Resistance of Transgenic Maize Cultivars to Mycotoxin Production—Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. General Findings
2.2. Mycotoxin Levels and Groups Division
2.3. FUM Comparison in Conventional and Transgenic Maize
2.4. AFL Levels in Conventional and Transgenic Maize
2.5. DON Levels in Maize
2.6. ZEA in Non-Trangenic and Trangenic Maize
3. Discussion
4. Conclusions
5. Materials and Methods
Statistical Analysis
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Muhialdin, B.J.; Saari, N.; Hussin, A.S.M. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Khaneghah, A.M.; Borges, L.L.; Bonato, M.A.; Fakhri, Y.; Barbalho, C.B.; Barbalho, R.L.C.; Corassin, C.H.; Oliveira, C.A.F. In vitro and in vivo capacity of yeast-based products to bind to aflatoxins B1 and M1 in media and foodstuffs: A systematic review and meta-analysis. Food Res. Int. 2020, 137, 109505. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Fakhri, Y.; Gahruie, H.H.; Niakousari, M.; Sant’Ana, A.S. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends Food Sci. Technol. 2019, 91, 95–105. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Yuan, L.; Li, J. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci. Technol. 2020, 96, 127–134. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the USA corn industry from aflatoxin contamination. Food Addit. Contam. Part A 2016, 33, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Worldwide Regulations for Mycotoxins in Food and Feed in 2003. Available online: https://www.fao.org/3/y5499e/y5499e02.htm (accessed on 21 February 2023).
- Legislação BRASIL—LAMIC. Laboratório de Análises Micotoxicológicas. Available online: https://www.lamic.ufsm.br/site/legislacoes/legislacao-brasil (accessed on 21 February 2023).
- GB 13078-2017; Hygienical Standard for Feeds. National Standard of the People’s Republic of China: Beijing, China, 2017.
- FAO. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC068134/ (accessed on 21 February 2023).
- U.S. Food and Drug Administration. Chemical Hazards. Available online: https://www.fda.gov/animal-veterinary/biological-chemical-and-physical-contaminants-animal-food/chemical-hazards#Mycotoxins (accessed on 21 February 2023).
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Njombwa, C.A.; Hamie, J.C.; Banda, M. Occurrence of Total Aflatoxin and Zearalenone in Dairy Cattle Concentrate Feeds in Malawi. Res. Sq. 2020, preprint. [Google Scholar]
- Suleiman, R.A.; Rosentrater, K.A.; Chove, B. Postharvest and mycotoxins of maize in three agro-ecological zones in Tanzania. In Proceedings of the 2017 ASABE Annual International Meeting, Spokane, WA, USA, 16–19 July 2017; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2017. [Google Scholar]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef]
- EMBRAPA. Transgênicos. Brasília. [s.d]. Available online: https://www.embrapa.br/tema-transgenicos/sobre-o-tema (accessed on 21 February 2023).
- Poutanen, K.S.; Kårlund, A.O.; Gómez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Yassitepe; de Carvalho Teixeira, J.E.; da Silva, V.C.H.; Hernandes-Lopes, J.; Dante, R.A.; Gerhardt, I.R.; Fernandes, F.R.; da Silva, P.A.; Vieira, L.R.; Bonatti, V.; et al. Maize Transformation: From Plant Material to the Release of Genetically Modified and Edited Varieties. Front. Plant Sci. 2021, 12, 766702. [Google Scholar] [CrossRef]
- Nandula, V.K. Herbicide Resistance Traits in Maize and Soybean: Current Status and Future Outlook. Plants 2019, 8, 337. [Google Scholar] [CrossRef]
