Automated Platforms in C. elegans Research: Integration of Microfluidics, Robotics, and Artificial Intelligence
Abstract
1. Introduction
2. Micromanipulation Techniques
2.1. Immobilization
2.1.1. Advances in Immobilization Techniques up to 2020
2.1.2. Recent Advances in Immobilization Techniques (2020–Present)
2.2. Sorting
2.2.1. Key Advances in Sorting Strategies up to 2020
2.2.2. Recent Progress in Sorting Strategies (2020–Present)
2.3. Microinjection and Microsurgery
2.3.1. Technological Advances in Microinjection and Microsurgery up to 2020
2.3.2. Current Advances in Microinjection and Microsurgery Platforms (2020–Present)
3. Worm Imaging
3.1. Emerging Trends in Worm Imaging (2020–Present)
3.1.1. Microfluidic-Based Imaging Platforms
3.1.2. Non-Microfluidic-Based Imaging Platforms
3.1.3. Optofluidic Platforms
4. Assay Automation and Aging Analysis
4.1. Major Advances in Assay Automation Prior to 2020
4.2. State of the Art in Assay Automation (2020–Present)
4.2.1. Microfluidic-Based Platforms
4.2.2. Non-Microfluidic-Based Platforms
5. High-Throughput Screening
5.1. Notable Advances in HTS Platforms up to 2020
5.2. Trends and Advances in HTS Platforms(2020–Present)
5.2.1. Drug Screening and Behavioral Phenotyping
5.2.2. Chemical and Toxicity Screening
5.2.3. Developmental and Genetic Screening
6. Discussion and Future Prospects
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamili, F.; Lu, H. Recent Advances and Trends in Microfluidic Platforms for C. elegans Biological Assays. Annu. Rev. Anal. Chem. 2018, 11, 245–264. [Google Scholar] [CrossRef]
- Wen, H.; Qin, J. Analysis of Caenorhabditis elegans in microfluidic devices. Sci. China Chem. 2012, 55, 484–493. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Yuan, X.; Lu, X.; Sun, X. Advances in C. elegans behavior research with microfluidic devices and its future prospects in the evaluation of exogenous pollutants. TrAC Trends Anal. Chem. 2021, 136, 116195. [Google Scholar] [CrossRef]
- Aubry, G.; Lu, H. A perspective on optical developments in microfluidic platforms for Caenorhabditis elegans research. Biomicrofluidics 2014, 8, 011301. [Google Scholar] [CrossRef]
- Gupta, B.; Rezai, P. Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans. Micromachines 2016, 7, 123. [Google Scholar] [CrossRef]
- Yuan, H.; Yuan, W.; Duan, S.; Jiao, K.; Zhang, Q.; Lim, E.G.; Chen, M.; Zhao, C.; Pan, P.; Liu, X.; et al. Microfluidic-Assisted Caenorhabditis elegans Sorting: Current Status and Future Prospects. Cyborg Bionic Syst. 2023, 4, 0011. [Google Scholar] [CrossRef]
- Muthaiyan Shanmugam, M.; Subhra Santra, T. Microfluidic Devices in Advanced Caenorhabditis elegans Research. Molecules 2016, 21, 1006. [Google Scholar] [CrossRef]
- Midkiff, D.; San-Miguel, A. Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of C. elegans. Molecules 2019, 24, 4292. [Google Scholar] [CrossRef]
- Bakhtina, N.A.; MacKinnon, N.; Korvink, J.G. Advanced Microfluidic Assays for C. elegans. In Advances in Microfluidics—New Applications in Biology, Energy, and Materials Sciences; InTechOpen: London, UK, 2016. [Google Scholar]
- Bakhtina, N.A.; Korvink, J.G. Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv. 2014, 4, 4691–4709. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, J.; Son, Y.B.; Lee, S.A.; Choi, S.S.; Cho, Y. Advanced Neural Functional Imaging in C. elegans Using Lab-on-a-Chip Technology. Micromachines 2024, 15, 1027. [Google Scholar] [PubMed]
- Felker, D.P.; Robbins, C.E.; McCormick, M.A. Automation of C. elegans lifespan measurement. Transl. Med. Aging 2020, 4, 1–10. [Google Scholar] [CrossRef]
- Clark, A.S.; Huayta, J.; Arulalan, K.S.; San-Miguel, A. Microfluidic devices for imaging and manipulation of C. elegans. In Micro and Nano Systems for Biophysical Studies of Cells and Small Organisms; Elsevier: Amsterdam, The Netherlands, 2021; pp. 295–321. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128239902000131 (accessed on 11 June 2025).
- Pan, P.; Song, P.; Dong, X.; Zhang, W.; Sun, Y.; Liu, X. Microfluidic devices for immobilization and micromanipulation of single cells and small organisms. In Microfluidic Devices for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 391–412. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128199718000160 (accessed on 28 May 2025).
