Visual Tracking and Organ Targeting of Naja atra and Deinagkistrodon acutus Venoms in Mice
Abstract
1. Introduction
2. Results
2.1. Systematic Validation of Fluorescent Labeling Efficiency and Structural Integrity in Snake Venom Proteins via Chromatographic, Electrophoretic, and Optical Modalities
2.1.1. Quantitative Validation of Fluorescent Labeling Efficiency
2.1.2. Validation of Concentration-Dependent Fluorescent Labeling Mechanisms
2.1.3. Multidimensional Characterization of Fluorescent Labeling Integrity
2.2. The Activity of the Snake Venom Remains Unchanged After Being Labeled with CY7-SE
2.2.1. Preservation of Acute Lethality in CY7-SE-Labeled Venoms: Validation via Logarithmic Concentration Gradients and Comparative Mortality Analysis
2.2.2. Multidimensional Toxicity Profiling of Fluorophore-Labeled Venoms at LD50 Doses
2.2.3. Histopathological Examination
2.3. Spatiotemporal Fluorescence Dynamics of CY7-SE-Labeled Naja atra Venom in Mice
2.3.1. Lateral Decubitus View (Figure 6)

2.3.2. Prone Position View (Figure 7)

2.3.3. Supine Position View (Figure 8)

2.3.4. Time-Resolved Organotropism of Fluorophore-Tagged Venom
2.4. Spatiotemporal Fluorescence Dynamics of CY7-SE-Labeled Deinagkistrodon acutus Venom in Mice
2.4.1. Lateral Decubitus Imaging (Figure 11)

2.4.2. Supine Position Imaging (Figure 12)

2.4.3. Prone Position Imaging (Figure 13)

2.4.4. Organ-Specific Fluorescence Dynamics of CY7-SE-Labeled Deinagkistrodon acutus Venom (Figure 14 and Figure 15)


2.5. The Types of Toxins from Naja atra/Deinagkistrodon acutus Venom That Target Various Organs in Mice
3. Discussion
4. Materials and Methods
4.1. Major Experimental Materials
4.2. Animals and Experimental Design
4.3. Labeling and Characterization of Naja atra and Deinagkistrodon acutus Venoms
4.3.1. Labeling of Venoms
4.3.2. Optimization of Labeling Ratios and Separation of Free CY7-SE
4.3.3. Toxicity Assessment of Labeled Venoms
4.3.4. Real-Time Visualization of Labeled Venom Biodistribution
4.4. Shotgun Proteomics Was Employed to Identify Venom Toxin Species Within Snake Venom High-Accumulation Organs
4.4.1. Protein Extraction and Digestion
4.4.2. Fractionation
4.4.3. LC-MS/MS Analysis
4.4.4. Identification and Quantitation of Proteins
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Eggert, S.; Kjærgaard, J.; Poulsen, A. [Snakebites]. Ugeskr. Laeger 2020, 182, V03200195. [Google Scholar]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- He, D.; Hu, S.; Huang, Z.; Mo, C.; Cheng, X.; Song, P.; Li, Y.; Song, T.; Guan, Z.; Zhou, Y.; et al. Metabolomics analyses of serum metabolites perturbations associated with Naja atra bite. PLoS Neglected Trop. Dis. 2023, 17, e0011507. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.L.; Viegas, M.F.; da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Tasoulis, T.; Isbister, G.K. A Review and Database of Snake Venom Proteomes. Toxins 2017, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Iyaniwura, T.T. Snake venom constituents: Biochemistry and toxicology (Part 1). Vet. Hum. Toxicol. 1991, 33, 468–474. [Google Scholar]
