Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing
Abstract
1. Introduction
2. The Principle of PR
2.1. Gerchberg–Saxton Algorithm
2.2. The Modified PR Algorithm
3. The Design of the Experiments
3.1. Measuring Plane Mirror
3.2. Measuring Concave Mirror
3.3. Measuring Spherical Mirror
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wei, S.L.; Zhu, Z.B.; Fan, Z.C.; Yan, Y.M.; Ma, D.L. Multi-surface catadioptric freeform lens design for ultra-efficient off-axis road illumination. Opt. Express 2019, 27, A779–A789. [Google Scholar] [CrossRef] [PubMed]
- Aftab, M.; Choi, H.; Liang, R.G.; Kim, D.W. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations. Opt. Express 2018, 26, 3428–3444. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L. Research on Swing Arm profilometer test for large-aperture complex optical surface. Chin. Opt. Lett. 2019, 17, 112201. [Google Scholar] [CrossRef]
- Ma, D.L.; Feng, Z.X.; Liang, R.G. Freeform illumination lens design using composite ray mapping. Appl. Opt. 2015, 54, 498–503. [Google Scholar] [CrossRef]
- Fang, F.Z.; Zhang, X.D.; Weckenmann, A.; Zhang, G.X.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann. Manuf. Technol. 2013, 62, 823–846. [Google Scholar] [CrossRef]
- Ye, J.F.; Chen, L.; Li, X.H.; Yuan, Q.; Gao, Z.S. Review of optical freeform surface representation technique and its application. Opt. Eng. 2017, 56, 110901. [Google Scholar] [CrossRef]
- Zhu, R.H.; Sun, Y.; Shen, H. Progress and Prospect of Optical Freeform Surface Measurement. Acta Opt. Sin. 2021, 41, 112001. [Google Scholar]
- He, H.T. The Research on 3D Optical Measurement Techniques for Complex Shape. Ph.D. Thesis, Shanghai University Mechanical Engineering & Automation College, Shanghai, China, 2005. [Google Scholar]
- Xu, Q.X.; Hou, W.M.; Sheng, S.J.; Zhang, Y.B.; Shen, L.Y. 3-dimensional profiler based on digital micro mirror device. Chin. J. Sci. Instrum. 2011, 32, 1138–1144. [Google Scholar]
- Zhang, L. Optical free-form surfaces subaperture stitching interferometry. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Liu, D.; Zhou, Y.; Bai, J.; Shi, T.; Shen, Y.B.; Yang, Y.Y.; Zhang, L. Aspheric and free-form surfaces test with non-null subaperture stitching interferometry. SPIE/COS Photonics Asia 2016, 10021, 100210N. [Google Scholar]
- Huang, Y.; Ma, J.; Zhu, R.H.; Shen, H.; Gao, Z.S. Investigation of Measurement Uncertainty of Optical Freeform Surface Based on Computer-Generated Hologram. Acta Opt. Sin. 2015, 35, 156–164. [Google Scholar] [CrossRef]
- Yuan, T. Study on Fringe-Reflection Optical Surface Shape Measurement Technology for Large Aspheric Mirror. Ph.D. Thesis, Changchun Institute of Optics, Fine Mechanics and Physics, University of Chinese Academy of Sciences, Changchun, China, 2016. [Google Scholar]
- Moore, D.B.; Fienup, J.R. Wavefront Sensing by Phase and Modal Amplitude Retrieval. In Imaging and Applied Optics, OSA Technical Digest. In Proceedings of the Adaptive Optics: Methods, Analysis & Applications, Toronto, Canada, 23 June 2013; p. 4232013. [Google Scholar]
- Ma, X.X.; Wang, J.L. The research of wavefront sensor based on focal plane and pupil plane. Optik 2016, 127, 2688–2693. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Papa, J.C.; Rolland, J.P. System design of a single-shot reconfigurable null test using aspatial light modulator for freeform metrology. Opt. Lett. 2019, 44, 2000–2003. [Google Scholar] [CrossRef]
- Ma, X.X.; Wang, J.L.; Wang, B.; Li, H.Z.; Wu, Y.H.; Wang, Z.Y.; Wei, P.F. Comparative analysis of the measurement precision of phase retrieval wavefront sensor. Optik 2013, 124, 7075–7079. [Google Scholar] [CrossRef]
- Ma, X.X.; Wang, J.L. Spherical mirror testing by phase retrieval wavefront sensor. Optik 2016, 127, 2396–2400. [Google Scholar] [CrossRef][Green Version]
- Ma, X.X.; Wang, J.L.; Wang, B.; Liu, X.Y. Measurement of the Aspherical Optical Surfaces with the Improved Phase Retrieval. Micromachines 2022, 13, 549. [Google Scholar] [CrossRef]
- Ma, X.X.; Wang, J.L.; Wang, B.; Liu, X.Y. Measurement of Small-Slope Free-Form Optical Surfaces with the Modifified Phase Retrieval. Micromachines 2022, 13, 82. [Google Scholar] [CrossRef]
