Association of Paternal BMI and Diet During Pregnancy with Offspring Birth Measures: The STEPS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcome Variables
2.3. Paternal Variables: BMI and Index of Diet Quality (IDQ)
2.4. Background Variables
2.4.1. Paternal Age, Education, and Smoking
2.4.2. Covariate Variables: Maternal Variables
2.5. Statistical Analyses
3. Results
3.1. Study Characteristics
3.2. Paternal BMI, Diet, and Offspring Birth Measures
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.N.; Rajindrajith, S. Fetal programming of obesity and type 2 diabetes. World J. Diabetes 2022, 13, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Mola, C.L.D.; França, G.V.A.D.; de Queved, L.A.; Horta, B.L. Low birth weight, preterm birth and small for gestational age association with adult depression: Systematic review and meta-analysis. Br. J. Psychiatry 2014, 205, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Hoy, W.E.; Rees, M.; Kile, E.; Mathews, J.D.; Wang, Z. A new dimension to the Barker hypothesis: Low birthweight and susceptibility to renal disease. Kidney Int. 1999, 56, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Lackland, D.T.; Bendall, H.E.; Osmond, C.; Egan, B.M.; Barker, D.J. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch. Intern. Med. 2000, 160, 1472–1476. [Google Scholar] [CrossRef]
- Barker, D.J. Fetal origins of coronary heart disease. BMJ 1995, 311, 171–174. [Google Scholar] [CrossRef]
- Forsén, T.; Eriksson, J.G.; Tuomilehto, J.; Osmond, C.; Barker, D.J. Growth in utero and during childhood among women who develop coronary heart disease: Longitudinal study. BMJ 1999, 319, 1403–1407. [Google Scholar] [CrossRef]
- Reyes, L.; Manalich, R. Long-term consequences of low birth weight. Kidney Int. 2005, 68, S107–S111. [Google Scholar] [CrossRef]
- Kwon, E.J.; Kim, Y.J. What is fetal programming: A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017, 60, 506–519. [Google Scholar] [CrossRef]
- Chia, A.-R.; Chen, L.-W.; Lai, J.S.; Wong, C.H.; Neelakantan, N.; Van Dam, R.M.; Chong, M.F.F. Maternal Dietary Patterns and Birth Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 685–695. [Google Scholar] [CrossRef]
- Heslehurst, N.; Vieira, R.; Akhter, Z.; Bailey, H.; Slack, E.; Ngongalah, L.; Pemu, A.; Rankin, J. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019, 16, e1002817. [Google Scholar] [CrossRef]
- Zhang, J.; Clayton, G.L.; Overvad, K.; Olsen, A.; Lawlor, D.A.; Dahm, C.C. Body mass index in parents and their adult offspring: A systematic review and meta-analysis. Obes. Rev. 2024, 25, e13644. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Gu, W.; Huang, H. Effects of Paternal Obesity on Fetal Development and Pregnancy Complications: A Prospective Clinical Cohort Study. Front. Endocrinol. 2022, 13, 826665. [Google Scholar] [CrossRef] [PubMed]
- Watkins, A.J.; Sinclair, K.D. Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. -Heart Circ. Physiol. 2014, 306, H1444–H1452. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, R.S.; Carney, E.J.; Clarke, J.; Cao, H.; Cruz, M.I.; Benitez, C.; Jin, L.; Fu, Y.; Cheng, Z.; Wang, Y.; et al. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res. 2018, 20, 99. [Google Scholar] [CrossRef]
- Bakos, H.W.; Mitchell, M.; Setchell, B.P.; Lane, M. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int. J. Androl. 2011, 34, 402–410. [Google Scholar] [CrossRef]
- Mitchell, M.; Bakos, H.W.; Lane, M. Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 2011, 95, 1349–1353. [Google Scholar] [CrossRef]
- Ng, S.F.; Lin, R.C.Y.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 2010, 467, 963–966. [Google Scholar] [CrossRef]
- Binder, N.K.; Hannan, N.J.; Gardner, D.K. Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS ONE 2012, 7, e52304. [Google Scholar] [CrossRef]
- Power, C.; Li, L.; Manor, O.; Smith, G.D. Combination of low birth weight and high adult body mass index: At what age is it established and what are its determinants? J. Epidemiol. Community Health 2003, 57, 969–973. [Google Scholar] [CrossRef]