- Hulme, S.E.; Shevkoplyas, S.S.; Apfeld, J.; Fontana, W.; Whitesides, G.M. A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 2007, 7, 1515. [Google Scholar] [CrossRef]
- Allen, P.B.; Sgro, A.E.; Chao, D.L.; Doepker, B.E.; Edgar, J.S.; Shen, K.; Chiu, D.T. Single-synapse ablation and long-term imaging in live C. elegans. J. Neurosci. Methods 2008, 173, 20–26. [Google Scholar] [CrossRef]
- Berger, S.; Lattmann, E.; Aegerter-Wilmsen, T.; Hengartner, M.; Hajnal, A.; deMello, A.; i Solvas, X.C. Long-term C. elegans immobilization enables high resolution developmental studies in vivo. Lab Chip 2018, 18, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.X.; Bourgeois, F.; Chokshi, T.; Durr, N.J.; A Hilliard, M.; Chronis, N.; Ben-Yakar, A. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods 2008, 5, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Rohde, C.B.; Yanik, M.F. Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 2008, 8, 653. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Ahlawat, S.; Rau, K.; Venkataraman, V.; Koushika, S.P. Imaging in vivo Neuronal Transport in Genetic Model Organisms Using Microfluidic Devices. Traffic 2011, 12, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Gilleland, C.L.; Rohde, C.B.; Zeng, F.; Yanik, M.F. Microfluidic immobilization of physiologically active Caenorhabditis elegans. Nat. Protoc. 2010, 5, 1888–1902. [Google Scholar] [CrossRef]
- Martinez, M.A.Q.; Kinney, B.A.; Medwig-Kinney, T.N.; Ashley, G.; Ragle, J.M.; Johnson, L.; Aguilera, J.; Hammell, C.M.; Ward, J.D.; Matus, D.Q. Rapid Degradation of Caenorhabditis elegans Proteins at Single-Cell Resolution with a Synthetic Auxin. G3 Genes Genomes Genet. 2020, 10, 267–280. [Google Scholar] [CrossRef]
- Keil, W.; Kutscher, L.M.; Shaham, S.; Siggia, E.D. Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics. Dev. Cell. 2017, 40, 202–214. [Google Scholar] [CrossRef]
- Krajniak, J.; Lu, H. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 2010, 10, 1862. [Google Scholar]
- Aubry, G.; Zhan, M.; Lu, H. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip 2015, 15, 1424–1431. [Google Scholar] [CrossRef]
- Gijs, M. Studying the roundworm Caenorhabditis elegans using microfluidic chips. In Microfluidics, BioMEMS, and Medical Microsystems XVII; Gray, B.L., Becker, H., Eds.; SPIE: San Francisco, CA, USA, 2019; p. 43. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10875/2513194/Studying-the-roundworm-Caenorhabditis-elegans-using-microfluidic-chips/10.1117/12.2513194.full (accessed on 11 June 2025).
- Chuang, H.S.; Chen, H.Y.; Chen, C.S.; Chiu, W.T. Immobilization of the nematode Caenorhabditis elegans with addressable light-induced heat knockdown (ALINK). Lab Chip 2013, 13, 2980. [Google Scholar] [CrossRef] [PubMed]
- Cornaglia, M.; Mouchiroud, L.; Marette, A.; Narasimhan, S.; Lehnert, T.; Jovaisaite, V.; Auwerx, J.; Gijs, M.A.M. An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging. Sci. Rep. 2015, 5, 10192. [Google Scholar] [CrossRef]
- Chokshi, T.V.; Ben-Yakar, A.; Chronis, N. CO2 and compressive immobilization of C. elegans on-chip. Lab Chip 2009, 9, 151–157. [Google Scholar] [CrossRef]
- Sridhar, N.; Fajrial, A.K.; Doser, R.L.; Hoerndli, F.J.; Ding, X. Surface acoustic wave microfluidics for repetitive and reversible temporary immobilization of C. elegans. Lab Chip 2022, 22, 4882–4893. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Grooms, N.W.F.; Jaklitsch, E.L.; Schulting, L.G.; Chung, S.H. High-throughput submicron-resolution microscopy of Caenorhabditis elegans populations under strong immobilization by cooling cultivation plates. iScience 2023, 26, 105999. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Vallier, J.; Lu, H. Microfluidic localized hydrogel polymerization enables simultaneous recording of neural activity and behavior in C. elegans. React. Chem. Eng. 2024, 9, 666–676. [Google Scholar] [CrossRef]
- Techniques for Analysis Sorting Dispensing of C. elegans on the COPASTM Flow-Sorting System. In C. elegans; Humana Press: Totowa, NJ, USA, 2006; pp. 275–286. Available online: http://link.springer.com/10.1385/1-59745-151-7:275 (accessed on 16 July 2025).
