Vitamin B12 in Health and Disease
Abstract
:1. Vitamin B12 Function
2. Biochemical Assessment of Vitamin B12 Status
3. Absorption
4. Food Sources and Bioavailability of Vitamin B12
5. Vitamin B12 Requirement
Food Type | Subjects | Vitamin B12 content | % Absorption, mean (range) | Analysis method | Reference |
---|---|---|---|---|---|
Mutton | 3 healthy young subjects | 0.9 µg in 100g portion | 65 (56–77) | Radiolabelled vitamin B12 , whole body counting | [11] |
2 healthy young subjects | 3.03 µg in 200g portion | 83 | |||
2 healthy young subjects | 5.11 µg in 300g portion | 53 | |||
Liver pate | 6 healthy subjects | 38 µg per serve | 9.1 (5.1–19.5) | Radiolabelled vitamin B12 , whole body counting | [11] |
4 older subjects | 4.5 (2.4–6.0) | ||||
5 subjects with pernicious anaemia | 1.8 (0–3.7) | ||||
Chicken | 3 healthy subjects | 0.4–0.6 µg in 100g portion | 65 (58–74) | Radiolabelled vitamin B12 , faecal excretion studies | [23] |
0.8–1.3 µg in 200g portion | 63 (48–76) | ||||
1.3–1.9 µg in 300g portion | 61 (49–75) | ||||
Fish | 3 healthy subjects | 2.1 µg in 50g portion | 42 | Radiolabelled vitamin B12 , faecal and urinary excretion studies | [24] |
3.1 µg in 100g portion | 38 | ||||
9.2 µg in 200g portion | 42 | ||||
13.3 µg in 300g portion | 30 | ||||
Eggs: boiled, scrambled, fried | 18 healthy subjects | 0.9–1.4 µg in 100g portion | 3.7–9.2 | Radiolabelled vitamin B12 , faecal and urinary excretion | [25] |
6. Vitamin B12 Deficiency
7. Drug-nutrient Interactions
8. Vitamin B12 and Neural Tube Defects (NTD)
Design and reference | Study Details | Main Outcome |
---|---|---|
Case control [39] | 81 NTD cases and 247 controls | In cases only, plasma vitamin B12 and plasma folate affected maternal Red Cell Folate (multiple r = 0.68, p < 0.001). |
Case control [40] | 84 NTD pregnancies and 110 controls | Women with lower vitamin B12 have increased risk of NTD. |
Cohort [41] | Vitamin B12 at 15 weeks' gestation | Vitamin B12 <185 pmol/L associated with the highest risk of NTD. |
Case control [42] | 46 NTD pregnancies and 44 controls | Lower serum vitamin B12 (p = 0.005) in cases compared to controls |
Case control [43] | 35 NTD neonates and parents vs 24 normal neonates. | Low vitamin B12 in both the parents of child with NTD. |
Case control [44] | 89 NTD and 422 controls | Increased NTD risk with lower holo-TC. |
Case control 1[45] | 36 NTD vs normal pregnancy. | Low vitamin B12 associated with 2-3 x increased risk for NTD |
Case control [46] | 46 NTD and 73 control mothers | For NTD holo-TC % (holo-TC/total TCII ) Q1vs Q4 OR = 5.0 (95% CI:1.3, 19.3). |
Case control 1[47] | 57 NTD cases and 186 controls | Q1 vs Q5 of vitamin B12 OR = 3.0 (95% CI:1.4, 6.3) |
Case control 1[48] | 45 mothers and NTD children vs 83 controls | Case mothers with vitamin B12 ≤ 185 pmol/L OR = 3.5-fold (95% CI:1.3, 8.9) for NTD risk. |
Case control [49] | 56 NTD babies and mothers vs 97 control children and mothers. | Low vitamin B12 levels increase risk of NTD. |
Case control 1[50] | 60 NTD cases and 94 controls | NTD for mothers for vitamin B12 levels ≤ 5th % vs ≥95th |
Case control [51] | 32 NTD pregnancies and 132 control pregnancies. | MMA higher in cases vs controls. |
9. Vitamin B12 and Cardiovascular Disease (CVD)
Trial Type | Study Details | Main Outcome |
---|---|---|