- Bellavia, A.; Mitro, S.D.; Hauser, R.; James-Todd, T. Paternal bias: The impact of not accounting for paternal confounders in reproductive epidemiological studies. Am. J. Obstet. Gynecol. 2020, 222, 87–88. [Google Scholar] [CrossRef]
- Soubry, A. POHaD: Why we should study future fathers. Environ. Epigenetics 2018, 4, dvy007. [Google Scholar] [CrossRef] [PubMed]
- Wingerd, J.; Schoen, E.J. Factors Influencing Length at Birth and Height at Five Years. Pediatrics 1974, 53, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.H.; Park, Y.; Kim, B.I.; Choi, C.W. Length at birth z-score is inversely associated with an increased risk of bronchopulmonary dysplasia or death in preterm infants born before 32 gestational weeks: A nationwide cohort study. PLoS ONE 2019, 14, e0217739. [Google Scholar] [CrossRef] [PubMed]
- Baran, J.; Weres, A.; Czenczek-Lewandowska, E.; Leszczak, J.; Kalandyk-Osinko, K.; Mazur, A. Relationship between Children’s Birth Weight and Birth Length and a Risk of Overweight and Obesity in 4–15-Year-Old Children. Medicina 2019, 55, 487. [Google Scholar] [CrossRef]
- Lagström, H.; Rautava, P.; Kaljonen, A.; Räihä, H.; Pihlaja, P.; Korpilahti, P.; Peltola, V.; Rautakoski, P.; Österbacka, E.; Simell, O.; et al. Cohort Profile: Steps to the Healthy Development and Well-being of Children (the STEPS Study). Int. J. Epidemiol. 2013, 42, 1273–1284. [Google Scholar] [CrossRef]
- Sankilampi, U.; Hannila, M.L.; Saari, A.; Gissler, M.; Dunkel, L. New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann. Med. 2013, 45, 446–454. [Google Scholar] [CrossRef]
- Leppälä, J.; Lagström, H.; Kaljonen, A.; Laitinen, K. Construction and evaluation of a self-contained index for assessment of diet quality. Scand. J. Public Health 2010, 38, 794–802. [Google Scholar] [CrossRef]
- Gage, T.B.; Fang, F.; O’Neill, E.; DiRienzo, G. Maternal Education, Birth Weight, and Infant Mortality in the United States. Demography 2012, 50, 615–635. [Google Scholar] [CrossRef]
- Godah, M.W.; Beydoun, Z.; Abdul-Khalek, R.A.; Safieddine, B.; Khamis, A.M.; Abdulrahim, S. Maternal Education and Low Birth Weight in Low- and Middle-Income Countries: Systematic Review and Meta-Analysis. Matern. Child Health J. 2021, 25, 1305–1315. [Google Scholar] [CrossRef]
- Shmueli, A.; Cullen, M.R. Birth weight, maternal age, and education: New observations from Connecticut and Virginia. Yale J. Biol. Med. 1999, 72, 245–258. [Google Scholar]
- Caughlin, D.E. Chapter 21 Centering & Standardizing Variables|R for HR: An Introduction to Human Resource Analytics Using R. Available online: https://rforhr.com/center.html (accessed on 19 April 2024).
- Fact Sheets—Malnutrition. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 23 April 2024).
- Dimofski, P.; Meyre, D.; Dreumont, N.; Leininger-Muller, B. Consequences of Paternal Nutrition on Offspring Health and Disease. Nutrients 2021, 13, 2818. [Google Scholar] [CrossRef] [PubMed]
- Pesqueda-Cendejas, K.; Campos-López, B.; Mora-García, P.E.; Moreno-Ortiz, J.M.; De la Cruz-Mosso, U. Methyl Donor Micronutrients: A Potential Dietary Epigenetic Target in Systemic Lupus Erythematosus Patients. Int. J. Mol. Sci. 2023, 24, 3171. [Google Scholar] [CrossRef]
- Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 2013, 4, 2889. [Google Scholar] [CrossRef]
- Soubry, A.; Murphy, S.K.; Vansant, G.; He, Y.; Price, T.M.; Hoyo, C. Opposing Epigenetic Signatures in Human Sperm by Intake of Fast Food Versus Healthy Food. Front. Endocrinol. 2021, 12, 625204. [Google Scholar] [CrossRef]
- Stevens, G.A.; Finucane, M.M.; Paciorek, C.J. Levels and Trends in Low Height-for-Age. In Reproductive, Maternal, Newborn, and Child Health: Disease Control Priorities, 3rd ed.; Black, R.E., Laxminarayan, R., Temmerman, M., Walker, N., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2016; Volume 2. Available online: https://www.ncbi.nlm.nih.gov/books/NBK361901/ (accessed on 23 April 2024).
