A Novel Asymmetric Trench SiC Metal–Oxide–Semiconductor Field-Effect Transistor with a Poly-Si/SiC Heterojunction Diode for Optimizing Reverse Conduction Performance
Abstract
:1. Introduction
2. Device Structure and Mechanism
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vathulya, V.R.; Shang, H.; White, M.H. A novel 6H-SiC power DMOSFET with implanted p-well spacer. IEEE Electron Device Lett. 1999, 20, 354–356. [Google Scholar] [CrossRef]
- Cabello, M.; Soler, V.; Rius, G.; Montserrat, J.; Rebollo, J.; Godignon, P. Advanced processing for mobility improvement in 4H-SiC MOSFETs: A review. Mater. Sci. Semicond. Process. 2018, 78, 22–31. [Google Scholar] [CrossRef]
- Huang, R.; Tao, Y.; Bai, S.; Chen, G.; Wang, L.; Liu, A.; Wei, N.; Li, Y.; Zhao, Z. Design and fabrication of a 3.3 kV 4H-SiC MOSFET. J. Semicond. 2015, 36, 094002. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Reitano, R.; Sangregorio, E.; Calcagno, L.; Trotta, A.; Parisi, M.; Meda, L.; La Via, F. Effect of the Oxidation Process on Carrier Lifetime and on SF Defects of 4H SiC Thick Epilayer for Detection Applications. Micromachines 2022, 13, 1042. [Google Scholar] [CrossRef]
- Lee, G.; Ha, J.; Kim, K.; Bae, H.; Kim, C.-E.; Kim, J. Influence of Radiation-Induced Displacement Defect in 1.2 kV SiC Metal-Oxide-Semiconductor Field-Effect Transistors. Micromachines 2022, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cheng, X.; Wang, Q.; Zheng, L.; Shen, L.; Li, X.; Zhang, D.; Zhu, H.; Shen, D.; Yu, Y. Morphology improvement of SiC trench by inductively coupled plasma etching using Ni/Al2O3 bilayer mask. Mater. Sci. Semicond. Process. 2017, 67, 104–109. [Google Scholar] [CrossRef]
- Liu, G.; Tuttle, B.R.; Dhar, S. Silicon carbide: A unique platform for metal-oxide-semiconductor physics. Appl. Phys. Rev. 2015, 2, 021307. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Ren, M.; Li, X.; Ma, R.Y.; Zhang, X.; Zheng, F.; Liang, S.Q.; Li, Z.H.; Zhang, B. 4H-SiC Trench MOSFET with Integrated Heterojunction Diode for Optimizing Switching Performance. In Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 25–28 October 2022; pp. 1–3. [Google Scholar]
- Guo, J.; Li, P.; Ma, R.; Hu, S. A Novel Asymmetric Trench SiC MOSFET Embedded Unipolar Electron Channel with Improved Reverse Conduction Performance. In Proceedings of the 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nanjing, China, 25–28 October 2022; pp. 1–3. [Google Scholar]
- Agarwal, A.; Fatima, H.; Haney, S.; Ryu, S.H. A New Degradation Mechanism in High-Voltage SiC Power MOSFETs. IEEE Electron Device Lett. 2007, 28, 587–589. [Google Scholar] [CrossRef]
- Palanisamy, S.; Basler, T.; Lutz, J.; Künzel, C.; Wehrhahn-Kilian, L.; Elpelt, R. Investigation of the bipolar degradation of SiC MOSFET body diodes and the influence of current density. In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–6. [Google Scholar]
- Carastro, F.; Mari, J.; Zoels, T.; Rowden, B.; Losee, P.; Stevanovic, L. Investigation on diode surge forward current ruggedness of Si and SiC power modules. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–9 September 2016; pp. 1–10. [Google Scholar]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Sung, W.; Baliga, B.J. Monolithically Integrated 4H-SiC MOSFET and JBS Diode (JBSFET) Using a Single Ohmic/Schottky Process Scheme. IEEE Electron Device Lett. 2016, 37, 1605–1608. [Google Scholar] [CrossRef]