- Sanhajariya, S.; Duffull, S.B.; Isbister, G.K. Pharmacokinetics of Snake Venom. Toxins 2018, 10, 73. [Google Scholar] [CrossRef]
- Shan, L.L.; Gao, J.F.; Zhang, Y.X.; Shen, S.S.; He, Y.; Wang, J.; Ma, X.M.; Ji, X. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J. Proteom. 2016, 138, 83–94. [Google Scholar] [CrossRef]
- Chen, P.C.; Huang, M.N.; Chang, J.F.; Liu, C.C.; Chen, C.K.; Hsieh, C.H. Snake venom proteome and immuno-profiling of the hundred-pace viper, Deinagkistrodon acutus, in Taiwan. Acta Trop. 2019, 189, 137–144. [Google Scholar] [CrossRef]
- Isbister, G.K.; Brown, S.G.; Page, C.B.; McCoubrie, D.L.; Greene, S.L.; Buckley, N.A. Snakebite in Australia: A practical approach to diagnosis and treatment. Med. J. Aust. 2013, 199, 763–768. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Theakston, R.D.; Warrell, D.A. Confronting the neglected problem of snake bite envenoming: The need for a global partnership. PLoS Med. 2006, 3, e150. [Google Scholar] [CrossRef]
- Britt, A.; Burkhart, K. Naja naja cobra bite. Am. J. Emerg. Med. 1997, 15, 529–531. [Google Scholar] [CrossRef] [PubMed]
- Dobaja Borak, M.; Leonardi, A.; Požek, K.; Reberšek, K.; Podgornik, H.; Pirnat, A.; Trampuš Bakija, A.; Kranjc Brezar, S.; Trobec, T.; Žužek, M.C.; et al. Reversible Thrombocytopenia of Functional Platelets after Nose-Horned Viper Envenomation is Induced by a Snaclec. Thromb. Haemost. 2025, 125, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, Q.F.; Yin, R.X.; Zhu, J.J.; Li, Q.B.; Chang, H.H.; Wu, Y.B.; Michelson, E. Clinical features and treatment experience: A review of 292 Chinese cobra snakebites. Environ. Toxicol. Pharmacol. 2014, 37, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Bin Haidar, H.; Almeida, J.R.; Williams, J.; Guo, B.; Bigot, A.; Senthilkumaran, S.; Vaiyapuri, S.; Patel, K. Differential effects of the venoms of Russell’s viper and Indian cobra on human myoblasts. Sci. Rep. 2024, 14, 3184. [Google Scholar] [CrossRef]
- Cheng, C.L.; Mao, Y.C.; Liu, P.Y.; Chiang, L.C.; Liao, S.C.; Yang, C.C. Deinagkistrodon acutus envenomation: A report of three cases. J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 20. [Google Scholar] [CrossRef]
- Thavornpradit, S.; Usama, S.M.; Lin, C.M.; Burgess, K. Protein labelling and albumin binding characteristics of the near-IR Cy7 fluorophore, QuatCy. Org. Biomol. Chem. 2019, 17, 7150–7154. [Google Scholar] [CrossRef]
- Korah, M.C.; Hima, S.P.; V, S.R.; Anil, A.; Harikrishnan, V.S.; Krishnan, L.K. Pharmacokinetics and Pharmacodynamics of Avian Egg-Yolk Derived Pure Anti-Snake Venom in Healthy and Disease Animal-Model. J. Pharm. Sci. 2022, 111, 1565–1576. [Google Scholar] [CrossRef]
- Ismail, M.; Aly, M.H.; Abd-Elsalam, M.A.; Morad, A.M. A three-compartment open pharmacokinetic model can explain variable toxicities of cobra venoms and their alpha toxins. Toxicon 1996, 34, 1011–1026. [Google Scholar] [CrossRef]
- Chen, L.; Chen, M.; Zhou, Y.; Ye, C.; Liu, R. NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Front. Chem. 2021, 9, 629062. [Google Scholar] [CrossRef]