Meta-analysis [53] | 9 case-control studies. Assessed associations between tHcy and CVD risk. | 5µM tHcy increment associated with increased risk of CAD, OR = 1.6 (95% CI:1.4 to 1.7) for males and 1.8 (95% CI:1.3 to 1.9) for females. |
Meta-analysis [54] | 30 prospective or retrospective studies assessed tHcy and CVD risk. | 25% lower tHcy associated with lower risk of IHD & stroke. |
Meta-analysis 7 RCTs [55] | B vitamin supplementation and tHcy lowering, assessed effect of vitamin B12 (range 0.02–1.0 mg/day) | Vitamin B12 (median dose 0.4 mg/d) - further decrease (-7%) in tHcy |
Meta-analysis 12 RCTs [56] | Preexisting CVD or renal disease- included 3 studies of vitamin B12 supplementation, with doses 0.4–1.0 mg B12/day. | Reduction in stroke risk in vitamin B12 (1 mg/d) intervention OR = 0.76 (95% CI:0.59, 0.96) |
Meta-analysis8 RCTs [57] | 4 studies assessed vitamin B12 supplementation (0.018–1 mg) and stroke risk | Reduction in stroke greater in longer trials with more tHcy lowering and no stroke history. No specific effect of vitamin B12. |
Meta-analysis 24 RCTs [58] | Assessed CIMT: 3 with vitamin B12: 0.4–0.5 mg/d; endothelial function: 5 with B12: 6 µg–1 mg/day | ↓ CIMT, ↑ FMD found in short-term not long term trials |
10. Cognitive Decline
11. Osteoporosis
Design and reference | Study Details | Main Outcome | Reduced risk |
---|---|---|---|
Cohort [84] | Elderly, fracture risk | Low vitamin B12 and/or HHcy: RR = 3.8 (95% CI:1.2, 1.6) males and 2.8 (95% CI:1.3, 5.7) females | Yes |
Cohort [85] | Elderly, fracture risk | tHcy > 14, hip fracture HR = 1.49; (95% CI: 0.91, 2.46) | No |
Cohort [86] | Hip fracture risk | fracture for high vs low tHcy (≥15 vs <9 µM), HR=2.42 (95% CI:1.43, 4.09) in women | Yes |
Cohort [87] | Elderly, fracture risk | For 1 SD in tHcy fracture RR =1.4 (95% CI:1.2, 1.6) | Yes |
Cohort [88] | Elderly BMD, tHcy, MTHFR polymorphisms | OR for low BMD w HHcy ≥15 µM vs. low tHcy OR=1.96 (95% CI:1.40, 2.75) for females. | Yes |
Cohort [89] | Elderly BMD and plasma vitamins | Vitamin B12 <148 pM had lower BMD at hip (males) and spine (females) p < 0.05. | Yes |
Cohort [90] | Elderly subjects (n=1550) | Serum vitamin B12 <15th percentile: OR of osteoporosis/osteopenia = 2.0 (95% CI:1.0, 3.9). | Yes |
RCT [79] | 559 subjects:5 mg folate, 1.5 mg vitamin B12 or placebo | RR for hip fracture = 0.20 (95% CI: 0.08, 0.50) | Yes |
RCT [78] | 47 Osteoporotic subjects 2.5 mg folate, 0.5 mg vitamin B12 and 25 mg B6 or placebo. | No changes in BMD or bone metabolism markers. | No |
RCT [80] | Healthy older n = 276; folate 1 mg, vitamin B12 0.5 mg, B6 10 mg or placebo. | No differences in bone markers in vitamin vs placebo groups. | No |
CT [81] | 5522 subjects with vascular disease, 2.5 mg folic acid, 50 mg B6, 1 mg vitamin B12 or placebo | HR =1.06 (95% CI:0.81, 1.40) for fracture risk in supplemented vs non supplemented | No |
12. Other Aspects of Vitamin B12 and Ageing
13. Conclusion
References
- Scott, J.M. Bioavailability of vitamin B12. Eur. J. Clin. Nutr. 1997, 51, S49–53. [Google Scholar]
- Gibson, R.S. Principles of Nutritional Assessment., 2nd ed; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Food and Nutrition BoardInstitute of Medicine, Vitamin B12. In Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline; National Research CouncilNational Academy Press: Washington, DC, USA, 1998; pp. 306–356.
