Non-Linear Modeling and Precision Analysis Approach for Implantable Multi-Channel Neural Recording Systems
Abstract
1. Introduction
2. Non-Linear Modeling of System Architecture
2.1. Non-Linear Modeling of Front-End Circuits
2.2. Non-Linear Modeling of Analog-to-Digital Converter
2.3. System Distortion Level
3. Signal Analysis of Non-Linear Models Based on Spike Processing
3.1. Signal Analysis Based on Spike Processing
3.2. Signal Analysis Results
3.3. Statistical Analysis Based on Chinese Handwriting Decoding Paradigm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herman, P.; Prasad, G.; McGinnity, T.M.; Coyle, D. Comparative Analysis of Spectral Approaches to Feature Extraction for EEG-Based Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 317–326. [Google Scholar] [CrossRef]
- Stevenson, I.H.; Kording, K.P. How Advances in Neural Recording Affect Data Analysis. Nat. Neurosci. 2011, 14, 139–142. [Google Scholar] [CrossRef]
- Ranjandish, R.; Schmid, A. A Review of Microelectronic Systems and Circuit Techniques for Electrical Neural Recording Aimed at Closed-Loop Epilepsy Control. Sensors 2020, 20, 5716. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Carmena, J.M. Emergence of a Stable Cortical Map for Neuroprosthetic Control. PLoS Biol. 2009, 7, e1000153. [Google Scholar] [CrossRef]
- Chen, R.; Canales, A.; Anikeeva, P. Neural Recording and Modulation Technologies. Nat. Rev. Mater. 2017, 2, 16093. [Google Scholar] [CrossRef] [PubMed]
- Rice, K.M.; Blanchard, E.B.; Purcell, M. Biofeedback Treatments of Generalized Anxiety Disorder: Preliminary Results. Biofeedback Self-Regul. 1993, 18, 93–105. [Google Scholar] [CrossRef]
- Lebedev, M.A.; Nicolelis, M.A. Brain–Machine Interfaces: Past, Present and Future. Trends Neurosci. 2006, 29, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–Computer Interfaces for Communication and Control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Hashemi Noshahr, F.; Nabavi, M.; Sawan, M. Multi-Channel Neural Recording Implants: A Review. Sensors 2020, 20, 904. [Google Scholar] [CrossRef]
- Chen, J.; Tarkhan, M.; Wu, H.; Noshahr, F.H.; Yang, J.; Sawan, M. Recent Trends and Future Prospects of Neural Recording Circuits and Systems: A Tutorial Brief. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2654–2660. [Google Scholar] [CrossRef]
- Steinmetz, N.A.; Aydin, C.; Lebedeva, A.; Okun, M.; Pachitariu, M.; Bauza, M.; Beau, M.; Bhagat, J.; Böhm, C.; Broux, M.; et al. Neuropixels 2.0: A Miniaturized High-Density Probe for Stable, Long-Term Brain Recordings. Science 2021, 372, eabf4588. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.Y.; Pinto, S.; Chung, S.; Merolla, P.; Koh, T.W.; Seo, D. A 1024-Channel Simultaneous Recording Neural SoC with Stimulation and Real-Time Spike Detection. In Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Musk, E.; Neuralink. An Integrated Brain-Machine Interface Platform With Thousands of Channels. J. Med. Internet Res. 2019, 21, e16194. [Google Scholar] [CrossRef]
- Park, S.Y.; Cho, J.; Lee, K.; Yoon, E. Dynamic Power Reduction in Scalable Neural Recording Interface Using Spatiotemporal Correlation and Temporal Sparsity of Neural Signals. IEEE J. Solid-State Circuits 2018, 53, 1102–1114. [Google Scholar] [CrossRef]
- Abdelhalim, K.; Jafari, H.M.; Kokarovtseva, L.; Velazquez, J.L.P.; Genov, R. 64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator. IEEE J. Solid-State Circuits 2013, 48, 2494–2510. [Google Scholar] [CrossRef]
