A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors
Abstract
1. Introduction
2. Working Principle of the Position Sensor
3. Structure Design of the Device and Simulation of the Sensing Performance
4. Fabrication Process
5. Experimental Characterizations
5.1. Quasi-Static and Dynamic Response of the Micromirror
5.2. Quasi-Static Characterizations of the Position Sensor
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Guo, S.; Wu, L.; Liu, L.; Choe, S.; Sorg, B.; Xie, H. 3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2d mems mirror. Opt. Express 2010, 18, 12065–12075. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, X.; Gong, Z.; Samuelson, S.; Duan, C.; Jia, H.; Ma, J.; Xie, H. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror. J. Biomed. Opt. 2013, 18, 086005. [Google Scholar] [CrossRef] [PubMed]
- Samanta, B.; Pardo, F.; Todd, S.; Kopf, R.; Eggleston, M. Low cost electrothermally actuated mems mirrors for high speed linear raster scanning. Optica 2022, 9, 251–257. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, X.; Feng, P.; Li, J.; Xie, H. A mems lens scanner based on serpentine electrothermal bimorph actuators for large axial tuning. Opt. Express 2020, 28, 23439–23453. [Google Scholar] [CrossRef] [PubMed]
- Tanguy, Q.; Gaiffe, O.; Passilly, N.; Cote, J.; Cabodevila, G.; Bargiel, S.; Lutz, P.; Xie, H.; Gorecki, C. Real-time lissajous imaging with a low-voltage 2-axis mems scanner based on electrothermal actuation. Opt. Express 2020, 28, 8512–8527. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Wang, W.; Zhang, X.; Xie, H. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror. Opt. Express 2016, 24, 22650–22660. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Watins, C.; Xie, H. MEMS Mirrors for LiDAR: A Review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dooley, S.; Watson, E.; McManamon, P.; Xie, H. A Tip-Tilt-Piston Micromirror Array for Optical Phased Array Applications. J. Microelectromech. Syst. 2010, 19, 1450–1461. [Google Scholar] [CrossRef]
- Yu, K.; Lee, D.; Krishnamoorthy, U.; Park, N.; Solgaard, O. Micromachined Fourier transform spectrometer on silicon optical bench platform. Sens. Actuator A Phys. 2006, 130–131, 523–530. [Google Scholar] [CrossRef]
- Sandner, T.; Grasshoff, T.; Gaumont, E.; Schenk, H.; Kenda, A. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers. J. Microlithogr. Microfabr. Microsyst. 2014, 13, 011115. [Google Scholar] [CrossRef]
- Erfan, M.; Sabry, Y.; Sakr, M.; Mortada, B.; Medhat, M.; Khalil, D. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing. Appl. Spectrosc. 2016, 70, 897–904. [Google Scholar] [CrossRef]
- Lee, J.; Choi, B.; Kim, J.; Jeon, D. Bonding of silicon scanning mirror having vertical comb fingers. J. Micromech. Microeng. 2002, 12, 644–649. [Google Scholar] [CrossRef]
- Lee, M.; Li, H.; Birla, M.; Li, G.; Wang, T.; Oldham, K. Capacitive sensing for 2-d electrostatic mems scanner in a clinical endomicroscope. IEEE Sens. J. 2022, 22, 24493–24503. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.; Brener, I.; Pu, C.; Lee, S.; Dadap, J.; Park, S.; Bergman, K.; Bonadeo, N.; Chau, T.; Chou, M. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. J. Microelectromech. Syst. 2005, 14, 261–273. [Google Scholar] [CrossRef]
- Dong, J.; Ferreira, P. Simultaneous actuation and displacement sensing for electrostatic drives. J. Micromech. Microeng. 2008, 18, 035011. [Google Scholar] [CrossRef]
- Frigerio, P.; Carminati, R.; Molinari, L.; Langfelder, G. Piezoresistive versus piezoelectric position sensing in mems micromirrors: A noise and temperature drift comparison. IEEE Sens. Lett. 2022, 6, 1500204. [Google Scholar] [CrossRef]
- Frigerio, P.; Diodoro, B.; Rho, V.; Carminati, R.; Boni, N.; Langfelder, G. Long-term characterization of a new wide-angle micromirror with PZT actuation and PZR sensing. J. Microelectromech. Syst. 2021, 30, 281–289. [Google Scholar] [CrossRef]
- Aonuma, T.; Kumagai, S.; Sasaki, M.; Tabata, M.; Hane, K. Characteristics and improved design of piezoresistive rotation angle sensor integrated in micromirror device. Jpn. J. Appl. Phys. 2009, 48, 04C191. [Google Scholar] [CrossRef]
- Frigerio, P.; Giancristofaro, L.; Molinari, L.; Furceri, R.; Zamprogno, M.; Carminati, R.; Boni, N.; Langfelder, G. Efficient Phase and Quadrature Control of a PZT Resonant MEMS Microscanner with Piezoresistive Position Sensor. In Proceedings of the 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 239–242. [Google Scholar]