- Carmel, R. Mild transcobalamin I (haptocorrin) deficiency and low serum cobalamin concentrations. Clin. Chem. 2003, 49, 1367–1374. [Google Scholar]
- Carmel, R.; Green, R.; Rosenblatt, D.S.; Watkins, D. Update on cobalamin, folate, and homocystein. Hematology Am. Soc. Hematol. Educ. Program 2003, 62–81. [Google Scholar]
- Pfeiffer, C.M.; Caudill, S.P.; Gunter, E.W.; Osterloh, J.; Sampson, E.J. Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999-2000. Am. J. Clin. Nutr. 2005, 82, 442–450. [Google Scholar]
- Klee, G.G. Cobalamin and folate evaluation: measurement of methylmalonic acid and homocysteine vs vitamin B(12) and folate. Clin. Chem. 2000, 46, 1277–1283. [Google Scholar]
- Holleland, G.; Schneede, J.; Ueland, P.M.; Lund, P.K.; Refsum, H.; Sandberg, S. Cobalamin deficiency in general practice. Assessment of the diagnostic utility and cost-benefit analysis of methylmalonic acid determination in relation to current diagnostic strategies. Clin. Chem. 1999, 45, 189–198. [Google Scholar] [PubMed]
- Carmel, R.; Sarrai, M. Diagnosis and management of clinical and subclinical cobalamin deficiency: advances and controversies. Curr. Hematol. Rep. 2006, 5, 23–33. [Google Scholar]
- Miller, J.W.; Garrod, M.G.; Rockwood, A.L.; Kushnir, M.M.; Allen, L.H.; Haan, M.N.; Green, R. Measurement of total vitamin B12 and holotranscobalamin, singly and in combination, in screening for metabolic vitamin B12 deficiency. Clin. Chem. 2006, 52, 278–285. [Google Scholar] [PubMed]
- Heyssel, R.M.; Bozian, R.C.; Darby, W.J.; Bell, M.C. Vitamin B12 turnover in man. The assimilation of vitamin B12 from natural foodstuff by man and estimates of minimal daily requirements. Am. J. Clin. Nutr. 1966, 18, 176–184. [Google Scholar] [PubMed]
- Dagnelie, P.C.; van Staveren, W.A.; van den Berg, H. Vitamin B-12 from algae appears not to be bioavailable. Am. J. Clin. Nutr. 1991, 53, 695–697. [Google Scholar]
- Chanarin, I. The Megaloblastic Anaemias, 2nd ed; Blackwell Scientific: Oxford, UK, 1979. [Google Scholar]
- Adams, J.F.; Ross, S.K.; Mervyn, R.L.; Boddy, K.; King, P. Absorption of cyanocobalamin, coenzyme B12, methylcobalamin, and hydroxycobalamin at different dose levels. Scand. J. Gastroenterol. 1971, 6, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Berlin, H.; Berlin, R.; Brante, G. Oral treatment of pernicious anamia with high doses of vitamin B12 without intrinsic factor. Acta. Med. Scand. 1968, 184, 247–257. [Google Scholar]
- Schneede, J.; Ueland, P.M. Novel and established markers of cobalamin deficiency: complementary or exclusive diagnostic strategies. Semin. Vasc. Med. 2005, 5, 140–155. [Google Scholar]
- Carmel, R. How I treat cobalamin (vitamin B12) deficiency. Blood 2008, 112, 2214–2221. [Google Scholar]
- Stabler, S.P.; Allen, R.H. Vitamin B12 deficiency as a worldwide problem. Annu. Rev. Nutr. 2004, 24, 299–326. [Google Scholar]
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar]
- Casey, P.J.; Speckman, K.R.; Ebert, F.J.; Hobbs, W.E. Radioisotope dilution technique for determination of vitamin B12 in foods. J. Assoc. Off. Anal. Chem. 1982, 65, 85–88. [Google Scholar]
- Blake, C.J. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review. Anal. Bioanal. Chem. 2007, 389, 63–76. [Google Scholar]
- National Health and Medical Research CouncilNutrient Reference Values for Australia and New Zealand. Department of Health and AgeingAustralian Government: Canberra, Australia, 2005; pp. 91–96.