- Sung, W.; Baliga, B.J. On Developing One-Chip Integration of 1.2 kV SiC MOSFET and JBS Diode (JBSFET). IEEE Trans. Ind. Electron. 2017, 64, 8206–8212. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Tu, Y.; Deng, X.; Zhang, B. A Novel SiC Asymmetric Cell Trench MOSFET with Split Gate and Integrated JBS Diode. IEEE J. Electron Devices Soc. 2021, 9, 713–721. [Google Scholar] [CrossRef]
- Yu, H.; Wang, J.; Deng, G.; Liang, S.; Liu, H.; Shen, Z.J. A Novel 4H-SiC JBS-Integrated MOSFET with Self-Pinching Structure for Improved Short-Circuit Capability. IEEE Trans. Electron Devices 2022, 69, 5104–5109. [Google Scholar] [CrossRef]
- An, J.; Hu, S. Heterojunction Diode Shielded SiC Split-Gate Trench MOSFET with Optimized Reverse Recovery Characteristic and Low Switching Loss. IEEE Access 2019, 7, 28592–28596. [Google Scholar] [CrossRef]
- Deng, X.; Xu, X.; Li, X.; Li, X.; Wen, Y.; Chen, W. A Novel SiC MOSFET Embedding Low Barrier Diode with Enhanced Third Quadrant and Switching Performance. IEEE Electron Device Lett. 2020, 41, 1472–1475. [Google Scholar] [CrossRef]
- Yu, H.; Liang, S.; Liu, H.; Wang, J.; Shen, Z.J. Numerical Study of SiC MOSFET with Integrated n-/n-Type Poly-Si/SiC Heterojunction Freewheeling Diode. IEEE Trans. Electron Devices 2021, 68, 4571–4576. [Google Scholar] [CrossRef]
- Shenoy, P.M.; Baliga, B.J. High voltage P+ polysilicon/N− 6H-SiC heterojunction diodes. Electron. Lett. 1997, 33, 1086–1087. [Google Scholar] [CrossRef]
- Yamagami, S.; Hayashi, T.; Hoshi, M. Novel Low VON Poly-Si/4H-SiC Heterojunction Diode Using Energy Barrier Height Control. Mater. Sci. Forum 2012, 717–720, 1005–1008. [Google Scholar] [CrossRef]
- Ni, W.; Emori, K.; Marui, T.; Saito, Y.; Yamagami, S.; Hayashi, T.; Hoshi, M. SiC Trench MOSFET with an Integrated Low Von Unipolar Heterojunction Diode. Mater. Sci. Forum 2014, 778–780, 923–926. [Google Scholar] [CrossRef]
- Fu, H.; Wei, Z.; Liu, S.; Wei, J.; Xu, H.; Ni, L.; Yang, Z.; Sun, W. 1200V 4H-SiC trench MOSFET with superior figure of merit and suppressed quasi-saturation effect. Microelectron. Reliab. 2021, 123, 114249. [Google Scholar] [CrossRef]
- Siemieniec, R.; Peters, D.; Esteve, R.; Bergner, W.; Kück, D.; Aichinger, T.; Basler, T.; Zippelius, B. A SiC Trench MOSFET concept offering improved channel mobility and high reliability. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. P.1–P.13. [Google Scholar]
- Peters, D.; Basler, T.; Zippelius, B.; Aichinger, T.; Bergner, W.; Esteve, R.; Kueck, D.; Siemieniec, R. The New CoolSiC™ Trench MOSFET Technology for Low Gate Oxide Stress and High Performance. In Proceedings of the PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 16–18 May 2017; pp. 1–7. [Google Scholar]
- Peters, D.; Siemieniec, R.; Aichinger, T.; Basler, T.; Esteve, R.; Bergner, W.; Kueck, D. Performance and ruggedness of 1200V SiC—Trench—MOSFET. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD), Sapporo, Japan, 28 May–1 June 2017; pp. 239–242. [Google Scholar]
- Afanasev, V.V.; Bassler, M.; Pensl, G.; Schulz, M. Intrinsic SiC/SiO2 Interface States. Phys. Status Solidi (A) 1997, 162, 321–337. [Google Scholar] [CrossRef]
- TCAD Sentaurus Device Manual; Synopsys, Inc.: Mountain View, CA, USA, 2016.