- Rocha, L.O.; Barroso, V.M.; Andrade, L.J.; Pereira, G.H.A.; Ferreira-Castro, F.L.; Duarte, A.P.; Michelotto, M.D.; Correa, B. FUM Gene expression profile and fumonisin production by Fusarium verticillioides inoculated in Bt and non-Bt maize. Front. Microbiol. 2016, 6, 1503. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Linghu, L.; Li, M.; Mao, D.; Zhang, Y.; Yang, X.; Yang, L. Nutritional components and protein quality analysis of genetically modified phytase maize. GM Crops Food 2022, 13, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Raruang, Y.; Omolehin, O.; Hu, D.; Wei, Q.; Promyou, S.; Parekattil, L.J.; Rajasekaran, K.; Cary, J.W.; Wang, K.; Chen, Z.Y. Targeting the Aspergillus flavus p2c gene through host-induced gene silencing reduces A. flavus infection and aflatoxin contamination in transgenic maize. Front. Plant Sci. 2023, 14, 1150086. [Google Scholar] [CrossRef] [PubMed]
- Hellmich, R.L.; Hellmich, K.A. Use and Impact of Bt Maize. Nat. Educ. Knowl. 2012, 3, 4. [Google Scholar]
- Carvajal-Moreno, M. Mycotoxin challenges in maize production and possible control methods in the 21st century. J. Cereal Sci. 2022, 103, 103293. [Google Scholar] [CrossRef]
- Abbas, H.K.; Cartwright, R.D.; Xie, W.; Shier, W.T. Aflatoxin and fumonisin contamination of corn (maize, Zea mays) hybrids in Arkansas. Crop Prot. 2005, 25, 1–9. [Google Scholar] [CrossRef]
- Abbas, H.K.; Accinelli, C.; Zablotowicz, R.M.; Abel, C.A.; Bruns, H.A.; Dong, Y.; Shier, W.T. Dynamics of Mycotoxin and Aspergillus flavus Levels in Aging Bt and Non-Bt Corn Residues under Mississippi No-Till Conditions. J. Agric. Food Chem. 2008, 56, 7578–7585. [Google Scholar] [CrossRef]
- Accinelli, C.; Abbas, H.K.; Vicari, A.; Shier, W.T. Aflatoxin contamination of corn under different agro-environmental conditions and biocontrol applications. Crop. Prot. 2014, 63, 9–14. [Google Scholar] [CrossRef]
- Ariño, A.; Herrera, M.; Juan, T.; Estopañan, G.; Carramiñana, J.J.; Rota, C.; Herrera, A. Influence of Agricultural Practices on the Contamination of Maize by Fumonisin Mycotoxins. J. Food Prot. 2009, 72, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Bakan, B.; Melcion, D.; Richard-Molard, D.; Cahagnier, B. Fungal Growth and Fusarium Mycotoxin Content in Isogenic Traditional Maize and Genetically Modified Maize Grown in France and Spain. J. Agric. Food Chem. 2002, 50, 728–731. [Google Scholar] [CrossRef]
- Bánáti, H.; Darvas, B.; Fehér-Tóth, S.; Czéh, Á.; Székács, A. Determination of Mycotoxin Production of Fusarium Species in Genetically Modified Maize Varieties by Quantitative Flow Immunocytometry. Toxins 2017, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Barroso, V.M.; Rocha, L.O.; Reis, T.A.; Reis, G.M.; Duarte, A.P.; Michelotto, M.D.; Correa, B. Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil. Mycotoxin Res. 2017, 33, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Formenti, S.; Ramponi, C.; Rossi, V. Dynamic of water activity in maize hybrids is crucial for fumonisin contamination in kernels. J. Cereal Sci. 2011, 54, 467–472. [Google Scholar] [CrossRef]
- Betancourt, S.D.P. Presencia de proteína transgénica y su efecto sobre el contenido de taninos y aflatoxinas en maíz comercial. Rev. Mex. Cienc. Agríc. 2018, 4, 485–490. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A.; Colombari, G.; Pietri, A. Comparison of integrated field programmes for the reduction of fumonisin contamination in maize kernels. Field Crops Res. 2009, 111, 284–289. [Google Scholar] [CrossRef]
- Blandino, M.; Reyneri, A.; Vanara, F. Effect of Sowing Time on Toxigenic Fungal Infection and Mycotoxin Contamination of Maize Kernels. J. Phytopathol. 2009, 157, 7–14. [Google Scholar] [CrossRef]
- Bolduan, C.; Miedaner, T.; Schipprack, W.; Dhillon, B.S.; Melchinger, A.E. Genetic Variation for Resistance to Ear Rots and Mycotoxins Contamination in Early European Maize Inbred Lines. Crop. Sci. 2009, 49, 2019–2028. [Google Scholar] [CrossRef]
- Bordini, J.G.; Ono, M.A.; Garcia, G.T.; Vizoni, É.; Amador, I.R.; Hirozawa, M.T.; Ono, E.Y.S. Transgenic versus conventional corn: Fate of fumonisins during industrial dry milling. Mycotoxin Res. 2019, 35, 169–176. [Google Scholar] [CrossRef]
