PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy
Abstract
1. Introduction
2. Experimental
3. Results
4. Discussion
4.1. Photon Energy Thermal Effect Evaluation
4.2. Dielectric Polarization Electricity Harvesting from Photon Energy
4.3. Photon Energy-PET-PZT Dielectric Polarization Electricity: Conversion Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naranjo, B.; Gimzewski, J.K.; Putterman, S. Observation of nuclear fusion driven by a pyroelectric crystal. Nature 2005, 434, 1115–1117. [Google Scholar] [CrossRef]
- Poplavko, Y.; Yakymenko, Y. Functional Dielectrics for Electronics: Fundamentals of Conversion Properties; Woodhead Publishing: Sawston, UK, 2020. [Google Scholar]
- Pilon, L.; McKinley, I.M. Pyroelectric energy conversion. Annu. Rev. Heat Transf. 2016, 19, 279–344. [Google Scholar] [CrossRef]
- Mitofsky, A.M. Direct Energy Conversion; AT Still University: Kirksville, MI, USA, 2018. [Google Scholar]
- Pecunia, V.; Silva, S.R.P.; Phillips, J.D.; Artegiani, E.; Romeo, A.; Shim, H.; Park, J.; Kim, J.H.; Yun, J.S.; Welch, G.C. Roadmap on energy harvesting materials. J. Phys. Mater. 2023, 6, 042501. [Google Scholar] [CrossRef]
- Haertling, G.H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82, 797–818. [Google Scholar] [CrossRef]
- Lang, S.B. Pyroelectricity: From ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 31–36. [Google Scholar] [CrossRef]
- Brewster, D. The Edinburgh Journal of Science; William Blackwood: Edinburgh, UK, 1824; Volume 1. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873; Volume 2, pp. 3408–3425. [Google Scholar]
- Böttcher, C. Theory of Electric Polarization: Dielectrics in Static Fields; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Landau, L.D.; Lifshitz, E. Electrodynamics of Continuous Media, 2nd ed.; Lifshitz, E.M., Pitaevskii, L.P., Eds.; Pergamon: Aeolis, Greece, 1984. [Google Scholar]
- Deluca, M.; Sakashita, T.; Galassi, C.; Pezzotti, G. Investigation of local orientation and stress analysis of PZT-based materials using micro-probe polarized Raman spectroscopy. J. Eur. Ceram. Soc. 2006, 26, 2337–2344. [Google Scholar] [CrossRef]
- Lheritier, P.; Torelló, A.; Usui, T.; Nouchokgwe, Y.; Aravindhan, A.; Li, J.; Prah, U.; Kovacova, V.; Bouton, O.; Hirose, S. Large harvested energy with non-linear pyroelectric modules. Nature 2022, 609, 718–721. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, T.; Guo, J.; Xu, G.; Cheng, M.; Zhang, C.; Wang, X.-Q.; Lu, W.; Ong, W.L.; Li, J. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 2023, 14, 426. [Google Scholar] [CrossRef]
- Mohammadnia, A.; Rezania, A. Pyroelectric energy harvesting from power electronic substrates. Energy Convers. Manag. 2023, 290, 117233. [Google Scholar] [CrossRef]
- Wang, H.; Ng, L.S.; Li, H.; Lee, H.K.; Han, J. Achieving milliwatt level solar-to-pyroelectric energy harvesting via simultaneous boost to photothermal conversion and thermal diffusivity. Nano Energy 2023, 108, 108184. [Google Scholar] [CrossRef]
- Fang, Z.; Zhou, Z.; Yi, M.; Zhang, Z.; Luo, X.; Ahmed, A. A roller-bearing-based triboelectric nanosensor for freight train synergistic maintenance in smart transportation. Nano Energy 2023, 106, 108089. [Google Scholar] [CrossRef]
- Bai, Y.; Jantunen, H.; Juuti, J. Ferroelectric oxides for solar energy conversion, multi-source energy harvesting/sensing, and opto-ferroelectric applications. ChemSusChem 2019, 12, 2540–2549. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. 2012, 51, 11700–11721. [Google Scholar] [CrossRef]
- Feyman, R.P. QED: The Strange Theory of Light and Matter; Princeton University Press: Princeton NJ, USA, 1985. [Google Scholar]
- Xu, Y. Ferroelectric Materials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Okuyama, M.; Ishibashi, Y. Ferroelectric Thin Films: Basic Properties and Device Physics for Memory Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 98. [Google Scholar]
- Polla, D.L. Microelectromechanical systems based on ferroelectric thin films. Microelectron. Eng. 1995, 29, 51–58. [Google Scholar] [CrossRef]
- Muralt, P. Ferroelectric thin films for micro-sensors and actuators: A review. J. Micromechanics Microengineering 2000, 10, 136. [Google Scholar] [CrossRef]
- Polla, D.; Francis, L. Ferroelectric thin films in micro-electromechanical systems applications. MRS Bull. 1996, 21, 59–65. [Google Scholar] [CrossRef]
- Nikolov, A.; Wasan, D. Air bubble bursting phenomenon at the air-water interface monitored by the piezoelectric-acoustic method. Adv. Colloid Interface Sci. 2019, 272, 101998. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, T.; Xu, G.; Yang, S.; Qiu, C.-W.; He, J.; Ho, G.W. Sustainable heat harvesting via thermal nonlinearity. Nat. Rev. Phys. 2024, 6, 769–783. [Google Scholar] [CrossRef]
- Knopf, G.K.; Uchino, K. Light Driven Micromachines; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bai, Y. Photoresponsive piezoelectrics. Front. Mater. 2021, 8, 636712. [Google Scholar] [CrossRef]
- Chen, C.; Li, X.; Lu, T.; Liu, Y.; Yi, Z. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. J. Am. Ceram. Soc. 2020, 103, 4074–4082. [Google Scholar] [CrossRef]
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef]
- Pandey, R.; Vats, G.; Yun, J.; Bowen, C.R.; Ho-Baillie, A.W.; Seidel, J.; Butler, K.T.; Seok, S.I. Mutual insight on ferroelectrics and hybrid halide perovskites: A platform for future multifunctional energy conversion. Adv. Mater. 2019, 31, 1807376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolov, A.; Murad, S.; Lee, J. PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines 2024, 15, 1505. https://doi.org/10.3390/mi15121505
Nikolov A, Murad S, Lee J. PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines. 2024; 15(12):1505. https://doi.org/10.3390/mi15121505
Chicago/Turabian StyleNikolov, Alex, Sohail Murad, and Jongju Lee. 2024. "PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy" Micromachines 15, no. 12: 1505. https://doi.org/10.3390/mi15121505
APA StyleNikolov, A., Murad, S., & Lee, J. (2024). PET-PZT Dielectric Polarization: Electricity Harvested from Photon Energy. Micromachines, 15(12), 1505. https://doi.org/10.3390/mi15121505