- Solvas, X.C.I.; Geier, F.M.; Leroi, A.M.; Bundy, J.G.; Edel, J.B.; deMello, A.J. High-throughput age synchronisation of Caenorhabditis elegans. Chem. Commun. 2011, 47, 9801. [Google Scholar] [CrossRef]
- Ai, X.; Zhuo, W.; Liang, Q.; McGrath, P.T.; Lu, H. A high-throughput device for size based separation of C. elegans developmental stages. Lab Chip 2014, 14, 1746–1752. [Google Scholar] [CrossRef]
- Han, B.; Kim, D.; Hyun Ko, U.; Shin, J.H. A sorting strategy for C. elegans based on size-dependent motility and electrotaxis in a micro-structured channel. Lab Chip 2012, 12, 4128. [Google Scholar] [CrossRef]
- Rezai, P.; Salam, S.; Selvaganapathy, P.R.; Gupta, B.P. Electrical sorting of Caenorhabditis elegans. Lab Chip 2012, 12, 1831. [Google Scholar] [CrossRef]
- Dong, L.; Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure. Lab Chip 2016, 16, 574–585. [Google Scholar] [CrossRef]
- Rohde, C.B.; Zeng, F.; Gonzalez-Rubio, R.; Angel, M.; Yanik, M.F. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc. Natl. Acad. Sci. USA 2007, 104, 13891–13895. [Google Scholar] [CrossRef]
- Union Biometrica Inc. COPAS InfinityTM Brochure; Union Biometrica, Inc.: Holliston, MA, USA, 2022; Available online: https://www.unionbio.com/documents/Introducing_COPAS_Infinity.pdf (accessed on 15 July 2025).
- Pan, P.; Qin, Z.; Sun, W.; Zhou, Y.; Wang, S.; Song, P.; Wang, Y.; Ru, C.; Wang, X.; Calarco, J.; et al. A spiral microfluidic device for rapid sorting, trapping, and long-term live imaging of Caenorhabditis elegans embryos. Microsyst. Nanoeng. 2023, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Putzke, A.; Measor, P. A 3D printed microfluidic worm sorting device. In Microfluidics, BioMEMS, and Medical Microsystems XXIII; Rapp, B.E., Dalton, C., Eds.; SPIE: San Francisco, CA, USA, 2025; p. 26. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13312/3043916/A-3D-printed-microfluidic-worm-sorting-device/10.1117/12.3043916.full (accessed on 1 July 2025).
- Hwang, H.; Lu, H. Microfluidic tools for developmental studies of small model organisms –nematodes, fruit flies, and zebrafish. Biotechnol. J. 2013, 8, 192–205. [Google Scholar] [CrossRef]
- Frey, N.; Sönmez, U.M.; Minden, J.; LeDuc, P. Microfluidics for understanding model organisms. Nat. Commun. 2022, 13, 3195. [Google Scholar] [CrossRef]
- Mello, C.; Fire, A. DNA Transformation. In Caenorhubditis elegans: Modern Biologcal Analysis of an Organism, 1st ed.; Methods in Cell Biology; Academic Press: San Diego, CA, USA; Elsevier: Amsterdam, The Netherlands, 1995; Volume 48, pp. 451–482. [Google Scholar]
- Avery, L.; Horvitz, H.R. A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 1987, 51, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Lu, H. Automated high-throughput cell microsurgery on-chip. Lab Chip 2009, 9, 2764. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, F.; Tang, L.; Du, W.; Feng, X.; Liu, B.F. Microfluidic chip-based C. elegans microinjection system for investigating cell–cell communication in vivo. Biosens. Bioelectron. 2013, 50, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Dong, X.; Liu, X. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans. Biomicrofluidics 2016, 10, 011912. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, R.; Tong, J.; Gupta, B.P.; Selvaganapathy, P.R. Microfluidic Device for Microinjection of Caenorhabditis elegans. Micromachines 2020, 11, 295. [Google Scholar] [CrossRef]
- Gibney, T.V.; Favichia, M.; Latifi, L.; Medwig-Kinney, T.N.; Matus, D.Q.; McIntyre, D.C.; Arrigo, A.B.; Branham, K.R.; Bubrig, L.T.; Ghaddar, A.; et al. A simple method to dramatically increase C. elegans germline microinjection efficiency. Dev. Biol. 2023, 502, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Lockery, S.R.; Pop, S.; Jussila, B. Microinjection in C. elegans by direct penetration of elastomeric membranes. Biomicrofluidics 2023, 17, 014103. [Google Scholar] [PubMed]
- Pan, P.; Zoberman, M.; Zhang, P.; Premachandran, S.; Bhatnagar, S.; Pilaka-Akella, P.P.; Sun, W.; Li, C.; Martin, C.; Xu, P.; et al. Robotic microinjection enables large-scale transgenic studies of Caenorhabditis elegans. Nat. Commun. 2024, 15, 8848. [Google Scholar] [CrossRef]