- Bowers, E.; Hellmich, R.; Munkvold, G. Comparison of Fumonisin Contamination Using HPLC and ELISA Methods in Bt and Near-Isogenic Maize Hybrids Infested with European Corn Borer or Western Bean Cutworm. J. Agric. Food Chem. 2014, 62, 6463–6472. [Google Scholar] [CrossRef]
- Bowers, E.; Munkvold, G. Fumonisins in Conventional and Transgenic, Insect-Resistant Maize Intended for Fuel Ethanol Production: Implications for Fermentation Efficiency and DDGS Co-Product Quality. Toxins 2014, 6, 2804–2825. [Google Scholar] [CrossRef]
- Campa, R.D.L.; Hooker, D.C.; Miller, J.D.; Schaafsma, A.W.; Hammond, B.G. Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines. Mycopathologia 2005, 159, 539–552. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Brown, R.L.; Damann, K.E.; Cleveland, T.E. PR10 expression in maize and its effect on host resistance againstAspergillus flavusinfection and aflatoxin production. Mol. Plant Pathol. 2010, 11, 69–81. [Google Scholar] [CrossRef]
- da Costa, R.V.; Queiroz, V.A.; Cota, L.V.; da Silva, D.D.; Lanza, F.E.; de Almeida, R.E.; Pereira, A.A.; Alves, R.R.; Campos, L.J. Delaying harvest for naturally drying maize grain increases the risk of kernel rot and fumonisin contamination. Trop. Plant Pathol. 2018, 43, 452–459. [Google Scholar] [CrossRef]
- Dowd, P.F. Biotic and Abiotic Factors Limiting Efficacy of Bt Corn in Indirectly Reducing Mycotoxin Levels in Commercial Fields. J. Econ. Entomol. 2001, 94, 1067–1074. [Google Scholar] [CrossRef]
- Dowd, P.F.; Johnson, E.T. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production. Mycotoxin Res. 2014, 31, 63–82. [Google Scholar] [CrossRef]
- Folcher, L.; Delos, M.; Marengue, E.; Jarry, M.; Weissenberger, A.; Eychenne, N.; Regnault-Roger, C. Lower mycotoxin levels in Bt maize grain. Agron. Sustain. Dev. 2010, 30, 711–719. [Google Scholar] [CrossRef]
- Gasperini, A.M.; Garcia-Cela, E.; Sulyok, M.; Medina, A.; Magan, N. Fungal diversity and metabolomic profiles in GM and isogenic non-GM maize cultivars from Brazil. Mycotoxin Res. 2021, 37, 39–48. [Google Scholar] [CrossRef]
- Gasperini, A.M.; Rodriguez-Sixtos, A.; Verheecke-Vaessen, C.; Garcia-Cela, E.; Medina, A.; Magan, N. Resilience of Biocontrol for Aflatoxin Minimization Strategies: Climate Change Abiotic Factors May Affect Control in Non-GM and GM-Maize Cultivars. Front. Microbiol. 2019, 10, 2525. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Majumdar, R.; Rajasekaran, K.; Chen, Z.Y.; Wei, Q.; Sickler, C.M.; Lebar, M.D.; Cary, J.W.; Frame, B.R.; Wang, K. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Planta 2018, 247, 1465–1473. [Google Scholar] [CrossRef]
- Hammond, B.G.; Campbell, K.W.; Pilcher, C.D.; Degooyer, T.A.; Robinson, A.E.; McMillen, B.L.; Spangler, S.M.; Riordan, S.G.; Rice, L.G.; Richard, J.L. Lower Fumonisin Mycotoxin Levels in the Grain of Bt Corn Grown in the United States in 2000−2002. J. Agric. Food Chem. 2004, 52, 1390–1397. [Google Scholar] [CrossRef]
- Herrera, M.; Conchello Moreno, M.D.P.; Juan Esteban, T.; Estopañán Muñoz, G.; Herrera Marteache, A.; Ariño Moneva, A.A. Fumonisins Concentrations in Maize as Affected by Physico-chemical, Environmental and Agronomical Conditions. Maydica 2010, 55, 121–126. [Google Scholar]
- Igawa, T.; Takahashi-Ando, N.; Ochiai, N.; Ohsato, S.; Shimizu, T.; Kudo, T.; Yamaguchi, I.; Kimura, M. Reduced Contamination by the Fusarium Mycotoxin Zearalenone in Maize Kernels through Genetic Modification with a Detoxification Gene. Appl. Environ. Microbiol. 2007, 73, 1622–1629. [Google Scholar] [CrossRef]
- Kaur, H.; DiFonzo, C.; Chilvers, M.; Cassida, K.; Singh, M.P. Hybrid insect protection and fungicide application for managing ear rots and mycotoxins in silage corn. Agron. J. 2023, 115, 1957–1971. [Google Scholar] [CrossRef]
