Research Advancements in Peanut Proteins, Their Allergenic Potentials, and the Approaches to Mitigate Peanut Allergenicity
Abstract
1. Introduction
2. Nutritional Value of Peanuts and Peanut Protein
2.1. Nutrient Composition of Peanuts and Peanut-Derived Products (Nutritional Value of Peanuts and Peanut Protein)
2.2. Health Benefits of Peanut Consumption
3. Peanut Allergy
3.1. Prevalence of Peanut Allergy
3.2. Economic Burden of Peanut Allergy
3.3. Impact of Peanut Allergy on Quality of Life
4. Characteristics of Allergenic Proteins in Peanuts
4.1. Peanut Cupins
4.2. Peanut Conlutins (2S Albumins)
4.3. Peanut Profilin (Ara h 5) and PR-10 Protein (Ara h 8)
4.4. Non-specific Lipid-Transfer Proteins in Peanuts
4.5. Peanut Oleosins
4.6. Peanut Defensin Proteins
4.7. Peanut Cyclophilin-Ara h 18
5. Allergenicity of Peanut Proteins
5.1. Allergenicity of Peanut Cupins
5.2. Allergenicity of Peanut 2S Albumins
5.3. Allergenicity of Ara h 5 and Ara h 8
5.4. Allergenicity of Peanut Non-Specific Lipid Transfer Proteins (nsLTPs)
5.5. Allergenicity of Peanut Oleosins
5.6. Allergenicity of Peanut Defensins
5.7. Allergenicity of Peanut Ara h 18
5.8. Cross-Reactivity of Peanut Allergens with Other Proteins
6. Factors Influencing Peanut Allergenicity
6.1. Peanut Protein Structure and Allergenicity
6.1.1. Primary Structures and Allergenicities of Peanut Proteins
6.1.2. Conformational Structure and Allergenicity of Peanut Protein
6.2. Effects of Food Matrix
6.3. Individual Age and Geographical Location
6.4. Effects of Peanut Processing Methods on the Allergenicity of Peanut Proteins
7. Research Progress in Peanut Allergenicity Mitigation
7.1. Physical Treatment of Peanuts for Allergenicity Reduction
7.1.1. Thermal Processing
7.1.2. Irradiation
7.2. Biological Methods of Peanuts for Allergenicity Reduction
7.2.1. Conventional Breeding
7.2.2. Irradiation Breeding
7.2.3. Genetic Engineering
7.2.4. Enzymatic Treatment
7.2.5. Fermentation
7.2.6. Polyphenol–Protein Interactions
8. Management of Peanut Allergy
9. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appleby, P.N.; Key, T.J. The long-term health of vegetarians and vegans. Proc. Nutr. Soc. 2016, 75, 287–293. [Google Scholar] [CrossRef]
- Tantamango-Bartley, Y.; Jaceldo-Siegl, K.; Fan, J.; Fraser, G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1594–1602. [Google Scholar] [CrossRef]
- Tomova, A.; Bukharin, O.; Bergström, A.; Norin, E. The effects of vegetarian and vegan diets on gut microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Jappe, U.; Vieths, S. Food allergens of plant origin. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 226–232. [Google Scholar]
- Zhang, Y.; Che, H.; Li, C.; Jin, T. Food allergens of plant origin. Foods 2023, 12, 2232. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Gupta, R.S.; Knibb, R.C.; Haselkorn, T.; Tilles, S.; Mack, D.P.; Pouessel, G. The global burden of illness of peanut allergy: A comprehensive literature review. Allergy 2021, 76, 1367–1384. [Google Scholar] [CrossRef]
- Chu, Y.; Faustinelli, P.; Ramos, M.L.; Hajduch, M.; Stevenson, S.; Thelen, J.J.; Maleki, S.J.; Cheng, H.; Ozias-Akins, P. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. J. Agric. Food Chem. 2008, 56, 11225–11233. [Google Scholar] [CrossRef]
- Dodo, H.W.; Konan, K.N.; Chen, F.C.; Egnin, M.; Viquez, O.M. Alleviating peanut allergy using genetic engineering: The silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol. J. 2008, 6, 135–145. [Google Scholar] [CrossRef]
- Neelakandan, A.K.; Wright, D.A.; Traore, S.M.; Ma, X.; Subedi, B.; Veeramasu, S.; Spalding, M.H.; He, G. Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut. Plants 2022, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
- USDA FoodData Central. Available online: https://fdc.nal.usda.gov/food-search?type=SR%20Legacy&query=peanut (accessed on 27 February 2025).
