An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Morphology
3.2. Electronic Structure
3.3. Stability against Gaseous Contaminants
3.4. Magnetic Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zegeye, S.M. A review paper on spintronics and its role to improve electronic devices. Am. J. Quantum Chem. Mol. Spectrosc. 2019, 3, 41–47. [Google Scholar] [CrossRef]
- Kawakami, R.K.; McCreary, K.; Li, Y. Fundamentals of spintronics in metal and semiconductor systems. In Nanoelectronics and Photonics; Springer: New York, NY, USA, 2008; pp. 59–114. [Google Scholar]
- Cinchetti, M.; Dediu, V.A.; Hueso, L.E. Activating the molecular spinterface. Nat. Mater. 2017, 16, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Brambilla, A.; Picone, A.; Giannotti, D.; Calloni, A.; Berti, G.; Bussetti, G.; Achilli, S.; Fratesi, G.; Trioni, M.I.; Vinai, G.; et al. Enhanced magnetic hybridization of a spinterface through insertion of a two-dimensional magnetic oxide layer. Nano Lett. 2017, 17, 7440–7446. [Google Scholar] [CrossRef]
- Aviram, A.; Ratner, M.A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283. [Google Scholar] [CrossRef]
- Huang, M.-L.; Zhang, F.; Wang, C.; Zheng, J.-F.; Mao, H.-L.; Xie, H.-J.; Shao, Y.; Zhou, X.-S.; Liu, J.-X.; Zhuang, J.-L. Side-group effect on electron transport of single molecular junctions. Micromachines 2018, 9, 234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SanGiovanni, D.G.; Gueorguiev, G.K.; Kakanakova-Georgieva, A. Ab initio molecular dynamics of atomic-scale surface reactions: Insights into metal organic chemical vapor deposition of AlN on graphene. Phys. Chem. Chem. Phys. 2018, 20, 17751–17761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, J.M.; Gueorguiev, G.K.; Martins, J.L. First-principles study of the possibility of condensed phases of endohedral silicon cage clusters. Phys. Rev. B 2002, 66, 033401. [Google Scholar] [CrossRef]
- Bussetti, G.; Albani, G.; Calloni, A.; Jagadeesh, M.S.; Goletti, C.; Duò, L.; Ciccacci, F. Persistence of the Co-tetra-phenyl-porphyrin HOMO-LUMO features when a single organic layer is grown onto Cu(1 1 0)-(2 × 1)O. Appl. Surf. Sci. 2020, 514, 145891. [Google Scholar] [CrossRef]
- Liao, M.-S.; Scheiner, S. Electronic structure and bonding in metal phthalocyanines, Metal = Fe, Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 2001, 114, 9780–9791. [Google Scholar] [CrossRef] [Green Version]
- Albani, G.; Calloni, A.; Jagadeesh, M.S.; Finazzi, M.; Duò, L.; Ciccacci, F.; Bussetti, G. Interaction of ultra-thin CoTPP films on Fe(001) with oxygen: Interplay between chemistry, order, and magnetism. J. Appl. Phys. 2020, 128, 035501. [Google Scholar] [CrossRef]
- Wäckerlin, C.; Chylarecka, D.; Kleibert, A.; Muller, K.; Iacovita, C.; Nolting, F.; Jung, T.A.; Ballav, N. Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun. 2010, 1, 61. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Yang, K.; Jiang, Y.; Song, B.; Xiao, W.; Li, L.; Zhou, H.; Wang, Y.; Du, S.; Ouyang, M.; et al. Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. Sci. Rep. 2013, 3, 1210. [Google Scholar] [CrossRef]