- Harreguy, M.B.; Marfil, V.; Grooms, N.W.F.; Gabel, C.V.; Chung, S.H.; Haspel, G. Ytterbium-doped fibre femtosecond laser offers robust operation with deep and precise microsurgery of C. elegans neurons. Sci. Rep. 2020, 10, 4545. [Google Scholar] [CrossRef]
- Fouad, A.D.; Liu, A.; Du, A.; Bhirgoo, P.D.; Fang-Yen, C. Thermal laser ablation with tunable lesion size reveals multiple origins of seizure-like convulsions in Caenorhabditis elegans. Sci. Rep. 2021, 11, 5084. [Google Scholar] [CrossRef]
- Zhao, P.; Mondal, S.; Martin, C.; DuPlissis, A.; Chizari, S.; Ma, K.-Y.; Maiya, R.; Messing, R.O.; Jiang, N.; Ben-Yakar, A. Femtosecond laser microdissection for isolation of regenerating C. elegans neurons for single-cell RNA sequencing. Nat. Methods 2023, 20, 590–599. [Google Scholar]
- Chronis, N.; Zimmer, M.; Bargmann, C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 2007, 4, 727–731. [Google Scholar] [CrossRef]
- Shi, W.; Wen, H.; Lu, Y.; Shi, Y.; Lin, B.; Qin, J. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab Chip 2010, 10, 2855. [Google Scholar] [CrossRef]
- Wen, H.; Shi, W.; Qin, J. Multiparameter evaluation of the longevity in C. elegans under stress using an integrated microfluidic device. Biomed. Microdevices 2012, 14, 721–728. [Google Scholar] [CrossRef]
- Saberi-Bosari, S.; Huayta, J.; San-Miguel, A. A microfluidic platform for lifelong high-resolution and high throughput imaging of subtle aging phenotypes in C. elegans. Lab Chip 2018, 18, 3090–3100. [Google Scholar] [CrossRef]
- Zhu, G.; Yin, F.; Wang, L.; Wei, W.; Jiang, L.; Qin, J. Modeling type 2 diabetes-like hyperglycemia in C. elegans on a microdevice. Integr. Biol. 2016, 8, 30–38. [Google Scholar] [CrossRef]
- Hwang, H.; Barnes, D.E.; Matsunaga, Y.; Benian, G.M.; Ono, S.; Lu, H. Muscle contraction phenotypic analysis enabled by optogenetics reveals functional relationships of sarcomere components in Caenorhabditis elegans. Sci. Rep. 2016, 6, 19900. [Google Scholar] [CrossRef]
- Chung, J.; Brittin, C.A.; Evans, S.D.; Cohen, N.; Shim, J.-U. Rotatable microfluidic device for simultaneous study of bilateral chemosensory neurons in Caenorhabditis elegans. Microfluid. Nanofluid. 2020, 24, 56. [Google Scholar] [CrossRef]
- Mondal, S.; Dubey, J.; Awasthi, A.; Sure, G.R.; Vasudevan, A.; Koushika, S.P. Tracking Mitochondrial Density and Positioning along a Growing Neuronal Process in Individual C. elegans Neuron Using a Long-Term Growth and Imaging Microfluidic Device. eNeuro 2021, 8, ENEURO.0360-20.2021. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Spiri, S.; deMello, A.; Hajnal, A. Microfluidic-based imaging of complete Caenorhabditis elegans larval development. Development 2021, 148, dev199674. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Cho, Y.; Schafer, W.R.; Lu, H. Dynamic temperature control in microfluidics for in vivo imaging of cold-sensing in C. elegans. Biophys. J. 2024, 123, 947–956. [Google Scholar] [CrossRef]
- Puchalt, J.C.; Gonzalez-Rojo, J.F.; Gómez-Escribano, A.P.; Vázquez-Manrique, R.P.; Sánchez-Salmerón, A.J. Multiview motion tracking based on a cartesian robot to monitor Caenorhabditis elegans in standard Petri dishes. Sci. Rep. 2022, 12, 1767. [Google Scholar] [CrossRef]
- Ji, H. Automated multimodal imaging of Caenorhabditis elegans behavior in multi-well plates. bioRxiv 2024. [Google Scholar] [CrossRef]
- Song, P.; Guo, C.; Jiang, S.; Wang, T.; Hu, P.; Hu, D.; Zhang, Z.; Feng, B.; Zheng, G. Optofluidic ptychography on a chip. Lab Chip 2021, 21, 4549–4556. [Google Scholar] [CrossRef]
- Rahimpouresfahani, F.; Tabatabaei, N.; Rezai, P. High-throughput light sheet imaging of adult and larval C. elegans Parkinson’s disease model using a low-cost optofluidic device and a fluorescent microscope. RSC Adv. 2024, 14, 626–639. [Google Scholar] [CrossRef]
- Stroustrup, N.; Ulmschneider, B.E.; Nash, Z.M.; López-Moyado, I.F.; Apfeld, J.; Fontana, W. The Caenorhabditis elegans Lifespan Machine. Nat. Methods 2013, 10, 665–670. [Google Scholar] [CrossRef]