- de Onis, M.; Dewey, K.G.; Borghi, E.; Onyango, A.W.; Blössner, M.; Daelmans, B.; Piwoz, E.; Branca, F. The World Health Organization’s global target for reducing childhood stunting by 2025, Rationale and proposed actions. Matern. Child Nutr. 2013, 9, 6–26. [Google Scholar] [CrossRef]
- Thapa, P.; Poudyal, A.; Poudel, R.; Upadhyaya, D.P.; Timalsina, A.; Bhandari, R.; Baral, J.; Bhandari, R.; Joshi, P.C.; Thapa, P.; et al. Prevalence of low birth weight and its associated factors: Hospital based cross sectional study in Nepal. PLoS Glob. Public Health 2022, 2, e0001220. [Google Scholar] [CrossRef]
- Hemminki, E. Perinatal health in the Nordic countries—Current challenges. Scandinavian J. Public Health 2009, 37, 671–673. [Google Scholar] [CrossRef]
- Tamir, T.T.; Gezhegn, S.A.; Dagnew, D.T.; Mekonenne, A.T.; Aweke, G.T.; Lakew, A.M. Prevalence of childhood stunting and determinants in low and lower-middle income African countries: Evidence from standard demographic and health survey. PLoS ONE 2024, 19, e0302212. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Jamshed, S.; Khan, F.; Chohan, S.K.; Bano, Z.; Shahnawaz, S.; Anwar, A.; Hashmi, A.A. Frequency of Normal Birth Length and Its Determinants: A Cross-Sectional Study in Newborns. Cureus 2020, 12, e10556. [Google Scholar] [CrossRef]
- Inoue, S.; Naruse, H.; Yorifuji, T.; Kato, T.; Murakoshi, T.; Doi, H.; Subramanian, S.V. Impact of maternal and paternal smoking on birth outcomes. J. Public Health 2017, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Eide, M.G.; Øyen, N.; Skjærven, R.; Nilsen, S.T.; Bjerkedal, T.; Tell, G.S. Size at Birth and Gestational Age as Predictors of Adult Height and Weight. Epidemiology 2005, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Belizán, J.M. Risks for Low Intellectual Performance Related to Being Born Small for Gestational Age Are Modified by Gestational Age. Pediatrics 2006, 118, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, D.; Rao, S. Compromised maternal nutritional status in early pregnancy and its relation to the birth size in young rural Indian mothers. BMC Nutr. 2021, 7, 73. [Google Scholar] [CrossRef]
- McPherson, N.O.; Fullston, T.; Kang, W.X.; Sandeman, K.Y.; Corbett, M.A.; Owens, J.A.; Lane, M. Paternal under-nutrition programs metabolic syndrome in offspring which can be reversed by antioxidant/vitamin food fortification in fathers. Sci. Rep. 2016, 6, 27010. [Google Scholar] [CrossRef]
- Knight, B.; Shields, B.M.; Turner, M.; Powell, R.J.; Yajnik, C.S.; Hattersley, A.T. Evidence of genetic regulation of fetal longitudinal growth. Early Hum. Dev. 2005, 81, 823–831. [Google Scholar] [CrossRef]
- Knight, B.; Shields, B.M.; Hill, A.; Powell, R.J.; Wright, D.; Hattersley, A.T. The Impact of Maternal Glycemia and Obesity on Early Postnatal Growth in a Nondiabetic Caucasian Population. Diabetes Care 2007, 30, 777–783. [Google Scholar] [CrossRef]
- Linabery, A.M.; Nahhas, R.W.; Johnson, W.; Choh, A.C.; Towne, B.; Odegaard, A.O.; Czerwinski, S.A.; Demerath, E.W. Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: The Fels Longitudinal Study. Pediatr. Obes. 2013, 8, 159–169. [Google Scholar] [CrossRef]
- Mejia-Lancheros, C.; Mehegan, J.; Murrin, C.M.; Kelleher, C.C.; Lifeways Cross-Generation Cohort Study Group. Smoking habit from the paternal line and grand-child’s overweight or obesity status in early childhood: Prospective findings from the lifeways cross-generation cohort study. Int. J. Obes. 2018, 42, 1853–1870. [Google Scholar] [CrossRef]