- Majumdar, R.; Rajasekaran, K.; Sickler, C.; Lebar, M.; Musungu, B.M.; Fakhoury, A.M.; Payne, G.A.; Geisler, M.; Carter-Wientjes, C.; Wei, Q.; et al. The Pathogenesis-Related Maize Seed (PRms) Gene Plays a Role in Resistance to Aspergillus flavus Infection and Aflatoxin Contamination. Front. Plant Sci. 2017, 8, 1758. [Google Scholar] [CrossRef]
- Masanga, J.O.; Matheka, J.M.; Omer, R.A.; Ommeh, S.C.; Monda, E.O.; Alakonya, A.E. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Plant Cell Rep. 2015, 34, 1379–1387. [Google Scholar] [CrossRef]
- Munkvold, G.P.; Hellmich, R.L.; Rice, L.G. Comparison of Fumonisin Concentrations in Kernels of Transgenic Bt Maize Hybrids and Nontransgenic Hybrids. Plant Dis. 1999, 83, 130–138. [Google Scholar] [CrossRef]
- Naef, A.; Zesiger, T.; Défago, G. Impact of Transgenic Bt Maize Residues on the Mycotoxigenic Plant PathogenFusarium graminearumand the Biocontrol AgentTrichoderma atroviride. J. Environ. Qual. 2006, 35, 1001–1009. [Google Scholar] [CrossRef]
- Ncube, E.; Flett, B.C.; Van den Berg, J.; Erasmus, A.; Viljoen, A. Fusarium ear rot and fumonisins in maize kernels when comparing a Bt hybrid with its non-Bt isohybrid and under conventional insecticide control of Busseola fusca infestations. Crop. Prot. 2018, 110, 183–190. [Google Scholar] [CrossRef]
- Presello, D.A.; Iglesias, J.; Botta, G.; Eyherabide, G.H. Severity of Fusarium ear rot and concentration of fumonisin in grain of Argentinian maize hybrids. Crop. Prot. 2007, 26, 852–855. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Sayler, R.J.; Sickler, C.M.; Majumdar, R.; Jaynes, J.M.; Cary, J.W. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Plant Sci. 2018, 270, 150–156. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Van der Westhuizen, L. Fusarium and fumonisin in GM maize grown by small-scale farmers in KwaZulu-Natal, South Africa. S. Afr. J. Sci. 2024, 120, 1–5. [Google Scholar] [CrossRef]
- Smith, J.L.; Limay-Rios, V.; Hooker, D.C.; Schaafsma, A.W. Fusarium graminearum Mycotoxins in Maize Associated With Striacosta albicosta (Lepidoptera: Noctuidae) Injury. J. Econ. Entomol. 2018, 111, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Tagele, S.B.; Kim, S.W.; Lee, H.G.; Lee, Y.S. Aggressiveness and Fumonisins Production of Fusarium Subglutinans and Fusarium Temperatum on Korean Maize Cultivars. Agronomy 2019, 9, 88. [Google Scholar] [CrossRef]
- Thakare, D.; Zhang, J.; Wing, R.A.; Cotty, P.J.; Schmidt, M.A. Aflatoxin-free transgenic maize using host-induced gene silencing. Sci. Adv. 2017, 3, e1602382. [Google Scholar] [CrossRef]
- Valenta, H.; Dänicke, S.; Flachowsky, G.; Böhme, T. Comparative study on concentrations of deoxynivalenol and zearalenone in kernels of transgenic Bt maize hybrids and nontransgenic maize hybrids. Mycotoxin Res. 2001, 17, 15–18. [Google Scholar] [CrossRef]
- Weaver, M.A.; Abbas, H.K.; Brewer, M.J.; Pruter, L.S.; Little, N.S. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn. Crop. Prot. 2017, 98, 108–115. [Google Scholar] [CrossRef]
- Weaver, M.A.; Abbas, H.K.; Jin, X.; Elliott, B. Efficacy of water-dispersible formulations of biological control strains of Aspergillus flavus for aflatoxin management in corn. Food Addit. Contam. Part A 2016, 33, 346–351. [Google Scholar]
- Williams, W.P.; Windham, G.L.; Buckley, P.M.; Perkins, J.M. Southwestern corn borer damage and aflatoxin accumulation in conventional and transgenic corn hybrids. Field Crops Res. 2005, 91, 329–336. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Liu, B.; Gao, Y.; Hu, C.; Li, W.; Yang, Y.; Li, G.; Wang, L.; Yang, X.; et al. Bt maize can provide non-chemical pest control and enhance food safety in China. Plant Biotechnol. J. 2022, 21, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022); John Wiley & Sons: Cochrane, UK, 2022; Available online: www.training.cochrane.org/handbook (accessed on 3 March 2022).