- Guo, J.; Yuan, J.; Huang, J.; Law, J.K.Y.; Yeung, C.K.; Chan, M. 32.9 nV/Rt Hz −60.6 dB THD Dual-Band Micro-Electrode Array Signal Acquisition IC. IEEE J. Solid-State Circuits 2012, 47, 1209–1220. [Google Scholar] [CrossRef]
- Abdelhalim, K.; Kokarovtseva, L.; Perez Velazquez, J.L.; Genov, R. 915-MHz FSK/OOK Wireless Neural Recording SoC With 64 Mixed-Signal FIR Filters. IEEE J. Solid-State Circuits 2013, 48, 2478–2493. [Google Scholar] [CrossRef]
- Qian, C.; Parramon, J.; Sanchez-Sinencio, E. A Micropower Low-Noise Neural Recording Front-End Circuit for Epileptic Seizure Detection. IEEE J. Solid-State Circuits 2011, 46, 1392–1405. [Google Scholar] [CrossRef]
- Muller, R.; Gambini, S.; Rabaey, J.M. A 0.013 Mm, 5 μW, DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply. IEEE J. Solid-State Circuits 2012, 47, 232–243. [Google Scholar] [CrossRef]
- Naderi, K.; Shad, E.; Molinas, M.; Heidari, A. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4298–4301. [Google Scholar] [CrossRef]
- Mora Lopez, C.; Prodanov, D.; Braeken, D.; Gligorijevic, I.; Eberle, W.; Bartic, C.; Puers, R.; Gielen, G. A Multichannel Integrated Circuit for Electrical Recording of Neural Activity, With Independent Channel Programmability. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Holleman, J.; Pandey, J.N.; Zhang, F.; Otis, B. A 500 µW Neural Tag with 2 µVrms AFE and Frequency-Multiplying MICS/ISM FSK Transmitter. In Proceedings of the 2009 IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, USA, 8–12 February 2009. [Google Scholar] [CrossRef]
- Xiao, Z.; Tang, C.M.; Dougherty, C.M.; Bashirullah, R. A 20 µW Neural Recording Tag with Supply-Current-Modulated AFE in 0.13µm CMOS. In Proceedings of the 2010 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 7–11 February 2010; pp. 122–123. [Google Scholar] [CrossRef]
- Kim, S.J.; Han, S.H.; Cha, J.H.; Liu, L.; Yao, L.; Gao, Y.; Je, M. A Sub-\muW/Ch Analog Front-End for \Delta-Neural Recording With Spike-Driven Data Compression. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1–14. [Google Scholar] [CrossRef]
- Samiei, A.; Hashemi, H. A Chopper Stabilized, Current Feedback, Neural Recording Amplifier. IEEE Solid-State Circuits Lett. 2019, 2, 17–20. [Google Scholar] [CrossRef]
- Ng, K.A.; Xu, Y.P. A Low-Power, High CMRR Neural Amplifier System Employing CMOS Inverter-Based OTAs With CMFB Through Supply Rails. IEEE J. Solid-State Circuits 2016, 51, 724–737. [Google Scholar] [CrossRef]
- Johnson, B.C.; Gambini, S.; Izyumin, I.; Moin, A.; Zhou, A.; Alexandrov, G.; Santacruz, S.R.; Rabaey, J.M.; Carmena, J.M.; Muller, R. An Implantable 700 μW 64-Channel Neuromodulation IC for Simultaneous Recording and Stimulation with Rapid Artifact Recovery. In Proceedings of the 2017 Symposium on VLSI Circuits, Kyoto, Japan, 5–8 June 2017; pp. C48–C49. [Google Scholar] [CrossRef]
- Wang, S.; Garakoui, S.K.; Chun, H.; Salinas, D.G.; Sijbers, W.; Putzeys, J.; Martens, E.; Craninckx, J.; Van Helleputte, N.; Lopez, C.M. A Compact Quad-Shank CMOS Neural Probe With 5120 Addressable Recording Sites and 384 Fully Differential Parallel Channels. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1625–1634. [Google Scholar] [CrossRef]
- Murmann, B. ADC Performance Survey 1997–2023. Available online: https://github.com/bmurmann/ADC-survey (accessed on 9 January 2024).