- Churgin, M.A.; Jung, S.K.; Yu, C.C.; Chen, X.; Raizen, D.M.; Fang-Yen, C. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife 2017, 6, e26652. [Google Scholar] [CrossRef]
- Xian, B.; Shen, J.; Chen, W.; Sun, N.; Qiao, N.; Jiang, D.; Yu, T.; Men, Y.; Han, Z.; Pang, Y.; et al. WormFarm: A quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 2013, 12, 398–409. [Google Scholar] [CrossRef]
- Mathew, M.D.; Mathew, N.D.; Ebert, P.R. WormScan: A Technique for High-Throughput Phenotypic Analysis of Caenorhabditis elegans. PLoS ONE 2012, 7, e33483. [Google Scholar] [CrossRef]
- Restif, C.; Ibáñez-Ventoso, C.; Vora, M.M.; Guo, S.; Metaxas, D.; Driscoll, M. CeleST: Computer Vision Software for Quantitative Analysis of C. elegans Swim Behavior Reveals Novel Features of Locomotion. PLoS Comput. Biol. 2014, 10, e1003702. [Google Scholar] [CrossRef]
- Rahman, M.; Edwards, H.; Birze, N.; Gabrilska, R.; Rumbaugh, K.P.; Blawzdziewicz, J.; Szewczyk, N.J.; Driscoll, M.; Vanapalli, S.A. NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci. Rep. 2020, 10, 16190. [Google Scholar] [CrossRef]
- Le, K.N.; Zhan, M.; Cho, Y.; Wan, J.; Patel, D.S.; Lu, H. An automated platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under precise environmental control. Commun. Biol. 2020, 3, 297. [Google Scholar] [CrossRef]
- Krenger, R.; Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Microfluidic system for Caenorhabditis elegans culture and oxygen consumption rate measurements. Lab. Chip 2020, 20, 126–135. [Google Scholar] [CrossRef]
- Statzer, C.; Reichert, P.; Dual, J.; Ewald, C.Y. Longevity interventions temporally scale health span in Caenorhabditis elegans. iScience 2022, 25, 103983. [Google Scholar] [CrossRef]
- Sohrabi, S.; Cota, V.; Murphy, C.T. CeLab, a microfluidic platform for the study of life history traits, reveals metformin and SGK-1 regulation of longevity and reproductive span. Lab Chip 2023, 23, 2738–2757. [Google Scholar] [CrossRef]
- Banse, S.A.; Jarrett, C.M.; Robinson, K.J.; Blue, B.W.; Shaw, E.L.; Phillips, P.C. The egg-counter: A novel microfluidic platform for characterization of Caenorhabditis elegans egg-laying. Lab Chip 2024, 24, 2975–2986. [Google Scholar] [CrossRef]
- Puchalt, J.C.; Sánchez-Salmerón, A.J.; Ivorra, E.; Llopis, S.; Martínez, R.; Martorell, P. Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques. Sci. Rep. 2021, 11, 12289. [Google Scholar] [CrossRef]
- Kerr, R.A.; Roux, A.E.; Goudeau, J.; Kenyon, C. The C. elegans Observatory: High-throughput exploration of behavioral aging. Front. Aging 2022, 3, 932656. Available online: https://www.frontiersin.org/articles/10.3389/fragi.2022.932656/full (accessed on 10 July 2025). [CrossRef]
- Zavagno, G.; Raimundo, A.; Kirby, A.; Saunter, C.; Weinkove, D. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. GeroScience 2023, 46, 2281–2293. [Google Scholar] [CrossRef]
- Li, Z. A robotic system for automated genetic manipulation and analysis of Caenorhabditis elegans. PNAS Nexus 2023, 2, pgad197. [Google Scholar] [CrossRef]
- Cornaglia, M.; Lehnert, T.; Gijs, M.A.M. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans. Lab Chip 2017, 17, 3736–3759. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; You, D.K.; Jeong, U.; Lee, M.; Kim, E.; Jeon, T.-J.; Kim, S.M. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and C. elegans-Based Innovations. Biosensors 2024, 14, 55. [Google Scholar] [CrossRef]
- Yarmey, V.R.; San-Miguel, A. Biomarkers for aging in Caenorhabditis elegans high throughput screening. Biochem. Soc. Trans. 2024, 52, 1405–1418. [Google Scholar] [CrossRef]
- Kwok, T.C.Y.; Ricker, N.; Fraser, R.; Chan, A.W.; Burns, A.; Stanley, E.F.; McCourt, P.; Cutler, S.R.; Roy, P.J. A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 2006, 441, 91–95. [Google Scholar] [CrossRef]
- Ashrafi, K.; Chang, F.Y.; Watts, J.L.; Fraser, A.G.; Kamath, R.S.; Ahringer, J.; Ruvkun, G. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 2003, 421, 268–272. [Google Scholar] [CrossRef]