- Ni, X.; Wilson, J.P.; Buntin, G.D.; Guo, B.; Krakowsky, M.D.; Lee, R.D.; Cottrell, T.E.; Scully, B.T.; Huffaker, A.; Schmelz, E.A. Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn. Toxins 2011, 3, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Frizzas, M.R.; de Oliveira, C.M.; Omoto, C. Diversity of insects under the effect of Bt maize and insecticides. Arq. do Inst. Biol. 2018, 84. [Google Scholar] [CrossRef]
- Van Frankenhuyzen, K.; Gringorten, J.L.; Milne, R.E.; Gauthier, D.; Pusztai, M.; Brousseau, R.; Masson, L. Specificity of Activated CryIA Proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for Defoliating Forest Lepidoptera. Appl. Environ. Microbiol. 1991, 57, 1650–1655. [Google Scholar] [CrossRef]
- Douville, M.; Gagné, F.; Blaise, C.; André, C. Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicol. Environ. Saf. 2007, 66, 195–203. [Google Scholar] [CrossRef]
- De Lange, E.S.; Balmer, D.; Mauch-Mani, B.; Turlings, T. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol. 2014, 204, 329–341. [Google Scholar] [CrossRef]
- Reboud, X.; Eychenne, N.; Délos, M.; Folcher, L. Withdrawal of maize protection by herbicides and insecticides increases mycotoxins contamination near maximum thresholds. Agron. Sustain. Dev. 2016, 36, 1–10. [Google Scholar] [CrossRef]
- Shaban, S.A.; Safina, S.; Yehia, R.; Abo, R.G.M. Effect of some herbicides on quality of maize grains and the following winter crops. Egypt. J. Appl. Sci. 2016, 31, 1–14. [Google Scholar]
- Gomes, G.L.G.C.; Velini, E.D.; Carbonari, C.A.; Trindade, M.L.B. Efeitos da associação de glyphosate e fosfito em plantas de milho. Rev. Bras. De Herbic. 2013, 12, 78. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef] [PubMed]
- Moher, D. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, 71. [Google Scholar] [CrossRef]
- Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration 2020.
- Sun, K.; Dilts, B. Lucidchart [Computer and Mobile Software]; Lucid Software Inc.: South Jordan, UT, USA, 2008; Available online: www.lucidchart.com (accessed on 14 September 2022).
Country/Region | Mycotoxin | Maximum Level Allowed (μg/kg) |
---|---|---|
Argentina [6] | AFL | 20 |
Brazil [7] | AFL | 50 |
China [8] | AFL | 50 1 |
FUM | 60,000 | |
ZEA | 500 | |
Europe Union [9] | AFL | 20 |
FUM | 60,000 | |
DON | 12,000 1 | |
ZEA | 3000 1 | |
United States [10] | AFL | 20–300 2 |
FUM | 5000–30,000 2 | |
DON | 5000–10,000 2 |
Planting Season | |
---|---|
Season | Number of Articles |
Summer | 28 [21,26,28,29,30,32,33,37,38,40,41,43,44,45,46,47,48,50,53,56,57,58,61,62,65,66,67,69] |
Spring | 10 [21,27,35,36,39,51,59,68,70] |
Autumn | 10 [26,27,28,33,34,35,36,39,40,51] |
Artificial temperature control | 3 [34,54,63] |
Not reported | 8 [31,42,48,49,52,55,60,64] |
Cultivation Method | |
Method | Number of articles |
Field | 34 [21,26,27,29,30,32,33,35,36,37,38,39,40,41,43,44,45,46,47,48,50,51,53,56,57,58,59,61,62,65,66,67,68,69] |
Greenhouse | 4 [49,52,63,64] |
Growth chamber | 2 [54,60] |
Glasshouse | 2 [42,55] |
Material collected after harvest | 2 [28,34] |