- Shy, H.; Mackin, P.; Orvieto, A.S.; Gharbharan, D.; Peterson, G.R.; Bampos, N.; Hamilton, T.D. The two-step mechanochemical synthesis of porphyrins. Faraday Discuss. 2014, 170, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, M.; Campos, M.; Torres, L.A. Study of the stability of 5,10,15,20-tetraphenylporphine (TPP) and metalloporphyrins NiTPP, CoTPP, CuTPP, and ZnTPP by differential scanning calorimetry and thermogravimetry. J. Chem. Thermodyn. 2010, 42, 666–674. [Google Scholar] [CrossRef]
- Mandal, T.; Das, S.; De Sarkar, S. Nickel (II) Tetraphenylporphyrin as an efficient photocatalyst featuring visible light promoted dual redox activities. Adv. Synth. Catal. 2019, 361, 3200–3209. [Google Scholar] [CrossRef]
- Choudhury, M.S.H.; Kato, S.; Kishi, N.; Soga, T. Nickel tetraphenylporphyrin doping into ZnO nanoparticles for flexible dye-sensitized solar cell application. Jpn. J. Appl. Phys. 2017, 56, 04CS05. [Google Scholar] [CrossRef] [Green Version]
- Tonezzer, M.; Maggioni, G.; Quaranta, A.; Carturan, S.; Della Mea, G. Optical sensing properties of CoTPP thin films deposited by glow-discharge-induced sublimation. Sens. Actuators B 2007, 122, 613–619. [Google Scholar] [CrossRef]
- Spadavecchia, J.; Rella, R.; Siciliano, P.A.; Manera, M.G.; Alimelli, A.; Paolesse, R.; Di Natale, C.; D’Amico, A. Optochemical vapour detection using spin coated thin film of ZnTPP. Sens. Actuators B Chem. 2006, 115, 12–16. [Google Scholar] [CrossRef]
- Franke, M.; Wechsler, D.; Tariq, Q.; Röckert, M.; Zhang, L.; Thakur, P.K.; Tsud, N.; Bercha, S.; Prince, K.; Lee, T.-L.; et al. Interfacial interactions between CoTPP molecules and MgO(100) thin films. Phys. Chem. Chem. Phys. 2017, 19, 11549–11553. [Google Scholar] [CrossRef]
- Phuangburee, T.; Solonenko, D.; Plainpan, N.; Thamyongkit, P.; Zahn, D.R.T.; Unarunotai, S.; Tuntulani, T.; Leeladee, P. Surface modification of graphene oxide via noncovalent functionalization with porphyrins for selective photocatalytic oxidation of alcohols. New J. Chem. 2020, 44, 8264–8272. [Google Scholar] [CrossRef]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Calloni, A.; Jagadeesh, M.; Bussetti, G.; Fratesi, G.; Achilli, S.; Picone, A.; Lodesani, A.; Brambilla, A.; Goletti, C.; Ciccacci, F.; et al. Cobalt atoms drive the anchoring of Co-TPP molecules to the oxygen-passivated Fe(0 0 1) surface. Appl. Surf. Sci. 2020, 505, 144213. [Google Scholar] [CrossRef]
- Campione, M.; Fumagalli, E.; Raimondo, L.; Monguzzi, A.; Meinardi, F.; Sassella, A. Control of π−π interactions in epitaxial films of platinum(ii) octaethyl porphyrin. Chem. Mater. 2011, 23, 832–840. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, H.; Jiang, Y.; Pan, Y.; Gao, M.; Xiao, W.; Gao, H.-J. Tunability of supramolecular kagome lattices of magnetic phthalocyanines using graphene-based moiré patterns as templates. J. Am. Chem. Soc. 2009, 131, 14136–14137. [Google Scholar] [CrossRef] [PubMed]