- Wattanapanitch, W.; Sarpeshkar, R. A Low-Power 32-Channel Digitally Programmable Neural Recording Integrated Circuit. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, T.; Liu, W.; Yang, Z. A Frequency Shaping Neural Recorder With 3 pF Input Capacitance and 11 Plus 4.5 Bits Dynamic Range. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 510–527. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, A.; Ruiz-Amaya, J.; Delgado-Restituto, M.; Rodríguez-Vázquez, Á. An Auto-Calibrated Neural Spike Recording Channel with Feature Extraction Capabilities. In Proceedings of the SPIE Microtechnologies; Rodríguez-Vázquez, Á.B., Adelung, R., Carmona-Galán, R.A., Liñán-Cembrano, G., Ronning, C., Eds.; SPIE: Prague, Czech Republic, 2011; p. 80680N. [Google Scholar] [CrossRef]
- Rezaee-Dehsorkh, H.; Ravanshad, N.; Lotfi, R.; Mafinezhad, K.; Sodagar, A.M. Analysis and Design of Tunable Amplifiers for Implantable Neural Recording Applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1, 546–556. [Google Scholar] [CrossRef]
- Biederman, W.; Yeager, D.J.; Narevsky, N.; Leverett, J.; Neely, R.; Carmena, J.M.; Alon, E.; Rabaey, J.M. A 4.78 Mm 2 Fully-Integrated Neuromodulation SoC Combining 64 Acquisition Channels With Digital Compression and Simultaneous Dual Stimulation. IEEE J. Solid-State Circuits 2015, 50, 1038–1047. [Google Scholar] [CrossRef]
- Azin, M.; Guggenmos, D.J.; Barbay, S.; Nudo, R.J.; Mohseni, P. A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface. IEEE J. Solid-State Circuits 2011, 46, 731–745. [Google Scholar] [CrossRef]
- Gosselin, B.; Ayoub, A.E.; Roy, J.F.; Sawan, M.; Lepore, F.; Chaudhuri, A.; Guitton, D. A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.R.; Watkins, P.T.; Kier, R.J.; Lovejoy, R.O.; Black, D.J.; Greger, B.; Solzbacher, F. A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System. IEEE J. Solid-State Circuits 2007, 42, 123–133. [Google Scholar] [CrossRef]
- Harrison, R. A Low-Power, Low-Noise CMOS Amplifier for Neural Recording Applications. In Proceedings of the 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353), Phoenix-Scottsdale, AZ, USA, 26–29 May 2002; Volume 5, pp. V–197–V–200. [Google Scholar] [CrossRef]
- Zou, X.; Xu, X.; Yao, L.; Lian, Y. A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip. IEEE J. Solid-State Circuits 2009, 44, 1067–1077. [Google Scholar] [CrossRef]
- Wattanapanitch, W.; Fee, M.; Sarpeshkar, R. An Energy-Efficient Micropower Neural Recording Amplifier. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C. Analysis of the Settling Behavior of an Operational Amplifier. IEEE J. Solid-State Circuits 1982, 17, 74–80. [Google Scholar] [CrossRef]
- Hung, C.H.; Zheng, Y.; Guo, J.; Leung, K.N. Bandwidth and Slew Rate Enhanced OTA With Sustainable Dynamic Bias. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 635–639. [Google Scholar] [CrossRef]
- Yang, H.; Allstot, D. Considerations for Fast Settling Operational Amplifiers. IEEE Trans. Circuits Syst. 1990, 37, 326–334. [Google Scholar] [CrossRef]