- Doscherholmen, A.; McMahon, J.; Ripley, D. Vitamin B12 absorption from chicken meat. Am. J. Clin. Nutr. 1978, 31, 825–830. [Google Scholar]
- Doscherholmen, A.; McMahon, J.; Ripley, D. Vitamin B12 absorption from fish. Proc. Soc. Exp. Biol. Med. 1981, 167, 480–484. [Google Scholar]
- Doscherholmen, A.; McMahon, J.; Ripley, D. Vitamin B12 absorption from eggs. Proc. Soc. Exp. Biol. Med. 1975, 149, 987–990. [Google Scholar]
- Li, F.; Watkins, D.; Rosenblatt, D.S. Vitamin B12 and birth defects. Mol. Genet. Metab. 2009, 98, 166–172. [Google Scholar]
- Thompson, M.D.; Cole, D.E.; Ray, J.G. Vitamin B-12 and neural tube defects: the Canadian experience. Am. J. Clin. Nutr. 2009, 89, 697S–701S. [Google Scholar]
- Carmel, R. Prevalence of undiagnosed pernicious anemia in the elderly. Arch. Intern. Med. 1996, 156, 1097–1100. [Google Scholar]
- Allen, L.H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 2009, 89, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Valuck, R.J.; Ruscin, J.M. A case-control study on adverse effects: H2 blocker or proton pump inhibitor use and risk of vitamin B12 deficiency in older adults. J. Clin. Epidemiol. 2004, 57, 422–428. [Google Scholar]
- Den Elzen, W.P.; Groeneveld, Y.; De Ruijter, V.; Souverijn, J.H.; Le Cessie, S.; Assendelft, W.J.; Gussekloo, J. Long-term use of proton pump inhibitors and vitamin B12 status in elderly individuals. Aliment. Pharmacol. Ther. 2008, 27, 491–497. [Google Scholar]
- O'Leary, F.; Wai, J.; Wormold, L.; Flood, V.; Petocz, P.; Samman, S. No effect of Proton Pump Inhibitor (PPI) medications on vitamin B12 status in elderly rehabilitation patients. Is there a dietary component? Asia Pac. J. Clin. Nutr. 2007, 31, S96. [Google Scholar]
- Dharmarajan, T.S.; Kanagala, M.R.; Murakonda, P.; Lebelt, A.S.; Norkus, E.P. Do acid-lowering agents affect vitamin B12 status in older adults? J. Am. Med. Dir. Assoc. 2008, 9, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Filioussi, K.; Bonovas, S.; Katsaros, T. Should we screen diabetic patients using biguanides for megaloblastic anaemia? Aust. Fam. Physician 2003, 32, 383–384. [Google Scholar] [PubMed]
- Bauman, W.A.; Shaw, S.; Jayatilleke, E.; Spungen, A.M.; Herbert, V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care 2000, 23, 1227–1231. [Google Scholar]
- Schilling, R.F. Is nitrous oxide a dangerous anesthetic for vitamin B12- deficient subjects? JAMA 1986, 255, 1605–1606. [Google Scholar] [PubMed]
- Siniscalchi, A.; Mancuso, F.; Gallelli, L.; Ferreri, I.; Biagio, M.; Sarro, G.D. Increase in plasma homocysteine levels induced by drug treatments in neurologic patients. Pharmacol. Res. 2005, 52, 367–375. [Google Scholar]
- Liu, S.; West, R.; Randell, E.; Longerich, L.; O'Connor, K.; Scott, H.; Crowley, M.; Lam, A.; Prabhakaran, V.; McCourt, C. A comprehensive evaluation of food fortification with folic acid for the primary prevention of neural tube defects. BMC Pregnancy Childbirth. 2004, 4, 20. [Google Scholar] [Green Version]
- Kirke, P.N.; Molloy, A.M.; Daly, L.E.; Burke, H.; Weir, D.G.; Scott, J.M. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q. J. Med. 1993, 86, 703–708. [Google Scholar]
- Zhang, T.; Xin, R.; Gu, X.; Wang, F.; Pei, L.; Lin, L.; Chen, G.; Wu, J.; Zheng, X. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr. 2009, 12, 680–686. [Google Scholar]
