Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles
Abstract
1. Introduction
2. Experimental Section
2.1. Supported Porous Nanocarbon and TiN Film Fabrication
2.2. Surface Modification of Supported Porous Nanocarbon and TiN Films
2.3. Characterization
3. Results
Structure and Morphology
- (a)
- Supported Au and nanoalloy NPs by sonochemistry.
- (b) supported NMNPs and nanoalloys via a Leidenfrost-mediated reduction of metal ions
4. Discussion
5. Application to Electrocatalysis
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, M. Nanomaterials in pollution trace detection and environmental improvement. Nano Today 2010, 5, 128. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, C.; Liu, W.; Chen, R.; Jiang, X. Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application. Angew. Chem. Int. Ed. 2014, 53, 8127. [Google Scholar]
- Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Ramaraj, R. Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. J. Anal. Sci. Technol. 2017, 8, 14. [Google Scholar] [CrossRef][Green Version]
- Niu, W.; Xu, G. Crystallographic control of noble metal nanocrystals. Nano Today 2011, 6, 265. [Google Scholar] [CrossRef]
- Chu, Y.; Schonbrun, E.; Yang, T.; Crozier, K.B. Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 2008, 93, 181108. [Google Scholar] [CrossRef]
- Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.; Es-Souni, M.; Mátéfi-Tempfli, S.; Es-Souni, M. On-substrate, self-standing Au-nanorod arrays showing morphology controlled properties. Nano Today 2011, 6, 12. [Google Scholar] [CrossRef]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Laghrissi, A.; Es-Souni, M. Porous PtPd alloy nanotubes: Towards high performance electrocatalysts with low Pt-loading. Catal. Sci. Technol. 2019, 9, 4355. [Google Scholar] [CrossRef]
- Sneed, B.T.; Young, A.P.; Golden, M.C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. Shaped Pd-Ni-Pt Core-Sandwich-Shell Nanoparticles: Influence of Ni Sandwich Layers on Catalytic Electrooxidation. ACS Nano 2014, 8, 7239–7250. [Google Scholar] [CrossRef]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105, 1171. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Thubagere, A.; Premasiri, W.R.; Ziegler, L.D.; Negro, L.D.; Reinhard, B.M. Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays. ACS Nano 2009, 3, 1190. [Google Scholar] [CrossRef] [PubMed]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591. [Google Scholar] [CrossRef]
- Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 2009, 8, 781. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem. Rev. 2011, 111, 3736. [Google Scholar] [CrossRef] [PubMed]
- Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 1997, 7, 1075. [Google Scholar] [CrossRef]
- Habouti, S.; Mátéfi-Tempfli, M.; Solterbeck, C.-H.; Es-Souni, M.; Mátéfi-Tempfli, S.; Es-Souni, M. Self-standing corrugated Ag and Au-nanorods for plasmonic applications. J. Mater. Chem. 2011, 21, 6269. [Google Scholar] [CrossRef]
- Dar, F.; Moonoosawmy, K.; Es-Souni, M. Morphology and property control of NiO nanostructures for supercapacitor applications. Nanoscale Res. Lett. 2013, 8, 363. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Es-Souni, M. Transparent, Scratch Resistant Film with Antifouling Properties and Preparation Method Thereof. German Patent Nr. 102017101978, 2 February 2023. [Google Scholar]
- Wassel, E.; Es-Souni, M.; Laghrissi, A.; Roth, A.; Dietze, M.; Es-Souni, M. Scratch resistant non-fouling surfaces via grafting non-fouling polymers on the pore walls of supported porous oxide structures. Mater. Des. 2019, 163, 107542. [Google Scholar] [CrossRef]
- Kakade, B.A.; Tamaki, T.; Ohashi, H.; Yamaguchi, T. Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-oxidation. J. Phys. Chem. C 2012, 116, 7464. [Google Scholar] [CrossRef]
- Zhang, H.; Jinb, M.; Xia, Y. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049. [Google Scholar] [CrossRef]
- Habrioux, A.; Vogel, W.; Guinel, M.; Guetaz, L.; Servat, K.; Kokoh, B.; Alonso-Vante, N. Structural and electrochemical studies of Au–Pt nanoalloys. Phys. Chem. Chem. Phys. 2009, 11, 3573. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem. Rev. 2015, 115, 3433. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Es-Souni, M. Antibacterial Coating of a Medical Implant and Process Thereof. German Patent Nr. DE102018115709B4, 26 March 2020. [Google Scholar]
- Es-Souni, M.; Schopf, D.; Solterbeck, C.-H.; Dietze, M. Novel Approach to the Processing of Meso- Macroporous Thin Films of Graphite and in situ Graphite-Noble Metal Nanocomposites. RSC Adv. 2014, 4, 17748–17752. [Google Scholar] [CrossRef][Green Version]
- Schopf, D.; Es-Souni, M. Thin Film Nanocarbon Composites for Supercapacitor Applications. Carbon 2017, 115, 449–459. [Google Scholar] [CrossRef]
- Laghrissi, A.; Solterbeck, C.-H.; Schopf, D.; Es-Souni, M. Noble metal NPs and nanoalloys by sonochemistry directly processed on nanocarbon and TiN substrates from aqueous solutions. Ultrason. Sonochemistry 2018, 51, 138. [Google Scholar] [CrossRef]
- Okitsu, K.; Ashokkumar, M.; Grieser, F. Sonochemical Synthesis of gold nanoparticles: Effects of ultrasound frequency. J. Phys. Chem. B Lett. 2005, 109, 20673. [Google Scholar] [CrossRef]