Not reported | 1 [31] |
Maize hybrids | |
Number of hybrids | Number of articles |
1 | 7 [29,45,51,52,55,60,67] |
2 | 8 [27,30,31,35,36,38,46,65] |
3 | 6 [28,33,39,43,58,66] |
4–10 | 10 [21,32,44,48,49,56,57,62,63,64] |
>10 | 7 [26,34,37,41,42,47,50] |
Not reported | 4 [40,48,53,61] |
Transgenic Objective | Number of Articles |
---|---|
Insect resistance/tolerance | 23 [21,26,27,28,30,31,34,38,39,41,44,46,48,50,51,53,56,57,58,61,65,66,67,69] |
Herbicide resistance/tolerance | 11 [28,38,44,48,52,57,61,64,66,67,69] |
Aspergillus flavus resistance | 5 [42,49,54,55,60] |
Antibiotic resistance | 2 [48,57] |
Not reported | 14 [29,32,33,35,36,37,40,43,45,47,59,62,63,68] |
NT | T | |||
---|---|---|---|---|
Analysis | Number of Articles 2 | ± SD (n) | ± SD (n) | p |
Total | 13 [26,27,28,38,39,44,46,51,57,61,62,67,70] | 4.16 ± 1.24 (954) | 1.75 ± 0.45 (892) | <0.001 |
Total 1 | 13 [26,27,28,38,39,44,46,51,57,61,62,67,70] | 2.06 ± 1.06 (906) | 1.19 ± 0.38 (880) | <0.001 |
FUM | 9 [26,38,39,44,46,51,61,67,70] | 4.60 ± 0.64 (761) | 1.88 ± 0.24 (726) | <0.001 |
FUM 1 | 9 [26,38,39,44,46,51,61,67,70] | 2.52 ± 1.34 (713) | 1.42 ± 0.46 (714) | <0.001 |
AFL | 4 [26,27,28,67] | 0.15 ± 0.03 (61) | 0.08 ± 0.03 (34) | 0.020 |
DON | 2 [46,57] | 0.70 ± 0.04 (90) | 0.74 ± 0.06 (90) | <0.001 |
ZEA | 1 [46] | 0.01 ± <0.01 (42) | 0.01 ± <0.01 (42) | <0.001 |
Article ID | Transgenic Objective | Mycotoxin |
---|---|---|
Abbas, et al., 2005 [26] | Insect resistance | AFL, FUM |
Abbas, et al., 2008 [27] | Insect resistance | AFL |
Accinelli, et al., 2014 [28] | Insect resistance and herbicide resistance | AFL |
Bordini, et al., 2019 [38] | Insect resistance and herbicide resistance | FUM |
Bowers, et al., 2014 [39] | Insect resistance | FUM |
Dowd, 2001 [44] | Insect resistance and herbicide resistance | FUM |
Folcher, et al., 2010 [46] | Insect resistance | FUM, DON, ZEA |
Herrera, et al., 2010 [51] | Insect resistance | FUM |
Naef, et al., 2006 [57] | Insect resistance, herbicide resistance, and antibiotic resistance | DON |
Rheeder, 2024 [61] | Insect resistance and herbicide resistance | FUM |
Rocha, et al., 2016 [21] | Insect resistance | FUM |
Weaver, et al., 2017 [66] | Insect resistance and herbicide resistance | AFL, FUM |
YANG, et al., 2022 [69] | Insect resistance and herbicide resistance | FUM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.S.d.L.P.B.; Weber, S.H.; Luciano, F.B. Resistance of Transgenic Maize Cultivars to Mycotoxin Production—Systematic Review and Meta-Analysis. Toxins 2024, 16, 373. https://doi.org/10.3390/toxins16080373
Gomes ASdLPB, Weber SH, Luciano FB. Resistance of Transgenic Maize Cultivars to Mycotoxin Production—Systematic Review and Meta-Analysis. Toxins. 2024; 16(8):373. https://doi.org/10.3390/toxins16080373
Chicago/Turabian StyleGomes, Ana Silvia de Lara Pires Batista, Saulo Henrique Weber, and Fernando Bittencourt Luciano. 2024. "Resistance of Transgenic Maize Cultivars to Mycotoxin Production—Systematic Review and Meta-Analysis" Toxins 16, no. 8: 373. https://doi.org/10.3390/toxins16080373