- Molloy, A.M.; Kirke, P.N.; Troendle, J.F.; Burke, H.; Sutton, M.; Brody, L.C.; Scott, J.M.; Mills, J.L. Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic Acid fortification. Pediatrics 2009, 123, 917–923. [Google Scholar]
- Zhang, H.-Y.; Luo, G.-A.; Liang, Q.-L.; Wang, Y.; Yang, H.-H.; Wang, Y.-M.; Zheng, X.-Y.; Song, X.-M.; Chen, G.; Zhang, T.; Wu, J.-X. Neural tube defects and disturbed maternal folate- and homocysteine-mediated one-carbon metabolism. Exp. Neurol. 2008, 212, 515–521. [Google Scholar]
- Ratan, S.K.; Rattan, K.N.; Pandey, R.M.; Singhal, S.; Kharab, S.; Bala, M.; Singh, V.; Jhanwar, A. Evaluation of the levels of folate, vitamin B12, homocysteine and fluoride in the parents and the affected neonates with neural tube defect and their matched controls. Pediatr. Surg. Int. 2008, 24, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Wyatt, P.R.; Thompson, M.D.; Vermeulen, M.J.; Meier, C.; Wong, P.-Y.; Farrell, S.A.; Cole, D.E. Vitamin B12 and the risk of neural tube defects in a folic-acid-fortified population. Epidemiology 2007, 18, 362–366. [Google Scholar]
- Gaber, K.R.; Farag, M.K.; Soliman, S.E.; El-Bassyouni, H.T.; El-Kamah, G. Maternal vitamin B12 and the risk of fetal neural tube defects in Egyptian patients. Clin. Lab. 2007, 53, 69–75. [Google Scholar]
- Afman, L.A.; Van Der Put, N.M.; Thomas, C.M.; Trijbels, J.M.; Blom, H.J. Reduced vitamin B12 binding by transcobalamin II increases the risk of neural tube defects. Q.J. Med. 2001, 94, 159–166. [Google Scholar]
- Suarez, L.; Hendricks, K.; Felkner, M.; Gunter, E. Maternal serum B12 levels and risk for neural tube defects in a Texas-Mexico border population. Ann. Epidemiol. 2003, 13, 81–88. [Google Scholar]
- Groenen, P.M.; van Rooij, I.A.; Peer, P.G.; Gooskens, R.H.; Zielhuis, G.A.; Steegers-Theunissen, R.P. Marginal maternal vitamin B12 status increases the risk of offspring with spina bifida. Am. J. Obstet. Gynecol. 2004, 191, 11–17. [Google Scholar]
- Wilson, A.; Platt, R.; Wu, Q.; Leclerc, D.; Christensen, B.; Yang, H.; Gravel, R.A.; Rozen, R. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol. Genet. Metab. 1999, 67, 317–323. [Google Scholar]
- van der Put, N.M.; Thomas, C.M.; Eskes, T.K.; Trijbels, F.J.; Steegers-Theunissen, R.P.; Mariman, E.C.; De Graaf-Hess, A.; Smeitink, J.A.; Blom, H.J. Altered folate and vitamin B12 metabolism in families with spina bifida offspring. Q. J. Med. 1997, 90, 505–510. [Google Scholar]
- Adams, M.J., Jr.; Khoury, M.J.; Scanlon, K.S.; Stevenson, R.E.; Knight, G.J.; Haddow, J.E.; Sylvester, G.C.; Cheek, J.E.; Henry, J.P.; Stabler, S.P.; Allen, R.H. Elevated midtrimester serum methylmalonic acid levels as a risk factor for neural tube defects. Teratology 1995, 51, 311–317. [Google Scholar]
- Moens, A.L.; Vrints, C.J.; Claeys, M.J.; Timmermans, J.P.; Champion, H.C.; Kass, D.A. Mechanisms and potential therapeutic targets for folic acid in cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, 1971–1977. [Google Scholar]
- Boushey, C.J.; Beresford, S.A.; Omenn, G.S.; Motulsky, A.G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995, 274, 1049–1057. [Google Scholar] [PubMed]
- Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002, 288, 2015–2022. [CrossRef] [PubMed]
- Homocysteine Lowering Trialists' Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am. J. Clin. Nutr. 2005, 82, 806–812. [PubMed]