- Hunt-Newbury, R.; Viveiros, R.; Johnsen, R.; Mah, A.; Anastas, D.; Fang, L.; Halfnight, E.; Lee, D.; Lin, J.; Lorch, A.; et al. High-Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans. PLoS Biol. 2007, 5, e237. [Google Scholar] [CrossRef]
- Petrascheck, M.; Ye, X.; Buck, L.B. An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 2007, 450, 553–556. [Google Scholar] [CrossRef]
- Carr, J.A.; Parashar, A.; Gibson, R.; Robertson, A.P.; Martin, R.J.; Pandey, S. A microfluidic platform for high-sensitivity, real-time drug screening on C. elegans and parasitic nematodes. Lab Chip 2011, 11, 2385. [Google Scholar] [CrossRef]
- Mondal, S.; Hegarty, E.; Martin, C.; Gökçe, S.K.; Ghorashian, N.; Ben-Yakar, A. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nat. Commun. 2016, 7, 13023. [Google Scholar] [CrossRef]
- Samara, C.; Rohde, C.B.; Gilleland, C.L.; Norton, S.; Haggarty, S.J.; Yanik, M.F. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 18342–18347. [Google Scholar] [CrossRef]
- Crane, M.M.; Stirman, J.N.; Ou, C.-Y.; Kurshan, P.T.; Rehg, J.M.; Shen, K.; Lu, H. Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat. Methods 2012, 9, 977–980. [Google Scholar]
- Letizia, M.C.; Cornaglia, M.; Trouillon, R.; Sorrentino, V.; Mouchiroud, L.; Sleiman, M.S.B.; Auwerx, J.; Gijs, M.A.M. Microfluidics-enabled phenotyping of a whole population of C. elegans worms over their embryonic and post-embryonic development at single-organism resolution. Microsyst. Nanoeng. 2018, 4, 6. [Google Scholar] [CrossRef]
- Sohrabi, S.; Mor, D.E.; Kaletsky, R.; Keyes, W.; Murphy, C.T. High-throughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 2021, 4, 203. Available online: https://www.nature.com/articles/s42003-021-01731-z (accessed on 17 July 2025). [CrossRef]
- O’Brien, T.J.; Barlow, I.L.; Feriani, L.; Brown, A.E. High-throughput tracking enables systematic phenotyping and drug repurposing in C. elegans disease models. eLife 2025, 12, RP92491. Available online: https://elifesciences.org/articles/92491 (accessed on 17 July 2025). [CrossRef] [PubMed]
- Dranchak, P.K.; Oliphant, E.; Queme, B.; Lamy, L.; Wang, Y.; Huang, R.; Xia, M.; Tao, D.; Inglese, J. In vivo quantitative high-throughput screening for drug discovery and comparative toxicology. Dis. Models Mech. 2023, 16, dmm049863. Available online: https://journals.biologists.com/dmm/article/16/3/dmm049863/297266/In-vivo-quantitative-high-throughput-screening-for (accessed on 21 July 2025). [CrossRef] [PubMed]
- Fryer, E.; Guha, S.; Rogel-Hernandez, L.E.; Logan-Garbisch, T.; Farah, H.; Rezaei, E.; Mollhoff, I.N.; Nekimken, A.L.; Xu, A.; Seyahi, L.S.; et al. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans. PLoS Biol. 2024, 22, e3002672. [Google Scholar] [CrossRef] [PubMed]
- Baris Atakan, H.; Alkanat, T.; Cornaglia, M.; Trouillon, R.; Gijs, M.A.M. Automated phenotyping of Caenorhabditis elegans embryos with a high-throughput-screening microfluidic platform. Microsyst Nanoeng. 2020, 6, 24. Available online: https://www.nature.com/articles/s41378-020-0132-8 (accessed on 21 July 2025). [CrossRef]
- Stevenson, Z.C.; Moerdyk-Schauwecker, M.J.; Banse, S.A.; Patel, D.S.; Lu, H.; Phillips, P.C. High-throughput library transgenesis in Caenorhabditis elegans via Transgenic Arrays Resulting in Diversity of Integrated Sequences (TARDIS). eLife 2023, 12, RP84831. Available online: https://elifesciences.org/articles/84831 (accessed on 21 July 2025). [CrossRef]
Platforms | Functional Category | Throughput | Resolution | Cost | Automation Level |
---|---|---|---|---|---|
SAW-based microfluidic platform [30] | Immobilization | Low (1 worm at a time) | Subcellular | Low | Semi-automated |
Copli [31] | High (~1.5–9 worms/min) | Submicron (0.5 μm transverse and ~4 μm axial) | Low | Semi-automated | |
Immobilization by hydrogel polymerization in microfluidic platform [32] | High (exact number not mentioned) | Cellular (10× widefield) | Moderate (>manual immobilization, <commercial microfluidic systems) | Semi-automated | |