- Pan, G.Y.; Jia, H.R.; Zhu, Y.X.; Wang, R.H.; Wu, F.G.; Chen, Z. Dual Channel Activatable Cyanine Dye for Mitochondrial Imaging and Mitochondria-Targeted Cancer Theranostics. ACS Biomater. Sci. Eng. 2017, 3, 3596–3606. [Google Scholar] [CrossRef]
- Camacho, X.; Machado, C.L.; García, M.F.; Gambini, J.P.; Banchero, A.; Fernández, M.; Oddone, N.; Bertolini Zanatta, D.; Rosal, C.; Buchpiguel, C.A.; et al. Technetium-99m- or Cy7-Labeled Rituximab as an Imaging Agent for Non-Hodgkin Lymphoma. Oncology 2017, 92, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Karasev, M.M.; Stepanenko, O.V.; Rumyantsev, K.A.; Turoverov, K.K.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins and Their Applications. Biochem. Biokhimiia 2019, 84 (Suppl. 1), S32–S50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zheng, J.; Jiang, Z. Pharmacokinetics of thrombin-like enzyme from venom of Agkistrodon halys ussuriensis Emelianov determined by ELISA in the rat. Toxicon 2001, 39, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.P.; Wang, Q.C.; Liu, G.F. Pharmacokinetics of cytotoxin from Chinese cobra (Naja naja atra) venom. Toxicon 1993, 31, 339–343. [Google Scholar] [CrossRef]
- Nakamura, M.; Kinjoh, K.; Miyagi, C.; Oka, U.; Sunagawa, M.; Yamashita, S.; Kosugi, T. Pharmacokinetics of habutobin in rabbits. Toxicon 1995, 33, 1201–1206. [Google Scholar] [CrossRef]
- Sim, S.M.; Saremi, K.; Tan, N.H.; Fung, S.Y. Pharmacokinetics of Cryptelytrops purpureomaculatus (mangrove pit viper) venom following intravenous and intramuscular injections in rabbits. Int. Immunopharmacol. 2013, 17, 997–1001. [Google Scholar] [CrossRef]
- Yap, M.K.; Tan, N.H.; Sim, S.M.; Fung, S.Y. Toxicokinetics of Naja sputatrix (Javan spitting cobra) venom following intramuscular and intravenous administrations of the venom into rabbits. Toxicon 2013, 68, 18–23. [Google Scholar] [CrossRef]
- Tan, C.H.; Sim, S.M.; Gnanathasan, C.A.; Fung, S.Y.; Tan, N.H. Pharmacokinetics of the Sri Lankan hump-nosed pit viper (Hypnale hypnale) venom following intravenous and intramuscular injections of the venom into rabbits. Toxicon 2014, 79, 37–44. [Google Scholar] [CrossRef]
- Serrano, S.M.; Maroun, R.C. Snake venom serine proteinases: Sequence homology vs. substrate specificity, a paradox to be solved. Toxicon 2005, 45, 1115–1132. [Google Scholar] [CrossRef]
- Vivas-Ruiz, D.E.; Sandoval, G.A.; Mendoza, J.; Inga, R.R.; Gontijo, S.; Richardson, M.; Eble, J.A.; Yarleque, A.; Sanchez, E.F. Coagulant thrombin-like enzyme (barnettobin) from Bothrops barnetti venom: Molecular sequence analysis of its cDNA and biochemical properties. Biochimie 2013, 95, 1476–1486. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Guan, X.; Kuang, P.; Jiang, S.; Yang, J.; Sui, N.; Chen, A.; Kuang, P.; Zhang, X. Effect of batroxobin on expression of neural cell adhesion molecule in temporal infarction rats and spatial learning and memory disorder. J. Tradit. Chin. Med. = Chung I Tsa Chih Ying Wen Pan 2001, 21, 294–298. [Google Scholar]