- Tanaka, H.; Hayashi, T.; Shimoida, Y.; Yamagami, S.; Tanimoto, S.; Hoshi, M. Ultra-low Von and High Voltage 4H-SiC Heterojunction Diode. In Proceedings of the Proceedings. ISPSD ‘05. The 17th International Symposium on Power Semiconductor Devices and ICs, Santa Barbara, CA, USA, 23–26 May 2005; pp. 287–290. [Google Scholar]
- Na, J.; Cheon, J.; Kim, K. 4H-SiC Double Trench MOSFET with Split Heterojunction Gate for Improving Switching Characteristics. Materials 2021, 14, 3554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wei, J.; Jiang, H.; Chen, K.J.; Cheng, C.H. A New SiC Trench MOSFET Structure with Protruded p-Base for Low Oxide Field and Enhanced Switching Performance. IEEE Trans. Device Mater. Reliab. 2017, 17, 432–437. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, M.; Jiang, H.; Wang, H.; Chen, K.J. Dynamic Degradation in SiC Trench MOSFET with a Floating p-Shield Revealed with Numerical Simulations. IEEE Trans. Electron Devices 2017, 64, 2592–2598. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wang, Y.; Bao, M.T.; Cao, F. Low Switching Loss Split-Gate 4H-SiC MOSFET with Integrated Heterojunction Diode. IEEE J. Electron Devices Soc. 2022, 10, 554–561. [Google Scholar] [CrossRef]
- Na, J.; Kim, K. 3.3 kV 4H-SiC MOSFET with embeded hetero junction body diode for low switching loss. In Proceedings of the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022; pp. 1–4. [Google Scholar]
- Yu, Y.; Liu, T.; Ma, R.; Cheng, Z.; Tao, J.; Guo, J.; Wu, H.; Hu, S. A Novel Asymmetric Trench SiC MOSFET with an Integrated JFET for Improved Reverse Conduction Performance. IEEE Trans. Electron Devices 2024, 71, 1546–1552. [Google Scholar] [CrossRef]
- Ding, J.; Deng, X.; Li, S.; Wu, H.; Li, X.; Li, X.; Chen, W.; Zhang, B. A Low-Loss Diode Integrated SiC Trench MOSFET for Improving Switching Performance. IEEE Trans. Electron Devices 2022, 69, 6249–6254. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Yue, R. A heterojunction-based SiC power double trench MOSFET with improved switching performance and reverse recovery. Superlattices Microstruct. 2020, 140, 106466. [Google Scholar] [CrossRef]
Parameter | HJD-ATMOS | C-ATMOS |
---|---|---|
Tdrift | 9 μm | 9 μm |
TCSL | 1 μm | 1 μm |
WCSL | 0.9 μm | 0.9 μm |
Ndrift | 7 × 1015 cm−3 | 7 × 1015 cm−3 |
Wcell | 2.7 μm | 2.7 μm |
TOX | 50 nm | 50 nm |
DT | 1 μm | 1 μm |
LG | 0.25 μm | - |
LP | 0.6 μm | - |
LGP | 0.1 μm | - |
h | 0.3 μm | - |
w | 0.5 μm | - |
Nnch | 2 × 1017 cm−3 | - |
NP-Poly-Si | 1 × 1020 cm−3 | - |
NCSL | 2.5 × 1016 cm−3 | 2.5 × 1016 cm−3 |
Fixed charges (SiC/SiO2) | 6 × 1011 cm−2 | 6 × 1011 cm−2 [28] |
Parameter | HJD-ATMOS | C-ATMOS |
---|---|---|
Vcut-in | 1.39 V | 2.96 V |
Ron,sp | 1.35 mΩ∙cm2 | 1.46 mΩ∙cm2 |
Qgd | 32 nC/cm2 | 47 nC/cm2 |
BV | 1685.39 V | 1686.21 V |
Eon | 0.26 mJ/cm2 | 0.69 mJ/cm2 |
Eoff | 0.41 mJ/cm2 | 0.43 mJ/cm2 |
Vth | 4.28 V | 4.86 V |
Dynamic FOM | 43.20 mΩ∙nC | 68.62 mΩ∙nC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Cheng, Z.; Hu, Y.; Lv, R.; Hu, S. A Novel Asymmetric Trench SiC Metal–Oxide–Semiconductor Field-Effect Transistor with a Poly-Si/SiC Heterojunction Diode for Optimizing Reverse Conduction Performance. Micromachines 2024, 15, 461. https://doi.org/10.3390/mi15040461
Yu Y, Cheng Z, Hu Y, Lv R, Hu S. A Novel Asymmetric Trench SiC Metal–Oxide–Semiconductor Field-Effect Transistor with a Poly-Si/SiC Heterojunction Diode for Optimizing Reverse Conduction Performance. Micromachines. 2024; 15(4):461. https://doi.org/10.3390/mi15040461
Chicago/Turabian StyleYu, Yiren, Zijun Cheng, Yi Hu, Ruiyi Lv, and Shengdong Hu. 2024. "A Novel Asymmetric Trench SiC Metal–Oxide–Semiconductor Field-Effect Transistor with a Poly-Si/SiC Heterojunction Diode for Optimizing Reverse Conduction Performance" Micromachines 15, no. 4: 461. https://doi.org/10.3390/mi15040461
APA StyleYu, Y., Cheng, Z., Hu, Y., Lv, R., & Hu, S. (2024). A Novel Asymmetric Trench SiC Metal–Oxide–Semiconductor Field-Effect Transistor with a Poly-Si/SiC Heterojunction Diode for Optimizing Reverse Conduction Performance. Micromachines, 15(4), 461. https://doi.org/10.3390/mi15040461