- Khazaei, Y.; Sodagar, A.M. Multi-Channel ADC with Improved Bit Rate and Power Consumption for ElectroCorticoGraphy Systems. In Proceedings of the 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 17–19 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Barsakcioglu, D.Y.; Liu, Y.; Bhunjun, P.; Navajas, J.; Eftekhar, A.; Jackson, A.; Quian Quiroga, R.; Constandinou, T.G. An Analogue Front-End Model for Developing Neural Spike Sorting Systems. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Nasserian, M.; Peiravi, A.; Moradi, F. An Adaptive-Resolution Signal-Specific ADC for Sensor-Interface Applications. Analog. Integr. Circuits Signal Process. 2019, 98, 125–135. [Google Scholar] [CrossRef]
- Pedreira, C.; Martinez, J.; Ison, M.J.; Quian Quiroga, R. How Many Neurons Can We See with Current Spike Sorting Algorithms? J. Neurosci. Methods 2012, 211, 58–65. [Google Scholar] [CrossRef]
- Gibson, S.; Judy, J.W.; Marković, D. Spike Sorting: The First Step in Decoding the Brain: The First Step in Decoding the Brain. IEEE Signal Process. Mag. 2012, 29, 124–143. [Google Scholar] [CrossRef]
- Gibson, S.; Judy, J.W.; Markovic, D. Technology-Aware Algorithm Design for Neural Spike Detection, Feature Extraction, and Dimensionality Reduction. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 469–478. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering. Neural Comput. 2004, 16, 1661–1687. [Google Scholar] [CrossRef]
- Obeid, I.; Wolf, P. Evaluation of Spike-Detection Algorithms Fora Brain-Machine Interface Application. IEEE Trans. Biomed. Eng. 2004, 51, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Gibson, S.; Judy, J.W.; Markovic, D. Comparison of Spike-Sorting Algorithms for Future Hardware Implementation. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 5015–5020. [Google Scholar] [CrossRef]
- Wu, T.; Xu, J.; Lian, Y.; Khalili, A.; Rastegarnia, A.; Guan, C.; Yang, Z. A 16-Channel Nonparametric Spike Detection ASIC Based on EC-PC Decomposition. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Pachitariu, M.; Steinmetz, N.; Kadir, S.; Carandini, M.; Kenneth D., H. Kilosort: Realtime Spike-Sorting for Extracellular Electrophysiology with Hundreds of Channels. Preprint 2016. [Google Scholar] [CrossRef]
- Qi, Y.; Zhu, X.; Xiong, X.; Yang, X.; Ding, N.; Wu, H.; Xu, K.; Zhu, J.; Zhang, J.; Wang, Y. Human Motor Cortex Encodes Complex Handwriting through a Sequence of Stable Neural States. Nat. Hum. Behav. 2025, 9, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Legatt, A.D.; Arezzo, J.; Vaughan, H.G. Averaged Multiple Unit Activity as an Estimate of Phasic Changes in Local Neuronal Activity: Effects of Volume-Conducted Potentials. J. Neurosci. Methods 1980, 2, 203–217. [Google Scholar] [CrossRef]
- Basar, T. A New Approach to Linear Filtering and Prediction Problems. In Control Theory: Twenty-Five Seminal Papers (1932–1981); Wiley: Hoboken, NJ, USA, 2001; pp. 167–179. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, X.; Li, X.; Lian, Q.; Zhu, J.; Zhang, J.; Qi, Y.; Wang, Y. Reconstructing Multi-Stroke Characters From Brain Signals Toward Generalizable Handwriting Brain–Computer Interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 4230–4239. [Google Scholar] [CrossRef]
Distortion Level | GBW (MHz/dB) | SR (mV/μs) | SNR (dB) | THD (dB) | SNDR (dB) | SFDR (dB) |
---|---|---|---|---|---|---|
Level 0 | - | - | 32.44 | −53.18 | 32.43 | 58.20 |
Level 1 | 10 | 1 | 32.60 | −46.56 | 32.46 | 49.03 |
Level 2 | 9 | 0.9 | 32.77 | −40.93 | 32.19 | 41.91 |
Level 3 | 8 | 0.8 | 32.16 | −34.32 | 30.70 | 34.86 |
Level 4 | 5 | 0.5 | 32.05 | −26.23 | 25.23 | 28.96 |