- Ullah, A.; Masood, R.; Ali, I.; Ullah, K.; Ali, H.; Akbar, H.; Betzel, C. Thrombin-like enzymes from snake venom: Structural characterization and mechanism of action. Int. J. Biol. Macromol. 2018, 114, 788–811. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, S.; Takeya, H. Structure and Function of Snake Venom Metalloproteinase Family. In Methods in Protein Sequence Analysis; Imahori, K., Sakiyama, F., Eds.; Springer: Boston, MA, USA, 1993; pp. 107–115. [Google Scholar]
- Bjarnason, J.B.; Fox, J.W. Snake venom metalloendopeptidases: Reprolysins. Methods Enzymol. 1995, 248, 345–368. [Google Scholar] [PubMed]
- Wang, W.J.; Huang, T.F. Purification and characterization of a novel metalloproteinase, acurhagin, from Agkistrodon acutus venom. Thromb. Haemost. 2002, 87, 641–650. [Google Scholar] [CrossRef]
- Wang, W.J.; Shih, C.H.; Huang, T.F. Primary structure and antiplatelet mechanism of a snake venom metalloproteinase, acurhagin, from Agkistrodon acutus venom. Biochimie 2005, 87, 1065–1077. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, J.H.; Tsai, I.H. Molecular cloning and deduced primary structures of acidic and basic phospholipases A2 from the venom of Deinagkistrodon acutus. Toxicon 1996, 34, 1191–1196. [Google Scholar] [CrossRef]
- Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther. 2009, 23, 49–59. [Google Scholar] [CrossRef]
- Ozer, J.; Ratner, M.; Shaw, M.; Bailey, W.; Schomaker, S. The current state of serum biomarkers of hepatotoxicity. Toxicology 2008, 245, 194–205. [Google Scholar] [CrossRef]
- Poh, S.L.; Mourier, G.; Thai, R.; Armugam, A.; Molgó, J.; Servent, D.; Jeyaseelan, K.; Ménez, A. A synthetic weak neurotoxin binds with low affinity to Torpedo and chicken alpha7 nicotinic acetylcholine receptors. Eur. J. Biochem. 2002, 269, 4247–4256. [Google Scholar]







| Naja atra | Cy7-SE + Naja atra | Deinagkistrodon acutus | Cy7-SE + Deinagkistrodon acutus | ||||
|---|---|---|---|---|---|---|---|
| 0.4015 mg/kg | ++++++ | 0.4015 mg/kg | ++++++ | 3.59 mg/kg | ++++++ | 3.59 mg/kg | ++++++ |
| 0.803 mg/kg | +++−−− | 0.803 mg/kg | +++−−− | 7.18 mg/kg | +++−−− | 7.18 mg/kg | +++−−− |
| 1.606 mg/kg | +−−−−− | 1.606 mg/kg | +−−−−− | 14.36 mg/kg | ++−−−−− | 14.36 mg/kg | ++−−−− |
| 2.409 mg/kg | −−−−−− | 2.409 mg/kg | −−−−−− | 21.54 mg/kg | −−−−−− | 21.54 mg/kg | −−−−−− |
| Project | Control | Cy7-SE + Naja atra | Cy7-SE + Deinagkistrodon acutus |
|---|---|---|---|
| WBC (109/L) | 1.18 ± 0.265 | 3.195 ± 1.083 ** | 2.517 ± 0.811 * |
| NEU (109/L) | 0.24 ± 0.082 | 0.9725 ± 0.321 ** | 0.76 ± 0.234 * |
| LY (109/L) | 0.685 ± 0.234 | 2.242 ± 0.868 * | 0.293 ± 0.043 * |
| MON (109/L) | 0.13 ± 0.06 | 0.45125 ± 0.253 * | 1.34 ± 0.55 * |
| MON (%) | 55.725 ± 10.692 | 44.4375 ± 20.208 | 13.067 ± 11.569 * |
| LYM (%) | 12.275 ± 7.151 | 16.275 ± 9.638 | 51.333 ± 13.645 * |
| RBC (1012/L) | 6.385 ± 0.605 | 8.213 ± 1.04 * | 7.977 ± 0.418 * |
| Hb (g/L) | 110.25 ± 6.016 | 140.375 ± 8.674 *** | 125 ± 11.3 |
| HCT (%) | 40.4 ± 2.268 | 47.625 ± 3.852 * | 43.567 ± 3.245 |
| PLT (109/L) | 557 ± 361.190 | 964.875 ± 124.699 ** | 786.333 ± 331.897 |