COPAS Infinity [40] | Sorting | High (exact number not mentioned) | Multi-parameter detection (not imaging) | High | Fully- automated |
Spiral microfluidic device [41] | 10 embryos/min | Single-embryo | Low | Partially automated | |
3D printed microfluidic worm sorting device [42] | ~100 worms/min | Subcellular | Low to Moderate | Semi-automated | |
Microfluidic microinjector for passive immobilization [50] | Microinjection & Microsurgery | ~30 s/worm | Cellular (gonad-level) | Low to Moderate | Semi-automated |
Paintbrush for worm handling [51] | at least 15 worms in <1 min | Subcellular | Very low | Manual | |
Poker chip [52] | 2.32 min/worm | Subcellular | Low | Semi-automated | |
Robotic microinjection [53] | 44.5 s/worm | Subcellular | Moderate To High | Highly automated | |
Ytterbium-doped fiber femtosecond laser for microsurgery [54] | single worm at a time | Cellular and subcellular (~1.3–1.6 μm) | Moderate To High | Manual | |
Thermal laser ablation [55] | Low (single worm at a time, few worms/hour) | Tunable, ~2–5 µm (single-cell to nerve cord) | Moderate | Manual | |
Femtosecond laser microdissection [56] | ~5 neurons/hour | Submicron ablation precision | High | Manual | |
Rotatable microfluidic device for bilateral chemosensory neuron imaging [63] | Imaging | ~10 worms/hour | Cellular resolution for bilateral neurons | Low To Moderate | Semi-automated |
Long-term imaging microfluidic device for mitochondrial density tracking [64] | long-term single-worm imaging | Subcellular | Low | Semi-automated | |
Microfluidic imaging method for parallel live imaging of larval development [65] | ~ 10 worms over 48 h | Single-cell (0.2–0.5 µm z-spacing with 40×–60× magnification) | Low | Semi-automated | |
Microfluidic imaging platform for in vivo imaging in dynamic temperature control [66] | single-worm calcium imaging | Single-neuron, sub-second temporal resolution | Low To Moderate | Semi-automated | |
Cartesian robot-based imaging with multiview motion tracking [67] | ~90 worms per run | Worm-level and posture-level motion tracking (up to ~1 µm/pixel) | Moderate | Fully- automated | |
Computer-vision integrated multimodal imaging in multi-well-plates [68] | High (96 worms simultaneously with 5 h experiment time) | Organism-level behavioral resolution (18 µm/pixel) | Moderate | Fully- automated | |
Optofluidic ptychography [69] | ~1000 cells in 5 min | Submicron resolution | Low To Moderate | Semi-automated to automated | |
Optofluidic device for light-sheet imaging [70] | ~20–25 worms/min | Cellular-resolution imaging of dopaminergic neurons (lateral resolution 1.1 µm, axial 2.4 µm) | Low | Semi-automated | |
NemaLife chip [76] | Assay automation | ~100 animals per chip | Single-worm level | Low | Semi-automated |
HeALTH (microfluidic platform) [77] | 60 worms/device | Organism-level behavioral resolution | Moderate | Highly automated | |
Microfluidic system integrated with luminescence-based oxygen sensing [78] | 1 worm/chip | Metabolic resolution (oxygen consumption rate (OCR) in pmol/min per worm) | Low To Moderate | Semi-automated | |
Microfluidic device integrated with acoustophoretic force fields [79] | Physiological resolution (functional readouts-force/power) | Moderate | Semi-automated | ||
CeLab [80] | ~1000 worms/experiment, in 5 chips simultaneously | Organism-level (individual worm resolution) | Low To Moderate | Semi-automated | |
Egg-counter [81] | 32 worms/chip | Behavioral and temporal | Low | Semi-automated | |
SiViS [82] | 10–15 worms/55 mm plate | Organism-level (30 µm/pixel) | Low | Highly automated | |
C. elegans Observatory [83] | ~40–60 worm/6 cm plate, up to 576 plates/incubator cycle | Worm-level (40 µm/pixel, morphology and behavioral metrics) | Moderate To High | Highly automated | |
WormGazer [84] | Images every 5 min | Population- and organism-level (10 µm/s movement threshold) | Moderate | Highly automated | |
WormPicker [85] | Sorts worms at ~3.2 ± 0.7 worms/min, 144 agar plates simultaneously | Organismal + cellular-level fluorescence phenotyping (dual magnification) | High | Highly automated | |