- Sanders, T.H.; McMichael, R.W.; Hendrix, K.W. Occurrence of resveratrol in edible peanuts. J. Agric. Food Chem. 2000, 48, 1243–1246. [Google Scholar] [CrossRef]
- Shin, E.C.; Pegg, R.B.; Phillips, R.D.; Eitenmiller, R.R. Commercial peanut (Arachis hypogaea L.) cultivars in the United States: Phytosterol composition. J. Agric. Food Chem. 2010, 58, 9137–9146. [Google Scholar] [CrossRef] [PubMed]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Batal, A.; Dale, N.; Café, M. Nutrient composition of peanut meal. J. Appl. Poult. Res. 2005, 14, 254–257. [Google Scholar] [CrossRef]
- Dean, L.L.; Hendrix, K.W.; Holbrook, C.C.; Sanders, T.H. Content of some nutrients in the core of the core of the peanut germplasm collection. Peanut Sci. 2009, 36, 104–120. [Google Scholar] [CrossRef]
- Guo, C.; Xie, Y.J.; Zhu, M.T.; Xiong, Q.; Chen, Y.; Yu, Q.; Xie, J.H. Influence of different cooking methods on the nutritional and potentially harmful components of peanuts. Food Chem. 2020, 316, 126269. [Google Scholar] [CrossRef]
- Lykomitros, D.; Fogliano, V.; Capuano, E. Flavor of roasted peanuts (Arachis hypogaea)—Part II: Correlation of volatile compounds to sensory characteristics. Food Res. Int. 2016, 89, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, M.; Zieliński, H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Rev. Int. 2019, 35, 707–725. [Google Scholar] [CrossRef]
- Yeh, C.C.; You, S.L.; Chen, C.J.; Sung, F.C. Peanut consumption and reduced risk of colorectal cancer in women: A prospective study in Taiwan. World J. Gastroenterol. 2006, 12, 222–227. [Google Scholar] [CrossRef]
- Van den Brandt, P.A.; Nieuwenhuis, L. Tree nut, peanut, and peanut butter intake and risk of postmenopausal breast cancer: The Netherlands Cohort Study. Cancer Causes Control 2018, 29, 63–75. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Hu, Z.; Wu, J.; Li, J.; Qu, C.; He, Y.; Song, Q. Peanut consumption associated with a reduced risk of esophageal squamous cell carcinoma: A case–control study in a high-risk area in China. Thorac. Cancer 2018, 9, 30–36. [Google Scholar] [CrossRef]
- Parilli-Moser, I.; Domínguez-López, I.; Trius-Soler, M.; Castellví, M.; Bosch, B.; Castro-Barquero, S.; Estruch, R.; Hurtado-Barroso, S.; Lamuela-Raventós, R.M. Consumption of peanut products im-proves memory and stress response in healthy adults from the ARISTOTLE study: A 6-month randomized controlled trial. Clin. Nutr. 2021, 40, 5556–5567. [Google Scholar] [CrossRef]
- Petersen, K.S.; Murphy, J.; Whitbread, J.; Clifton, P.M.; Keogh, J.B. The Effect of a Peanut-Enriched Weight Loss Diet Compared to a Low-Fat Weight Loss Diet on Body Weight, Blood Pressure, and Glycemic Control: A Randomized Controlled Trial. Nutrients 2022, 14, 2986. [Google Scholar] [CrossRef]
- Sapp, P.A.; Kris-Etherton, P.M.; Petersen, K.S. Peanuts or an isocaloric lower fat, higher carbohydrate nighttime snack have similar effects on fasting glucose in adults with elevated fasting glucose concentrations: A 6-week randomized crossover trial. J. Nutr. 2022, 152, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Luu, H.N.; Blot, W.J.; Xiang, Y.B.; Cai, H.; Hargreaves, M.K.; Li, H.; Yang, G.; Signorello, L.; Gao, Y.-T.; Zheng, W.; et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern. Med. 2015, 175, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Van den Brandt, P.A.; Schouten, L.J. Relationship of tree nut, peanut and peanut butter intake with total and cause-specific mortality: A cohort study and meta-analysis. Int. J. Epidemiol. 2015, 44, 1038–1049. [Google Scholar] [CrossRef]
- Amba, V.; Murphy, G.; Etemadi, A.; Wang, S.; Abnet, C.C.; Hashemian, M. Nut and Peanut Butter Consumption and Mortality in the National Institutes of Health-AARP Diet and Health Study. Nutrients 2019, 11, 1508. [Google Scholar] [CrossRef]
- Li, M.; Shi, Z. A Prospective Association of nut consumption with cognitive function in Chinese adults aged 55+ _ China Health and Nutrition Survey. J. Nutr. Health Aging 2019, 23, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Katzman, E.W.; Nielsen, S.J. The Association between Peanut and Peanut Butter Consumption and Cognitive Function among Community-Dwelling Older Adults. J. Prev. Alzheimers Dis. 2021, 8, 436–441. [Google Scholar] [CrossRef]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef]
- Peanut Institute. The Peanut Institute. 2025. Available online: https://peanut-institute.com/ (accessed on 10 August 2025).