| MPV | 7.4 ± 0.158 | 6.1375 ± 0.545 ** | 5.967 ± 0.661 * |
| Project | Control | Cy7-SE + Naja atra | Cy7-SE + Deinagkistrodon acutus |
|---|---|---|---|
| AST | 125.456 ± 8.55 | 265.104 ± 61.577 ** | 213.083 ± 46.664 * |
| ALT | 44.937 ± 4.9 | 78.776 ± 16.826 * | 142.898 ± 48.888 * |
| DBIL | 6.436 ± 1.996 | 4.554 ± 0.736 | 5.48 ± 1.422 |
| CRE | 22.838 ± 4.103 | 41.543 ± 5.688 ** | 14.89 ± 1.378 * |
| Protein Name | Target Organ | Species |
|---|---|---|
| Venom thrombin-like enzyme (Fragment) | Lung | Deinagkistrodon acutus |
| Venom thrombin-like enzyme | Liver | Deinagkistrodon acutus |
| Snake venom metalloproteinase Ac1 | Liver | Deinagkistrodon acutus |
| Snake venom serine protease Dav-X | Liver | Deinagkistrodon acutus |
| Venom thrombin-like enzyme (Fragment) | Brain | Deinagkistrodon acutus |
| Thrombin-like enzyme 2 | Diaphragm | Deinagkistrodon acutus |
| Zinc metalloproteinase-disintegrin-like agkihagin | Diaphragm | Deinagkistrodon acutus |
| Zinc metalloproteinase-disintegrin-like acurhagin | Diaphragm | Deinagkistrodon acutus |
| Venom thrombin-like enzyme | Spleen | Deinagkistrodon acutus |
| Snake venom metalloproteinase acutolysin-C | Spleen | Deinagkistrodon acutus |
| Acidic phospholipase A2 | Spleen | Deinagkistrodon acutus |
| Acidic phospholipase A2 natratoxin | Spleen | Naja atra |
| Probable weak neurotoxin NNAM2 | Kidney | Naja atra |
| Probable weak neurotoxin NNAM2 | Liver | Naja atra |
| Probable weak neurotoxin NNAM2 | Muscle | Naja atra |
| Item | Value |
|---|---|
| Enzyme | Trypsin |
| Max Missed Cleavages | 2 |
| Fixed modifications | Carbamidomethyl (C) |
| Variable modifications | Oxidation (M), Acetyl(Protein N-term) |
| Database | uniprot_mouse_76417 |
| Peptide FDR | ≤0.01 |
| Protein FDR | ≤0.01 |
| Item | Value |
|---|---|
| Enzyme | Trypsin |
| Max Missed Cleavages | 2 |
| Fixed modifications | Carbamidomethyl (C) |
| Variable modifications | Oxidation (M), Acetyl(Protein N-term) |
| Database | uniprot_mouse_76417 |
| FDR | ≤0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Xiao, M.; Jiang, N.; Zhang, Z.; Jia, Q.; Zhou, Y.; Liu, X.; Liao, M. Visual Tracking and Organ Targeting of Naja atra and Deinagkistrodon acutus Venoms in Mice. Toxins 2025, 17, 559. https://doi.org/10.3390/toxins17110559
Hu S, Xiao M, Jiang N, Zhang Z, Jia Q, Zhou Y, Liu X, Liao M. Visual Tracking and Organ Targeting of Naja atra and Deinagkistrodon acutus Venoms in Mice. Toxins. 2025; 17(11):559. https://doi.org/10.3390/toxins17110559
Chicago/Turabian StyleHu, Shaocong, Manqi Xiao, Ningjing Jiang, Ziyan Zhang, Qiuju Jia, Yi Zhou, Xin Liu, and Ming Liao. 2025. "Visual Tracking and Organ Targeting of Naja atra and Deinagkistrodon acutus Venoms in Mice" Toxins 17, no. 11: 559. https://doi.org/10.3390/toxins17110559
APA StyleHu, S., Xiao, M., Jiang, N., Zhang, Z., Jia, Q., Zhou, Y., Liu, X., & Liao, M. (2025). Visual Tracking and Organ Targeting of Naja atra and Deinagkistrodon acutus Venoms in Mice. Toxins, 17(11), 559. https://doi.org/10.3390/toxins17110559