- Rath, S.R.; Marsh, J.A.; Newnham, J.P.; Zhu, K.; Atkinson, H.C.; Mountain, J.; Oddy, W.H.; Hughes, I.P.; Harris, M.; Leong, G.M.; et al. Parental pre-pregnancy BMI is a dominant early-life risk factor influencing BMI of offspring in adulthood. Obes. Sci. Pract. 2016, 2, 48–57. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Qian, Q.; Wang, Y.; Xiu, X.; Ou, P.; Fang, J.; Li, G. Effects of paternal obesity on maternal-neonatal outcomes and long-term prognosis in adolescents. Front. Endocrinol. 2023, 14, 1114250. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, M.; Li, Y.; Tollefsbol, T.O. Prenatal epigenetics diets play protective roles against environmental pollution. Clin. Epigenetics 2019, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, A.; Beltran-Sanchez, H.; Palloni, A. Impact of delayed effects on human old-age mortality. Demogr. Res. 2019, 40, 1167–1210. [Google Scholar] [CrossRef]
- Newson, L.; Abayomi, J. Reframing interventions for optimal child nutrition and childhood obesity: The importance of considering psychological factors. In Proceedings of the Nutrition Society, Liverpool, UK, 3–6 July 2023; Cambridge University Press: Cambridge, UK, 2024; pp. 1–12. [Google Scholar]
- Johnson, P.C.; Logue, J.; McConnachie, A.; Abu-Rmeileh, N.M.; Hart, C.; Upton, M.N.; Lean, M.; Sattar, N.; Watt, G. Intergenerational change and familial aggregation of body mass index. Eur. J. Epidemiol. 2012, 27, 53–61. [Google Scholar] [CrossRef]
- Han, T.S.; Hart, C.L.; Haig, C.; Logue, J.; Upton, M.N.; Watt, G.C.; Lean, M.E. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: The Midspan Family Study. BMJ Open 2015, 5, e007682. [Google Scholar] [CrossRef]
- Lundqvist, A.; Koponen, P.; Härkänen, T.; Borodulin, K.; Sääksjärvi, K.; Koskinen, S. Trends and forecast of obesity in Finland. Eur. J. Public Health 2018, 28, cky214.146. [Google Scholar] [CrossRef]
- Davies, A.; Wellard-Cole, L.; Rangan, A.; Allman-Farinelli, M. Validity of self-reported weight and height for BMI classification: A cross-sectional study among young adults. Nutrition 2020, 71, 110622. [Google Scholar] [CrossRef]
- Gorber, S.C.; Tremblay, M.; Moher, D.; Gorber, B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: A systematic review. Obes. Rev. 2007, 8, 307–326. [Google Scholar] [CrossRef]
- Taylor, A.W.; Dal Grande, E.; Gill, T.K.; Chittleborough, C.R.; Wilson, D.H.; Adams, R.J.; Grant, J.F.; Phillips, P.; Appleton, S.; Ruffin, R.E. How valid are self-reported height and weight? A comparison between CATI self-report and clinic measurements using a large cohort study. Aust. New Zealand J. Public Health 2006, 30, 238–246. [Google Scholar] [CrossRef]
- Rowland, M. Self-reported weight and height. Am. J. Clin. Nutr. 1990, 52, 1125–1133. [Google Scholar] [CrossRef]
- Sherry, B.; Jefferds, M.E.; Grummer-Strawn, L.M. Accuracy of Adolescent Self-report of Height and Weight in Assessing Overweight Status: A Literature Review. Arch. Pediatr. Adolesc. Med. 2007, 161, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Garfield, C.F.; Duncan, G.; Gutina, A.; Rutsohn, J.; McDade, T.W.; Adam, E.K.; Coley, R.L.; Chase-Lansdale, P.L. Longitudinal Study of Body Mass Index in Young Males and the Transition to Fatherhood. Am. J. Mens Health 2016, 10, NP158–NP167. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, T.E.; Prudom, S.L.; Schultz-Darken, N.J.; Kurian, A.V.; Snowdon, C.T. Pregnancy weight gain: Marmoset and tamarin dads show it too. Biol. Lett. 2006, 2, 181–183. [Google Scholar] [CrossRef] [PubMed]