- Calloni, A.; Jagadeesh, M.S.; Albani, G.; Goletti, C.; Duò, L.; Ciccacci, F.; Bussetti, G. Ordered assembling of Co tetra phenyl porphyrin on oxygen-passivated Fe(001): From single to multilayer films. EPJ Web Conf. 2020, 230, 00014. [Google Scholar] [CrossRef]
- Lawler, J.; Schad, R.; Jordan, S.; Van Kempen, H. Structure of epitaxial Fe films on MgO(100). J. Magn. Magn. Mater. 1997, 165, 224–226. [Google Scholar] [CrossRef]
- Bertacco, R. High-quality Fe(001) single crystal films on MgO(001) substrates for electron spectroscopies. J. Vac. Sci. Technol. A 1998, 16, 2277–2280. [Google Scholar] [CrossRef]
- Fahsold, G.; Priebe, A.; Pucci, A. Preparation of smooth Fe (001) on MgO (001). Appl. Phys. A 2001, 73, 39–43. [Google Scholar] [CrossRef]
- Donati, F.; Sessi, P.; Achilli, S.; Bassi, A.L.; Passoni, M.; Casari, C.S.; Bottani, C.E.; Brambilla, A.; Picone, A.; Finazzi, M.; et al. Scanning tunneling spectroscopy of the Fe(001)−p(1 × 1)O surface. Phys. Rev. B 2009, 79, 195430. [Google Scholar] [CrossRef] [Green Version]
- Bussetti, G.; Calloni, A.; Celeri, M.; Yivlialin, R.; Finazzi, M.; Bottegoni, F.; Duò, L.; Ciccacci, F. Structure and electronic properties of Zn-tetra-phenyl-porphyrin single- and multi-layers films grown on Fe(001)-p(1 × 1)O. Appl. Surf. Sci. 2016, 390, 856–862. [Google Scholar] [CrossRef]
- Picone, A.; Giannotti, D.; Brambilla, A.; Bussetti, G.; Calloni, A.; Yivlialin, R.; Finazzi, M.; Duò, L.; Ciccacci, F.; Goldoni, A.; et al. Local structure and morphological evolution of ZnTPP molecules grown on Fe(001)-p(1 × 1)O studied by STM and NEXAFS. Appl. Surf. Sci. 2018, 435, 841–847. [Google Scholar] [CrossRef]
- Jagadeesh, M.S.; Calloni, A.; Brambilla, A.; Picone, A.; Lodesani, A.; Duò, L.; Ciccacci, F.; Finazzi, M.; Bussetti, G. Room temperature magnetism of ordered porphyrin layers on Fe. Appl. Phys. Lett. 2019, 115, 082404. [Google Scholar] [CrossRef]
- Berti, G.; Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces. Rev. Sci. Instrum. 2014, 85, 073901. [Google Scholar] [CrossRef]
- Bertacco, R.; Merano, M.; Ciccacci, F. Spin dependent electron absorption in Fe(001)-p(1×1)O: A new candidate for a stable and efficient electron polarization analyzer. Appl. Phys. Lett. 1998, 72, 2050–2052. [Google Scholar] [CrossRef]
- Tange, A.; Gao, C.L.; Yavorsky, B.Y.; Maznichenko, I.V.; Etz, C.; Ernst, A.; Hergert, W.; Mertig, I.; Wulfhekel, W.; Kirschner, J. Electronic structure and spin polarization of the Fe(001)−p(1 × 1)O surface. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef] [Green Version]
- Koma, A. Molecular beam epitaxial growth of organic thin films. Prog. Cryst. Growth Charact. Mater. 1995, 30, 129–152. [Google Scholar] [CrossRef]
- Finazzi, M.; Bastianon, A.; Chiaia, G.; Ciccacci, F. High-sensitivity bandpass UV photon detector for inverse photoemission. Meas. Sci. Technol. 1993, 4, 234–236. [Google Scholar] [CrossRef]
- Ciccacci, F.; Vescovo, E.; De Rossi, S.; Tosca, M. Low energy electron gun for isochromat inverse photoemission. Nucl. Instrum. Methods Phys. Res. Sect. B 1991, 53, 218–222. [Google Scholar] [CrossRef]
- Bertacco, R.; Ciccacci, F. Oxygen-induced enhancement of the spin-dependent effects in electron spectroscopies of Fe(001). Phys. Rev. B 1999, 59, 4207–4210. [Google Scholar] [CrossRef]