- Bazzano, L.A.; Reynolds, K.; Holder, K.N.; He, J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA 2006, 296, 2720–2726. [Google Scholar]
- Wang, X.; Qin, X.; Demirtas, H.; Li, J.; Mao, G.; Huo, Y.; Sun, N.; Liu, L.; Xu, X. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet 2007, 369, 1876–1882. [Google Scholar]
- Potter, K.; Hankey, G.J.; Green, D.J.; Eikelboom, J.; Jamrozik, K.; Arnolda, L.F. The effect of long-term homocysteine-lowering on carotid intima-media thickness and flow-mediated vasodilation in stroke patients: a randomized controlled trial and meta-analysis. BMC Cardiovasc. Disord. 2008, 8, 24. [Google Scholar]
- Ebbing, M.; Bleie, O.; Ueland, P.M.; Nordrehaug, J.E.; Nilsen, D.W.; Vollset, S.E.; Refsum, H.; Pedersen, E.K.; Nygard, O. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA 2008, 300, 795–804. [Google Scholar]
- Toole, J.F.; Malinow, M.R.; Chambless, L.E.; Spence, J.D.; Pettigrew, L.C.; Howard, V.J.; Sides, E.G.; Wang, C.H.; Stampfer, M. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004, 291, 565–575. [Google Scholar] [PubMed]
- Lonn, E.; Yusuf, S.; Arnold, M.J.; Sheridan, P.; Pogue, J.; Micks, M.; McQueen, M.J.; Probstfield, J.; Fodor, G.; Held, C.; Genest, J., Jr. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 2006, 354, 1567–1577. [Google Scholar]
- Bonaa, K.H.; Njolstad, I.; Ueland, P.M.; Schirmer, H.; Tverdal, A.; Steigen, T.; Wang, H.; Nordrehaug, J.E.; Arnesen, E.; Rasmussen, K. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 2006, 354, 1578–1588. [Google Scholar]
- Albert, C.M.; Cook, N.R.; Gaziano, J.M.; Zaharris, E.; MacFadyen, J.; Danielson, E.; Buring, J.E.; Manson, J.E. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008, 299, 2027–2036. [Google Scholar]
- Zhou, J.; Austin, R.C. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. Biofactors 2009, 35, 120–129. [Google Scholar]
- Antoniades, C.; Antonopoulos, A.S.; Tousoulis, D.; Marinou, K.; Stefanadis, C. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur. Heart J. 2009, 30, 6–15. [Google Scholar]
- Righetti, M. Protective effect of vitamin B therapy on bone and cardiovascular disease. Recent Patents Cardiovasc. Drug Discov. 2009, 4, 37–44. [Google Scholar]
- Spence, J.D.; Bang, H.; Chambless, L.E.; Stampfer, M.J. Vitamin Intervention For Stroke Prevention trial: an efficacy analysis. Stroke 2005, 36, 2404–2409. [Google Scholar]
- Quinlivan, E.P.; McPartlin, J.; McNulty, H.; Ward, M.; Strain, J.J.; Weir, D.G.; Scott, J.M. Importance of both folic acid and vitamin B12 in reduction of risk of vascular disease. Lancet 2002, 359, 227–228. [Google Scholar]
- Spence, J.D. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol. 2007, 6, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H. Vitamin B-12 and cognition in the elderly. Am. J. Clin. Nutr. 2009, 89, 707S–711S. [Google Scholar]
- Lewis, M.S.; Miller, L.S.; Johnson, M.A.; Dolce, E.B.; Allen, R.H.; Stabler, S.P. Elevated methylmalonic acid is related to cognitive impairement in older adults enrolled in an elderly nutrition program. J. Nutr. Elder. 2005, 24, 47–65. [Google Scholar]
- Hin, H.; Clarke, R.; Sherliker, P.; Atoyebi, W.; Emmens, K.; Birks, J.; Schneede, J.; Ueland, P.M.; Nexo, E.; Scott, J.; Molloy, A.; Donaghy, M.; Frost, C.; Evans, J.G. Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age Ageing 2006, 35, 416–422. [Google Scholar]