Distortion Level | GBW (MHz/dB) | SR (mV/μs) | SNR (dB) | THD (dB) | SNDR (dB) | SFDR (dB) |
---|---|---|---|---|---|---|
Level 0 | - | - | 33.09 | −58.84 | 33.09 | 64.19 |
Level 1 | 0.8 | 27 | 33.11 | −50.21 | 33.04 | 51.38 |
Level 2 | 0.65 | 22 | 33.15 | −42.42 | 32.68 | 42.78 |
Level 3 | 0.5 | 17 | 33.26 | −33.73 | 30.48 | 33.90 |
Level 4 | 0.36 | 12 | 33.47 | −24.27 | 23.78 | 24.39 |
Distortion Level | SNR (dB) | THD (dB) | SNDR (dB) | ENOB (bits) | SFDR (dB) |
---|---|---|---|---|---|
Level 0 | 73.99 | −96.23 | 73.99 | 11.99 | 100.82 |
Level 1 | 73.69 | −68.44 | 67.31 | 10.89 | 73.65 |
Level 2 | 73.83 | −57.95 | 57.84 | 9.31 | 64.73 |
Level 3 | 73.86 | −44.42 | 44.41 | 7.08 | 49.79 |
Level 4 | 73.57 | −32.37 | 32.37 | 5.08 | 33.48 |
Stage | Distortion Level | Max Error | Absolute Average | STD | |
---|---|---|---|---|---|
Pos | Neg | ||||
LNA | 1 | 0.330 | −0.226 | 0.194 | 0.065 |
2 | 0.454 | −0.513 | 0.391 | 0.083 | |
3 | 1.032 | −0.906 | 0.800 | 0.156 | |
4 | 9.632 | −9.301 | 8.836 | 0.441 | |
PGA | 1 | 0.800 | −0.943 | 0.718 | 0.120 |
2 | 2.388 | −1.968 | 1.900 | 0.266 | |
3 | 5.902 | −5.187 | 4.927 | 0.564 | |
4 | 16.674 | −11.583 | 13.557 | 2.567 | |
Front-end | 1 | 0.844 | −0.680 | 0.680 | 0.115 |
2 | 2.122 | −1.771 | 1.842 | 0.209 | |
3 | 6.429 | −5.271 | 5.748 | 0.612 | |
4 | 20.661 | −19.271 | 18.882 | 4.967 | |
ADC | 1 | 0.040 | −0.040 | 0.017 | 0.015 |
2 | 0.713 | −0.775 | 0.432 | 0.261 | |
3 | 8.119 | −6.218 | 6.934 | 2.638 | |
4 | 22.991 | −16.687 | 19.814 | 6.513 | |
All stage | 1 | 0.825 | −0.506 | 0.520 | 0.188 |
2 | 2.826 | −1.269 | 1.692 | 0.841 | |
3 | 8.342 | −6.832 | 7.737 | 2.813 | |
4 | 25.580 | −24.482 | 20.072 | 7.121 |
Parameter | Stage | Value | Unit | Notes |
---|---|---|---|---|
System-Level Performance Targets | ||||
Spike Detection Accuracy | System | >90 | % | For reliable detection |
Handwriting Decoding CC | System | >0.85 | - | For reliable decoding |
LNA Specifications | ||||
Target THD | LNA | <−34.32 | dB | For >90% accuracy |
Corresponding SNDR | LNA | >30.70 | dB | From distortion level 3 |
PGA Specifications | ||||
Target THD | PGA | <−33.73 | dB | For >90% accuracy |
Corresponding SNDR | PGA | >30.48 | dB | From distortion level 3 |
ADC Specifications | ||||
Target THD | ADC | <−57.95 | dB | For >90% accuracy |
Corresponding SNDR | ADC | >57.84 | dB | From distortion level 2 |
Target Resolution | ADC | 10 | bits | Optimal trade-off point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Xu, J.; Wang, Y. Non-Linear Modeling and Precision Analysis Approach for Implantable Multi-Channel Neural Recording Systems. Micromachines 2025, 16, 1176. https://doi.org/10.3390/mi16101176
He J, Xu J, Wang Y. Non-Linear Modeling and Precision Analysis Approach for Implantable Multi-Channel Neural Recording Systems. Micromachines. 2025; 16(10):1176. https://doi.org/10.3390/mi16101176
Chicago/Turabian StyleHe, Jinyan, Jian Xu, and Yueming Wang. 2025. "Non-Linear Modeling and Precision Analysis Approach for Implantable Multi-Channel Neural Recording Systems" Micromachines 16, no. 10: 1176. https://doi.org/10.3390/mi16101176
APA StyleHe, J., Xu, J., & Wang, Y. (2025). Non-Linear Modeling and Precision Analysis Approach for Implantable Multi-Channel Neural Recording Systems. Micromachines, 16(10), 1176. https://doi.org/10.3390/mi16101176