CeSnAP [98] | High-throughput screening (HTS) | 1800 snapshots/hr, 70 wells imaged in ~20 min. high | Organism-level | Low To Moderate | Highly automated |
Behavioral phenotyping and drug repurpose screening using CRISPR [99] | High (thousands of worms/day, fixed number not mentioned) | 12.4 µm/pixel at 25 fps | Moderate | Highly automated | |
Quantitative high-throughput screening using laser-scanning cytometry [100] | High (tens of thousands of worms/day, fixed number not mentioned) | Organism-level | Moderate To High | Highly automated | |
Multi well-plate-based behavioral screening platform for measuring chemotaxis [101] | hundreds of worms per run (fixed number not mentioned) | Population-level | Low | Semi-automated | |
Microfluidic platform for embryo phenotyping [102] | High (800 embryos/chip) | Single-embryo, 20× brightfield | Low To Moderate | Semi-automated | |
TARDIS [103] | hundreds–thousands of transgenics per run (fixed number not mentioned) | genome/sequence level | Moderate | Low |
Platforms | Functional Category | Low-Resource Lab | High-Throughput Facilities |
---|---|---|---|
SAW-based microfluidic platform [30] | Immobilization | ||
Copli [31] | |||
Immobilization by hydrogel polymerization in microfluidic platform [32] | |||
COPAS Infinity [40] | Sorting | ||
Spiral microfluidic device [41] | |||
3D printed microfluidic worm sorting device [42] | |||
Microfluidic microinjector for passive immobilization [50] | Microinjection & Microsurgery | ||
Paintbrush for worm handling [51] | |||
Poker chip [52] | |||
Robotic microinjection [53] | |||
Ytterbium-doped fiber femtosecond laser for microsurgery [54] | |||
Thermal laser ablation [55] | |||
Femtosecond laser microdissection [56] | |||
Rotatable microfluidic device for bilateral chemosensory neuron imaging [63] | Imaging | ||
Long-term imaging microfluidic device for mitochondrial density tracking [64] | |||
Microfluidic imaging method for parallel live imaging of larval development [65] | |||
Microfluidic imaging platform for in vivo imaging in dynamic temperature control [66] | |||
Cartesian robot-based imaging with multiview motion tracking [67] | |||
Computer-vision integrated multimodal imaging in multi well-plates [68] | |||
Optofluidic ptychography [69] | |||
Optofluidic device for light-sheet imaging [70] | |||
NemaLife chip [76] | Assay automation | ||
HeALTH (microfluidic platform) [77] | |||
Microfluidic system integrated with luminescence-based oxygen sensing [78] | |||
Microfluidic device integrated with acoustophoretic force fields [79] | |||
CeLab [80] | |||
Egg-counter [81] | |||
SiViS [82] | |||
C. elegans Observatory [83] | |||
WormGazer [84] | |||
WormPicker [85] | |||
CeSnAP [98] | High-throughput screening (HTS) | ||
Behavioral phenotyping and drug repurpose screening using CRISPR [99] | |||
Quantitative high-throughput screening using laser-scanning cytometry [100] | |||
Multi well-plate-based behavioral screening platform for measuring chemotaxis [101] | |||
Microfluidic platform for embryo phenotyping [102] | |||
TARDIS [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahbub, T.B.; Safaeian, P.; Sohrabi, S. Automated Platforms in C. elegans Research: Integration of Microfluidics, Robotics, and Artificial Intelligence. Micromachines 2025, 16, 1138. https://doi.org/10.3390/mi16101138
Mahbub TB, Safaeian P, Sohrabi S. Automated Platforms in C. elegans Research: Integration of Microfluidics, Robotics, and Artificial Intelligence. Micromachines. 2025; 16(10):1138. https://doi.org/10.3390/mi16101138
Chicago/Turabian StyleMahbub, Tasnuva Binte, Parsa Safaeian, and Salman Sohrabi. 2025. "Automated Platforms in C. elegans Research: Integration of Microfluidics, Robotics, and Artificial Intelligence" Micromachines 16, no. 10: 1138. https://doi.org/10.3390/mi16101138
APA StyleMahbub, T. B., Safaeian, P., & Sohrabi, S. (2025). Automated Platforms in C. elegans Research: Integration of Microfluidics, Robotics, and Artificial Intelligence. Micromachines, 16(10), 1138. https://doi.org/10.3390/mi16101138