrossRef]
- Webster-Wood, V.A.; Guix, M.; Xu, N.W.; Behkam, B.; Sato, H.; Sarkar, D.; Sanchez, S.; Shimizu, M.; Parker, K.K. Biohybrid Robots: Recent Progress, Challenges, and Perspectives. Bioinspir. Biomim. 2023, 18, 015001. [Google Scholar] [CrossRef] [PubMed]
- Vouloutsi, V.; Cominelli, L.; Dogar, M.; Lepora, N.; Zito, C.; Martinez-Hernandez, U. Towards Living Machines: Current and Future Trends of Tactile Sensing, Grasping, and Social Robotics. Bioinspir. Biomim. 2023, 18, 025002. [Google Scholar] [CrossRef]
- Meder, F.; Baytekin, B.; Del Dottore, E.; Meroz, Y.; Tauber, F.; Walker, I.; Mazzolai, B. A Perspective on Plant Robotics: From Bioinspiration to Hybrid Systems. Bioinspir. Biomim. 2023, 18, 015006. [Google Scholar] [CrossRef]
- Appiah, C.; Arndt, C.; Siemsen, K.; Heitmann, A.; Staubitz, A.; Selhuber-Unkel, C. Living Materials Herald a New Era in Soft Robotics. Adv. Mater. 2019, 31, 1807747. [Google Scholar] [CrossRef]
- Ball, P. Living Robots. Nat. Mater. 2020, 19, 265. [Google Scholar] [CrossRef]
- Filippi, M.; Buchner, T.; Yasa, O.; Weirich, S.; Katzschmann, R.K. Microfluidic Tissue Engineering and Bio-Actuation. Adv. Mater. 2022, 34, 2108427. [Google Scholar] [CrossRef]
- Filippi, M.; Yasa, O.; Kamm, R.D.; Raman, R.; Katzschmann, R.K. Will Microfluidics Enable Functionally Integrated Biohybrid Robots? Proc. Natl. Acad. Sci. USA 2022, 119, e2200741119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, J.; Jung, S.; Kim, H.-Y.; Lo Preti, M.; Laschi, C.; Ren, Z.; Sitti, M.; Full, R.J.; Yang, G.-Z. Bioinspired and Biohybrid Soft Robots: Principles and Emerging Technologies. Matter 2025, 8, 102045. [Google Scholar] [CrossRef]
- Filippi, M.; Balciunaite, A.; Georgopoulou, A.; Paniagua, P.; Drescher, F.; Nie, M.; Takeuchi, S.; Clemens, F.; Katzschmann, R.K. Sensor-Embedded Muscle for Closed-Loop Controllable Actuation in Proprioceptive Biohybrid Robots. Adv. Intell. Syst. 2024, 2400413. [Google Scholar] [CrossRef]
- Filippi, M.; Badolato, A.; Georgopoulou, A.; Mock, D.; Schreiner, J.; Michelis, M.Y.; Amstad, E.; Katzschmann, R.K. Bioprinting of Piezoresistive Organohydrogel Networks for Advanced Real-Time Mechanosensing in Engineered Tissue Models. Trends Biotechnol. 2025; in press. [Google Scholar] [CrossRef]
- Patino, T.; Mestre, R.; Sánchez, S. Miniaturized Soft Bio-Hybrid Robotics: A Step Forward into Healthcare Applications. Lab Chip 2016, 16, 3626–3630. [Google Scholar] [CrossRef]
- Ricotti, L.; Trimmer, B.; Feinberg, A.W.; Raman, R.; Parker, K.K.; Bashir, R.; Sitti, M.; Martel, S.; Dario, P.; Menciassi, A. Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells. Sci. Robot. 2017, 2, eaaq0495. [Google Scholar] [CrossRef]
- Lai, S.; Fuentes, J.; Guix, M.; Casula, G.; Cosseddu, P.; Sánchez, S. Real-Time Force Monitoring of Electrically Stimulated 3D-Bioengineered Muscle Bioactuators Using Organic Sensors with Tunable Sensitivity. Adv. Intell. Syst. 2024, 2400407. [Google Scholar] [CrossRef]
- Beyer, C. Biohybrid Neuromuscular Robots. Nat. Rev. Bioeng. 2024, 2, 990. [Google Scholar] [CrossRef]
- Edri, S.; Newman Frisch, A.; Safina, D.; Machour, M.; Zavin, J.; Landsman, L.; Pierreux, C.E.; Spagnoli, F.M.; Levenberg, S. 3D Bioprinting of Multicellular Stem Cell-Derived Constructs to Model Pancreatic Cell Differentiation. Adv. Funct. Mater. 2024, 34, 2315488. [Google Scholar] [CrossRef]
- Bertassoni, L.E. Bioprinting of Complex Multicellular Organs with Advanced Functionality—Recent Progress and Challenges Ahead. Adv. Mater. 2022, 34, e2101321. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippi, M. Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering. Micromachines 2025, 16, 1052. https://doi.org/10.3390/mi16091052
Filippi M. Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering. Micromachines. 2025; 16(9):1052. https://doi.org/10.3390/mi16091052
Chicago/Turabian StyleFilippi, Miriam. 2025. "Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering" Micromachines 16, no. 9: 1052. https://doi.org/10.3390/mi16091052
APA StyleFilippi, M. (2025). Converging Architectures: Precision Biomanufacturing and Soft Robotics Rewiring Tissue Engineering. Micromachines, 16(9), 1052. https://doi.org/10.3390/mi16091052