- Liu, Y.; Feng, Y.; Sun, X.; Zhu, L.; Cheng, X.; Chen, Q.; Liu, Y.; Xie, H. Integrated tilt angle sensing for large displacement scanning mems mirrors. Opt. Express 2018, 26, 25736–25749. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, X.; Liu, Y.; Zhu, L.; Zhang, X.; Zhou, L.; Xie, H. Integrated optoelectronic position sensor for scanning micromirrors. Sensors 2018, 18, 982. [Google Scholar] [CrossRef]
- Ishikawa, I.; Sawada, R.; Higurashi, E.; Sanada, S.; Chino, D. Integrated micro-displacement sensor that measures tilting angle and linear movement of an external mirror. Sens. Actuator A Phys. 2007, 138, 269–275. [Google Scholar] [CrossRef]
- Ghazinouri, B.; He, S.; Tai, T. A position sensing method for 2d scanning mirrors. J. Micromech. Microeng. 2022, 32, 045007. [Google Scholar] [CrossRef]
- Coskun, M.; Thotahewa, K.; Ying, Y.; Yuce, M.; Neild, A.; Alan, T. Nanoscale displacement sensing using microfabricated variable-inductance planar coils. Appl. Phys. Lett. 2013, 103, 143501. [Google Scholar] [CrossRef]
- Tseng, V.; Xie, H. Resonant inductive coupling-based piston position sensing mechanism for large vertical displacement micromirrors. J. Microelectromech. Syst. 2016, 25, 207–216. [Google Scholar] [CrossRef]
- Tseng, V.; Xie, H. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing. Appl. Phys. Lett. 2015, 107, 214102. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, Q.; Wen, Z.; Huang, J.; Chang, F. An electromagnetic scanning mirror integrated with blazed grating and angle sensor for a near infrared micro spectrometer. J. Micromech. Microeng. 2017, 27, 125009. [Google Scholar] [CrossRef]
- Frank, S.; Shanshan, G.; Wen, L.; Jörga, A.; Marec, T.; Stefan, B.; Gundula, P.; Udo, B.; Malte, S. A 2D circular-scanning piezoelectric MEMS mirror for laser material processing. In Proceedings of the SPIE, MOEMS and Miniaturized Systems XX, Online, 6–11 March 2021; Volume 11697. [Google Scholar]
- Liu, Y.; Wang, L.; Su, Y.; Zhang, Y.; Wang, Y.; Wu, Z. AlScN Piezoelectric MEMS Mirrors with Large Field of View for LiDAR Application. Micromachines 2022, 13, 1550. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Ding, Y.; Yang, H.; Pan, T.; Xie, H. Integrated thermal convection-based position sensing for electrothermal micromirror. In Proceedings of the 22st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Kyoto, Japan, 25–29 June 2023; pp. 334–337. [Google Scholar]
- Feng, X.; Jain, A.; Pal, S.; Xiao, L.; Nishida, T.; Xie, H. LVD micromirror for rapid reference scanning in optical coherence tomography. In Proceedings of the SPIE Photonics West, San Jose, CA, USA, 20–25 January 2007; p. 64640M. [Google Scholar]
- Zhou, L.; Chen, Z.; Cheng, J.; Chen, Q.; Ding, Y.; Xie, H. Investigation of dynamic thermal behaviors of an electrothermal micromirror. Sens. Actuator A Phys. 2017, 263, 269–275. [Google Scholar] [CrossRef]
- Li, M.; Chen, Q.; Liu, Y.; Ding, Y.; Xie, H. Modeling and experimental verification of step response overshoot removal in electrothermally actuated MEMS mirrors. Micromachines 2017, 8, 289. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Device footprint | 3.6 mm × 3 mm |
Mirror plate size | 1 mm × 0.9 mm |
Bimorph lengths | 120 μm/240 μm/120 μm |
Bimorph width | 20 μm |
Beam length | 720 μm |
Beam width | 65 μm |
Heater length | 880 μm |
Heater width | 150 μm |
Thermistor length | 960 μm |
Thermistor width | 230 μm |
Thickness of Al | 1 μm |
Thickness of SiO2 | 1 μm |
Thickness of Pt | 0.15 μm |
Width of Pt in bimorph | 15 μm |
Width of Pt in sensor | 8 μm |
T0 = 293 K | T0 = 303 K | T0 = 313 K | T0 = 323 K | |
---|---|---|---|---|
Piston sensing sensitivities | 0.17 K/μm | 0.16 K/μm | 0.15 K/μm | 0.14 K/μm |
Tip-tilt sensing sensitivities | 1.09 K/° | 1.04 K/μm | 0.97 K/μm | 0.91 K/μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, A.; Ding, Y.; Yang, H.; Pan, T.; Zhang, Z.; Xie, H. A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors. Micromachines 2024, 15, 1017. https://doi.org/10.3390/mi15081017
Ren A, Ding Y, Yang H, Pan T, Zhang Z, Xie H. A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors. Micromachines. 2024; 15(8):1017. https://doi.org/10.3390/mi15081017
Chicago/Turabian StyleRen, Anrun, Yingtao Ding, Hengzhang Yang, Teng Pan, Ziyue Zhang, and Huikai Xie. 2024. "A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors" Micromachines 15, no. 8: 1017. https://doi.org/10.3390/mi15081017
APA StyleRen, A., Ding, Y., Yang, H., Pan, T., Zhang, Z., & Xie, H. (2024). A Large-Scan-Range Electrothermal Micromirror Integrated with Thermal Convection-Based Position Sensors. Micromachines, 15(8), 1017. https://doi.org/10.3390/mi15081017