- Garrod, M.G.; Green, R.; Allen, L.H.; Mungas, D.M.; Jagust, W.J.; Haan, M.N.; Miller, J.W. Fraction of total plasma vitamin B12 bound to transcobalamin correlates with cognitive function in elderly Latinos with depressive symptoms. Clin. Chem. 2008, 54, 1210–1217. [Google Scholar]
- Morris, M.S.; Jacques, P.F.; Rosenberg, I.H.; Selhub, J. Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. Am. J. Clin. Nutr. 2007, 85, 193–200. [Google Scholar] [PubMed]
- Malouf, R.; Areosa Sastre, A. Vitamin B12 for cognition. Cochrane Database Syst. Rev. 2009, 1. [Google Scholar]
- Van Dam, F.; Van Gool, W.A. Hyperhomocysteinemia and Alzheimer's disease: A systematic review. Arch. Gerontol. Geriatr. 2009, 48, 425–430. [Google Scholar]
- Herrmann, M.; Peter Schmidt, J.; Umanskaya, N.; Wagner, A.; Taban-Shomal, O.; Widmann, T.; Colaianni, G.; Wildemann, B.; Herrmann, W. The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin. Chem. Lab. Med. 2007, 45, 1621–1632. [Google Scholar]
- Herrmann, M.; Umanskaya, N.; Traber, L.; Schmidt-Gayk, H.; Menke, W.; Lanzer, G.; Lenhart, M.; Peter Schmidt, J.; Herrmann, W. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial. Clin. Chem. Lab. Med. 2007, 45, 1785–1792. [Google Scholar]
- Sato, Y.; Honda, Y.; Iwamoto, J.; Kanoko, T.; Satoh, K. Effect of folate and mecobalamin on hip fractures in patients with stroke: a randomized controlled trial. JAMA 2005, 293, 1082–1088. [Google Scholar]
- Green, T.J.; McMahon, J.A.; Skeaff, C.M.; Williams, S.M.; Whiting, S.J. Lowering homocysteine with B vitamins has no effect on biomarkers of bone turnover in older persons: a 2-y randomized controlled trial. Am. J. Clin. Nutr. 2007, 85, 460–464. [Google Scholar]
- Sawka, A.M.; Ray, J.G.; Yi, Q.; Josse, R.G.; Lonn, E. Randomized clinical trial of homocysteine level lowering therapy and fractures. Arch. Intern. Med. 2007, 167, 2136–2139. [Google Scholar]
- Hong, X.; Hsu, Y.-H.; Terwedow, H.; Tang, G.; Liu, X.; Jiang, S.; Xu, X.; Xu, X. Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone 2007, 40, 737–742. [Google Scholar]
- Riancho, J.A.; Valero, C.; Zarrabeitia, M.T. MTHFR polymorphism and bone mineral density: meta-analysis of published studies. Calcif. Tissue Int. 2006, 79, 289–293. [Google Scholar]
- Dhonukshe-Rutten, R.A.; Pluijm, S.M.; de Groot, L.C.; Lips, P.; Smit, J.H.; van Staveren, W.A. Homocysteine and vitamin B12 status relate to bone turnover markers, broadband ultrasound attenuation, and fractures in healthy elderly people. J. Bone Miner. Res. 2005, 20, 921–929. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.R.; Jacques, P.F.; Selhub, J.; Fredman, L.; Tucker, K.L.; Samelson, E.J.; Kiel, D.P.; Cupples, L.A.; Hannan, M.T. Plasma B vitamins, homocysteine, and their relation with bone loss and hip fracture in elderly men and women. J. Clin. Endocrinol. Metab. 2008, 93, 2206–2212. [Google Scholar] [CrossRef] [PubMed]
- Gjesdal, C.G.; Vollset, S.E.; Ueland, P.M.; Refsum, H.; Meyer, H.E.; Tell, G.S. Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: the Hordaland Homocysteine Study. J. Bone Miner. Res. 2007, 22, 747–756. [Google Scholar] [CrossRef] [PubMed]
- van Meurs, J.B.; Dhonukshe-Rutten, R.A.; Pluijm, S.M.; van der Klift, M.; de Jonge, R.; Lindemans, J.; de Groot, L.C.; Hofman, A.; Witteman, J.C.; van Leeuwen, J.P.; Breteler, M.M.; Lips, P.; Pols, H.A.; Uitterlinden, A.G. Homocysteine levels and the risk of osteoporotic fracture. N. Engl. J. Med. 2004, 350, 2033–2041. [Google Scholar]