- Parlaman, J.P.; Oron, A.P.; Uspal, N.G.; DeJong, K.N.; Tieder, J.S. Emergency and hospital care for food-related anaphylaxis in children. Hosp. Pediatr. 2016, 6, 269–274. [Google Scholar] [CrossRef]
- Jiang, J.; Bushara, O.; Ponczek, J.; Warren, C.; Blumenstock, J.; Smith, B.; Gupta, R. Updated pediatric peanut allergy prevalence in the United States. Ann. Allergy Asthma Immunol. 2018, 121, S14. [Google Scholar] [CrossRef]
- Warren, C.; Lei, D.; Sicherer, S.; Schleimer, R.; Gupta, R. Prevalence and characteristics of peanut allergy in US adults. J. Allergy Clin. Immunol. 2021, 147, 2263–2270. [Google Scholar] [CrossRef]
- Sicherer, S.H.; Sampson, H.A. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 2014, 133, 291–307.e5. [Google Scholar] [CrossRef]
- Du Toit, G.; Katz, Y.; Sasieni, P.; Mesher, D.; Maleki, S.J.; Fisher, H.R.; Fox, A.T.; Turcanu, V.; Amir, T.; Zadik-Mnuhin, G.; et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J. Allergy Clin. Immunol. 2008, 122, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Couratier, P.; Montagne, R.; Acaster, S.; Gallop, K.; Patel, R.; Vereda, A.; Pouessel, G. Allergy to Peanuts imPacting Emotions and Life (APPEAL): The impact of peanut allergy on children, adolescents, adults and caregivers in France. Allergy Asthma Clin. Immunol. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Nwaru, B.I.; Hickstein, L.; Panesar, S.S.; Roberts, G.; Muraro, A.; Sheikh, A.; EAACI Food Allergy and Anaphylaxis Guidelines Group. Prevalence of common food allergies in Europe: A systematic review and meta-analysis. Allergy 2014, 69, 992–1007. [Google Scholar] [CrossRef] [PubMed]
- Luiten, D.; Biezeveld, M.; van Doorn, O.; Riady, H.; Yang, M.; Bergsma, F.; van der Plas, A.; Brand, K.; Arends, N.; de Bruin, A.; et al. Peanut thresholds in peanut-allergic children are related to dietary composition. Immun. Inflamm. Dis. 2023, 11, e841. [Google Scholar] [CrossRef]
- Deschildre, A.; Elegbédé, C.F.; Just, J.; Bruyère, O.; Van Der Brempt, X.; Papadopoulos, A.; Beaudouin, E.; Renaudin, J.-M.; Crépet, A.; Moneret-Vautrin, D.-A. Peanut-allergic patients in the MIRABEL survey: Characteristics, allergists’ dietary advice and lessons from real life. Clin. Exp. Allergy 2016, 46, 610–620. [Google Scholar] [CrossRef]
- Koplin, J.J.; Peters, R.L.; Ponsonby, A.L.; Gurrin, L.C.; Hill, D.; Tang, M.L.K. Increased risk of peanut allergy in infants of Asian-born parents compared to those of Australian-born parents. Allergy 2014, 69, 1639–1647. [Google Scholar] [CrossRef]
- Soriano, V.X.; Peters, R.L.; Moreno-Betancur, M.; Ponsonby, A.-L.; Gell, G.; Odoi, A.; Perrett, K.P.; Tang, M.L.K.; Gurrin, L.C.; Allen, K.J.; et al. Association between earlier introduction of peanut and prevalence of peanut allergy in infants in Australia. Jama 2022, 328, 48–56. [Google Scholar] [CrossRef]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Jiang, J.; Blumenstock, J.A.; Davis, M.M.; Schleimer, R.P.; Nadeau, K.C. Prevalence and severity of food allergies among US adults. JAMA Netw. Open 2019, 1, e185630. [Google Scholar] [CrossRef]