- Picone, A.; Brambilla, A.; Calloni, A.; Duò, L.; Finazzi, M.; Ciccacci, F. Oxygen-induced effects on the morphology of the Fe(001) surface in out-of-equilibrium conditions. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
- Riva, M.; Picone, A.; Giannotti, D.; Brambilla, A.; Fratesi, G.; Bussetti, G.; Duò, L.; Ciccacci, F.; Finazzi, M. Mesoscopic organization of cobalt thin films on clean and oxygen-saturated Fe(001) surfaces. Phys. Rev. B 2015, 92. [Google Scholar] [CrossRef] [Green Version]
- Seah, M.P.; Dench, W.A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11. [Google Scholar] [CrossRef]
- Bussetti, G.; Calloni, A.; Yivlialin, R.; Picone, A.; Bottegoni, F.; Finazzi, M. Filled and empty states of Zn-TPP films deposited on Fe(001)-p(1 × 1)O. Beilstein J. Nanotechnol. 2016, 7, 1527–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Davoisne, C.; Leroux, H.; Frere, M.; Gimblot, J.; Gengembre, L.; Djouadi, Z.; Ferreiro, V.; D’Hendecourt, L.; Jones, A. Chemical and morphological evolution of a silicate surface under low-energy ion irradiation. Astron. Astrophys. 2008, 482, 541–548. [Google Scholar] [CrossRef]
- Wilson, E. The magnetic properties of almost pure iron. Proc. R. Soc. Lond. 1898, 62, 369–376. [Google Scholar] [CrossRef]
- Orbelli Biroli, A.; Calloni, A.; Bossi, A.; Jagadeesh, M.S.; Albani, G.; Duò, L.; Ciccacci, F.; Goldoni, A.; Verdini, A.; Schio, L.; et al. Out-of-plane metal coordination for a true solvent-free molecular lego building: Dodging the surface ligand effect for on-surface vacuum self-assembly. Adv. Funct. Mater. 2021. [Google Scholar]
NiTPP Coverage | Energy Gap |
---|---|
0.5 ML | 2.0 ± 0.2 eV |
1 ML | 2.0 ± 0.2 eV |
2 ML | 2.1 ± 0.1 eV |
4 ML | 2.3 ± 0.1 eV |
8 ML | 2.5 ± 0.1 eV |
16 ML | 2.5 ± 0.1 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albani, G.; Calloni, A.; Picone, A.; Brambilla, A.; Capra, M.; Lodesani, A.; Duò, L.; Finazzi, M.; Ciccacci, F.; Bussetti, G. An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O. Micromachines 2021, 12, 191. https://doi.org/10.3390/mi12020191
Albani G, Calloni A, Picone A, Brambilla A, Capra M, Lodesani A, Duò L, Finazzi M, Ciccacci F, Bussetti G. An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O. Micromachines. 2021; 12(2):191. https://doi.org/10.3390/mi12020191
Chicago/Turabian StyleAlbani, Guglielmo, Alberto Calloni, Andrea Picone, Alberto Brambilla, Michele Capra, Alessandro Lodesani, Lamberto Duò, Marco Finazzi, Franco Ciccacci, and Gianlorenzo Bussetti. 2021. "An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O" Micromachines 12, no. 2: 191. https://doi.org/10.3390/mi12020191
APA StyleAlbani, G., Calloni, A., Picone, A., Brambilla, A., Capra, M., Lodesani, A., Duò, L., Finazzi, M., Ciccacci, F., & Bussetti, G. (2021). An In-Depth Assessment of the Electronic and Magnetic Properties of a Highly Ordered Hybrid Interface: The Case of Nickel Tetra-Phenyl-Porphyrins on Fe(001)–p(1 × 1)O. Micromachines, 12(2), 191. https://doi.org/10.3390/mi12020191