- Gjesdal, C.G.; Vollset, S.E.; Ueland, P.M.; Refsum, H.; Drevon, C.A.; Gjessing, H.K.; Tell, G.S. Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine Study. Arch. Intern. Med. 2006, 166, 88–94. [Google Scholar]
- Tucker, K.L.; Hannan, M.T.; Qiao, N.; Jacques, P.F.; Selhub, J.; Cupples, L.A.; Kiel, D.P. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J. Bone Miner. Res. 2005, 20, 152–158. [Google Scholar]
- Morris, M.S.; Jacques, P.F.; Selhub, J. Relation between homocysteine and B-vitamin status indicators and bone mineral density in older Americans. Bone 2005, 37, 234–242. [Google Scholar]
- Kamburoglu, G.; Gumus, K.; Kadayifcilar, S.; Eldem, B. Plasma homocysteine, vitamin B12 and folate levels in age-related macular degeneration. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 1–5. [Google Scholar]
- Rochtchina, E.; Wang, J.J.; Flood, V.M.; Mitchell, P. Elevated serum homocysteine, low serum vitamin B12, folate, and age-related macular degeneration: the Blue Mountains Eye Study. Am. J. Ophthalmol. 2007, 143, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, R.A.; Fisher, A.I.; Jacques, P.F.; Klein, R.; Klein, B.E.; Palta, M.; Mares-Perlman, J.A. Relation of blood homocysteine and its nutritional determinants to age-related maculopathy in the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2002, 76, 897–902. [Google Scholar]
- Christen, W.G.; Glynn, R.J.; Chew, E.Y.; Albert, C.M.; Manson, J.E. Folic Acid, Pyridoxine, and Cyanocobalamin Combination Treatment and Age-Related Macular Degeneration in Women The Women's Antioxidant and Folic Acid Cardiovascular Study. Arch. Intern. Med. 2009, 169, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J. Gerontol. A. Biol. Sci. Med. Sci. 2004, 59, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Matteini, A.M.; Walston, J.D.; Fallin, M.D.; Bandeen-Roche, K.; Kao, W.H.; Semba, R.D.; Allen, R.H.; Guralnik, J.; Fried, L.P.; Stabler, S.P. Markers of B-vitamin deficiency and frailty in older women. J. Nutr. Health Aging 2008, 12, 303–308. [Google Scholar]
- Bartali, B.; Semba, R.D.; Frongillo, E.A.; Varadhan, R.; Ricks, M.O.; Blaum, C.S.; Ferrucci, L.; Guralnik, J.M.; Fried, L.P. Low micronutrient levels as a predictor of incident disability in older women. Arch. Intern. Med. 2006, 166, 2335–2340. [Google Scholar]
- O’Leary, F.; Flood, V.; Allman-Farinelli, M.; Petocz, P.; Samman, S. Nutritional status, micronutrient levels and length of stay in an elderly rehabilitation unit. Asia Pac. J. Clin. Nutr. 2009, 33, 106. [Google Scholar]
- O’Leary, F.; Wai, J.; Wormald, L.; Ellis, J.; Flood, V.; Petocz, P.; Samman, S. Vitamin B status and length of stay in elderly rehabilitation patients. Nutr. Diet. 2009, 66, A43. [Google Scholar]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
O’Leary, F.; Samman, S. Vitamin B12 in Health and Disease. Nutrients 2010, 2, 299-316. https://doi.org/10.3390/nu2030299
O’Leary F, Samman S. Vitamin B12 in Health and Disease. Nutrients. 2010; 2(3):299-316. https://doi.org/10.3390/nu2030299
Chicago/Turabian StyleO’Leary, Fiona, and Samir Samman. 2010. "Vitamin B12 in Health and Disease" Nutrients 2, no. 3: 299-316. https://doi.org/10.3390/nu2030299