- Ataee-Esfahani, H.; Wang, L.; Nemoto, Y.; Yamauchi, Y. Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem. Mater. 2010, 22, 6310. [Google Scholar] [CrossRef]
- Bratescu, M.A.; Cho, S.-P.; Takai, N.; Saito, T.N. Size-Controlled Gold Nanoparticles Synthesized in Solution Plasma. J. Phys. Chem. C 2011, 115, 24569–24576. [Google Scholar] [CrossRef]
- Luyten, J.; De Keyzer, J.; Wollants, P.; Creemers, C. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt-Rh, Pt-Pd, Pd-Rh and ternary Pt-Pd-Rh alloys. CALPHAD Comput. Coupling Phase Diagrams Thermochem. 2009, 33, 370. [Google Scholar] [CrossRef]
- Xu, X.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Foroughi, F.; Lamb, J.J.; Burheim, O.S.; Pollet, B.G. Sonochemical and Sonoelectrochemical Production of Energy Materials. Catalysts 2021, 11, 284. [Google Scholar] [CrossRef]
- Guittonneau, F.; Abdelouas, A.; Grambow, B.; Huclier, S. The effect of high-power ultrasound on an aqueous suspension of graphite. Ultrason. Sonochem. 2010, 17, 391–398. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rice, F.O.; Freamo, M. The Formation of the imine radical in the electrical discharge. J. Am. Chem. Soc. 1935, 75, 548. [Google Scholar] [CrossRef]
- Saha, N.C.; Tompkins, H.G. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. App. Phys. 1992, 72, 3072. [Google Scholar] [CrossRef]
- Vakarelski, I.U.; Patankar, N.A.; Marston, J.O.; Chan, D.Y.C.; Thoroddsen, S.T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 2012, 489, 274. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Dietze, M. A universal, template-free approach to porous oxide and polymer film processing. RSC Adv. 2011, 1, 579. [Google Scholar] [CrossRef]
- Trojanowicz, M. Analytical applications of carbon nanotubes: A review. Trends Anal. Chem. 2006, 25, 480. [Google Scholar] [CrossRef]
- Cao, M.; Wang, M.; Gu, N. Optimized Surface Plasmon Resonance Sensitivity of Gold Nanoboxes for Sensing Applications. J. Phys. Chem. C 2009, 113, 1217–1221. [Google Scholar] [CrossRef]
- Kamat, P.V. TiO2 Nanostructures: Recent Physical Chemistry Advances. J. Phys. Chem. C 2012, 116, 11849. [Google Scholar] [CrossRef]
- Yu, C.; Li, G.; Kumar, S.; Kawasaki, H.; Jin, R. Stable Au25(SR)18/TiO2 Composite Nanostructure with Enhanced Visible Light Photocatalytic Activity. J. Phys. Chem. Lett. 2013, 4, 2847. [Google Scholar] [CrossRef]
- Tian, Y.; Tatsuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7632. [Google Scholar] [CrossRef] [PubMed]
- Star, A.; Joshi, V.; Skarupo, S.; Thomas, D.; Gabriel, J.-C.P. Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes. J. Phys. Chem. B 2006, 110, 21014–21020. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390. [Google Scholar] [CrossRef]
- Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Preparation of Au/TiO2 with Metal Cocatalysts Exhibiting Strong Surface Plasmon Resonance Effective for Photoinduced Hydrogen Formation under Irradiation of Visible Light. ACS Catal. 2013, 3, 79–85. [Google Scholar] [CrossRef]
- Li, X.-H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743. [Google Scholar] [CrossRef][Green Version]
- Peng, Z.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143. [Google Scholar] [CrossRef]
- Koper, M.T. Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 2011, 3, 2054. [Google Scholar] [CrossRef]
- Liu, L.; Scholz, R.; Pippel, E.; Gösele, U. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. J. Mater. Chem. 2010, 20, 5621. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Wu, P.; Zhang, H.; Zhou, B.; Cai, C. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys. Chem. Chem. Phys. 2011, 13, 4083. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Kapri, S.; Bhattacharyya, S. Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol electro-oxidation. Green Chem. 2015, 17, 15. [Google Scholar] [CrossRef]
- Iyyamperumal, R.; Zhang, L.; Henkelman, G.; Crooks, R.M. Efficient Electrocatalytic Oxidation of Formic Acid Using Au@Pt Dendrimer-Encapsulated Nanoparticles. J. Am. Chem. Soc. 2013, 135, 5521. [Google Scholar] [CrossRef] [PubMed]
- Nutt, M.O.; Heck, K.N.; Alvarez, P.; Wong, M.S. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl. Catal. B Environ. 2006, 69, 115. [Google Scholar] [CrossRef]
- Singh-Miller, N.E.; Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 2009, 80, 235407. [Google Scholar] [CrossRef][Green Version]
- Jiang, K.; Zhang, H.-X.; Zou, S.; Cai, W.B. Electrocatalysis of formic acid on palladium and platinum surfaces: From fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Es-Souni, M. Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines 2023, 14, 1141. https://doi.org/10.3390/mi14061141
Es-Souni M. Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines. 2023; 14(6):1141. https://doi.org/10.3390/mi14061141
Chicago/Turabian StyleEs-Souni, Mohammed. 2023. "Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles" Micromachines 14, no. 6: 1141. https://doi.org/10.3390/mi14061141
APA StyleEs-Souni, M. (2023). Exploiting Interfacial Effects between Collapsing Bubbles and Nanocarbon/TiN Substrates for the Green Synthesis of Self-Organized Noble Metal and Nanoalloy Nanoparticles. Micromachines, 14(6), 1141. https://doi.org/10.3390/mi14061141