Paternal or Fathers (n = 1640) | Maternal or Mothers (n = 1640) | p Values | |
---|---|---|---|
Variable | |||
Age, years | 32.9 (5.4) | 30.8 (4.6) | <0.001 |
BMI, kg/m2 | 26.0 (3.5) | 24.3 (4.9) | <0.001 |
Primiparity n (%) | -- | 878 (53.7) | |
Smoker n (%) | 203 (20.3) | 182 (16.6) | <0.001 |
Smoker during pregnancy (%) | 46 (4.2) | ||
Education (Advanced) n (%) | 992 (65.1) | 1206 (78.4) | <0.001 |
Family Income (>€3000) n (%) | 878 (54.0) | ||
Gestational diabetes n (%) | -- | 142 (8.6) | |
IDQ score, mean (SD) | 8.9 (2.3) | 10.2 (2.1) | <0.001 |
Diet quality n (%) | <0.001 | ||
Healthy | 332 (40.2) | 669 (66.5) | |
Unhealthy | 494 (59.8) | 337 (33.5) |
Variable | Total (n = 1640) | Boys (n = 863) | Girls (n = 777) | p Value |
---|---|---|---|---|
Duration of gestation (weeks) | 39.9 (1.5) | 39.9 (1.5) | 39.9 (1.5) | 0.998 |
Birth categories n (%) | 0.001 | |||
Preterm (<37 gw) | 34 (2.1) | 13 (1.5) | 21 (2.7) | |
Term (37–42 gw) | 1575 (97.9) | 832 (98.5) | 743 (97.3) | |
Mode of delivery, caesarean section | 204 (12.5) | 104 (12.1) | 100 (12.9) | 0.983 |
Birth length, cm | 50.9 (2.1) | 51.3 (2.1) | 50.4 (2.1) | 0.768 |
Birth length, z-score | 0.05 (1.1) | 0.07 (1.1) | 0.03 (1.1) | 0.147 |
Birth weight, g | 3549.5 (499.1) | 3609.4 (495.3) | 3483.1 (495.2) | 0.831 |
Birth weight, z-score | −0.05 (1.1) | −0.03 (1.1) | −0.07(1.2) | 0.221 |
Total Offspring Birth Length z-Score (n = 1579) | Boys Birth Length z-Score (n = 834) | Girls Birth Length z-Score (n = 745) | Total Birth Weight z-Score (n = 1633) | Boys Birth Weight z-Score (n = 859) | Girls Birth Weight z-Score (n = 774) | |
---|---|---|---|---|---|---|
B | 95% C.I | p-Value | B | 95% C.I | p-Value | |
Paternal BMI | 0.00 | −0.02–0.03 | 0.774 | −0.01 | 0.02−0.03 | 0.964 |
Paternal Diet Quality Score | 0.07 | −0.02–0.06 | 0.291 | 0.02 | 0.03−0.03 | 0.436 |
Total Offspring Birth Length z-Score (n = 1579) | Boys Birth Length z-Score (n = 834) | Girls Birth Length z-Score (n = 745) | Total Birth Weight z-Score (n = 1633) | Boys Birth Weight z-Score (n = 859) | Girls Birth Weight z-Score (n = 774) | |
---|---|---|---|---|---|---|
Interaction | ||||||
Paternal BMI * Paternal Diet Class | Wald–Chi Square | p-value | Wald–Chi Square | p-value | Wald–Chi Square | p-value |
Main Effects | 0.028 | 0.866 | 0.117 | 0.733 | 0.003 | 0.954 |
Paternal Diet Class |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kearns, M.L.; Lahdenperä, M.; Galante, L.; Rautava, S.; Lagström, H.; Reynolds, C.M. Association of Paternal BMI and Diet During Pregnancy with Offspring Birth Measures: The STEPS Study. Nutrients 2025, 17, 866. https://doi.org/10.3390/nu17050866
Kearns ML, Lahdenperä M, Galante L, Rautava S, Lagström H, Reynolds CM. Association of Paternal BMI and Diet During Pregnancy with Offspring Birth Measures: The STEPS Study. Nutrients. 2025; 17(5):866. https://doi.org/10.3390/nu17050866
Chicago/Turabian StyleKearns, Michelle L., Mirkka Lahdenperä, Laura Galante, Samuli Rautava, Hanna Lagström, and Clare M. Reynolds. 2025. "Association of Paternal BMI and Diet During Pregnancy with Offspring Birth Measures: The STEPS Study" Nutrients 17, no. 5: 866. https://doi.org/10.3390/nu17050866
APA StyleKearns, M. L., Lahdenperä, M., Galante, L., Rautava, S., Lagström, H., & Reynolds, C. M. (2025). Association of Paternal BMI and Diet During Pregnancy with Offspring Birth Measures: The STEPS Study. Nutrients, 17(5), 866. https://doi.org/10.3390/nu17050866