- Green, J.J.; Redding, D.C.; Beregovski, Y.; Lowman, A.E.; Ohara, C.M. Interferometric validation of image based wavefront sensing for NGST. In Proceedings of the SPIE-The International Society for Optical Engineering, Waikoloa, HW, USA, 5 March 2003; Volume 4850, pp. 345–352. [Google Scholar]
- Lowman, A.E.; Redding, D.C.; Basinger, S.A.; Cohen, D.; Faust, J.A.; Green, J.J.; Ohara, C.M.; Shi, F. Phase Retrieval Camera for Testing NGST Optics. In Proceedings of the SPIE-The International Society for Optical Engineering, Waikoloa, HW, USA, 5 March 2003; Volume 4850, pp. 329–335. [Google Scholar]
- P’erez-Ilzarbe, M.J.; Nieto-Vesperinas, M.; Navarro, R. Phase retrieval from experimental far-field intensity data. J. Opt. Soc. Am. A 1990, 7, 434–440. [Google Scholar] [CrossRef][Green Version]
- Moore, D.B.; Fienup, J.R. Extending the Capture Range of Phase Retrieval through Random Starting Parameters. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2014. [Google Scholar]
- Gerchberg, R.W.; Saxton, W.O. A practical algorithm for the determination of phase from image and diffraction phase pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Gonsalves, R.A. Analysis of holographic optics for optical processors. J. Opt. Soc. Am. 1976, 66, 961. [Google Scholar] [CrossRef]
- Fienup, J.R. Reconstruction of an object from modulus of its fourier-transform. Opt. Lett. 1978, 3, 27. [Google Scholar] [CrossRef][Green Version]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Freeman, J.D.; Christon, J.C.; McCarthy, D.W., Jr.; Cobb, M.L. A Comparison of Phase Retrieval Algorithms Applied to Infrared Astronomical Speckle Data. In Proceedings of the 31st Annual Technical Symposium on Optical and Optoelectronic Applied Sciences and Engineering, San Diego, CA, USA, 29 January 1988; Volume 828, pp. 40–46. [Google Scholar]
- Cederquist, J.N.; Fienup, J.R.; Wackerman, C.C.; Robinson, S.R.; Kryskowski, D. Wave-front phase estimation from Fourier intensity measurements. J. Opt. Soc. Am. A 1989, 6, 1020–1026. [Google Scholar] [CrossRef][Green Version]
- Yu, B.; Peng, X.; Tian, J.D.; Hanben, N. Phase retrieval for hard X-ray in-line phase contrast imaging. Acta Phys. Sin. 2005, 54, 2034–2037. [Google Scholar]
- Yu, B.; Peng, X.; Tian, J.D.; Hanben, N. Phase retrieval for in-line hard X-ray phase-contrast imaging with the Yang-Gu algorithm. Proc. SPIE 2006, 6026, 240–245. [Google Scholar]
- Zeng, F.; Tan, Q.; Liu, Y.; Gu, H.; Zhou, Z.; Jin, G. Freeform metrology based on phase retrieval and computer-generated hologram. Proc. SPIE 2014, 9272, 85–92. [Google Scholar] [CrossRef]
- Feng, Z.X.; Cheng, D.W.; Wang, Y.T. Transferring freeform lens design into phase retrieval through intermediate irradiance transport. Opt. Lett. 2019, 44, 5501–5504. [Google Scholar] [CrossRef]
- Michalko, A.M.; Fienup, J.R. Development of a concave freeform surface measurement using transverse translation-diverse phase retrieval. Opt. Eng. 2020, 59, 064101. [Google Scholar] [CrossRef]
The Type of Tested Mirror | Evaluation Index | MPR | ZYGO | RMSD ifference |
---|---|---|---|---|
Plane mirror (removing the first four items) | RMS PV | 0.0475 λ 5.3352 λ | 0.037 λ 4.149 λ | 0.0105 λ |
Plane mirror (removing the first four items and spherical aberration) | RMS PV | 0.04392 λ 4.9304 λ | 0.03325 λ 3.7685 λ | 0.01067 λ |
Spherical concave mirror I | RMS PV | 2.5322 λ 15.529 λ | 2.5139 λ 14.119 λ | 0.0183λ |
Spherical concave mirror II | RMS PV | 0.0527 λ 0.667 λ | 0.041 λ 0.585 λ | 0.0117 λ |
Aspherical mirror | RMS PV | 0.667 λ 3.027 λ | 0.632 λ 2.155 λ | 0.035 λ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, J.; Wang, B.; Liu, X.; Chen, Y. Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing. Micromachines 2023, 14, 1142. https://doi.org/10.3390/mi14061142
Ma X, Wang J, Wang B, Liu X, Chen Y. Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing. Micromachines. 2023; 14(6):1142. https://doi.org/10.3390/mi14061142
Chicago/Turabian StyleMa, Xinxue, Jianli Wang, Bin Wang, Xinyue Liu, and Yuqiang Chen. 2023. "Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing" Micromachines 14, no. 6: 1142. https://doi.org/10.3390/mi14061142
APA StyleMa, X., Wang, J., Wang, B., Liu, X., & Chen, Y. (2023). Research on Optical Metrology for Complex Optical Surfaces with Focal Plane Wavefront Sensing. Micromachines, 14(6), 1142. https://doi.org/10.3390/mi14061142