- Perkin, M.R.; Logan, K.; Tseng, A.; Raji, B.; Ayis, S.; Peacock, J.; Brough, H.; Marrs, T.; Radulovic, S.; Craven, J.; et al. Randomized trial of introduction of allergenic foods in breast-fed infants. New Engl. J. Med. 2016, 374, 1733–1743. [Google Scholar] [CrossRef]
- Zuberbier, T.; Edenharter, G.; Worm, M.; Ehlers, I.; Reimann, S.; Hantke, T.; Roehr, C.C.; Bergmann, K.E.; Niggemann, B. Prevalence of adverse reactions to food in Germany: A population study. Allergy 2004, 59, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Spolidoro, G.C.I.; Ali, M.M.; Amera, Y.T.; Nyassi, S.; Lisik, D.; Ioannidou, A.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Prevalence estimates of eight big food allergies in Europe: Updated systematic review and meta-analysis. Allergy 2023, 78, 2361–2417. [Google Scholar] [CrossRef] [PubMed]
- Asero, R.; Nucera, E.; Rizzi, A.; Aruanno, A.; Uasuf, C.G.; Manzotti, G.; Villalta, D.; Conte, M.; Pastorello, E.A.; Losappio, L.; et al. Peanut allergy in Italy: A unique Italian perspective. J. Allergy Clin. Immunol. Glob. 2022, 1, 61–66. [Google Scholar] [CrossRef]
- Feng, H.; Luo, N.; Lu, Y.; Lu, J.; Zhou, J.; Xiong, X.; Chen, Z.; Chen, Y.; Wu, Y. Prevalence of parent-reported food allergy among children in China: A population-based cross-sectional survey. Front. Immunol. 2022, 13, 982660. [Google Scholar] [CrossRef]
- Leung, A.S.Y.; Jie, S.; Gu, Y.; Wong, G.W.K. Food Allergy in Children in China. Clin. Exp. Allergy 2024, 55, 634–647. [Google Scholar] [CrossRef]
- Ho, M.H.; Lee, S.L.; Wong, W.H.; Ip, P.; Lau, Y.L. Prevalence of self-reported food allergy in Hong Kong children and teens—A population survey. Asian Pac. J. Allergy Immunol. 2012, 30, 275–284. [Google Scholar] [PubMed]
- Su, K.W.; Yan, D.C.; Ou, L.S.; Lin, L.L.; Wu, C.Y.; Huang, S.J.; Yao, T.C.; Yeh, K.W.; Huang, J.L. Rising prevalence of food allergies in Taiwan: An epidemiological study. J. Microbiol. Immunol. Infect. (Wei Mian Yu Gan Ran Za Zhi) 2023, 56, 863–870. [Google Scholar] [CrossRef]
- Akarsu, A.; Ocak, M.; Köken, G.; Şahiner, Ü.M.; Soyer, Ö.; Şekerel, B.E. IgE mediated food allergy in Turkey: Different spectrum, similar outcome. Turk. J. Pediatr. 2021, 63, 554–563. [Google Scholar] [CrossRef]
- Kaya, A.; Erkoçoğlu, M.; Civelek, E.; Çakır, B.; Kocabaş, C.N. Prevalence of confirmed I g E-mediated food allergy among adolescents in Turkey. Pediatr. Allergy Immunol. 2013, 24, 456–462. [Google Scholar] [CrossRef]
- Zaher, S.A.; Bookari, K.; Arrish, J.; Alnafisah, R.; Alobaid, R.; Albuayjan, N.; Binammar, A.; Alsayegh, A.; Abduljawad, E.A.; Halawani, R.A.; et al. Prevalence of self-reported food allergies among the Saudi population and investigation of the challenges faced by people with food allergy: A cross-sectional online survey-based study. Prog. Nutr. 2023, 25, e2023017. [Google Scholar] [CrossRef]
- Alibrahim, I.; AlSulami, M.; Alotaibi, T.; Alotaibi, R.; Bahareth, E.; Abulreish, I.; Alsuruji, S.; Khojah, I.; Goronfolah, L.; Rayes, H.; et al. Prevalence of Parent-Reported Food Allergies Among Children in Saudi Arabia. Nutrients 2024, 16, 2693. [Google Scholar] [CrossRef] [PubMed]
- Gray, C.L.; Levin, M.E.; Zar, H.J.; Potter, P.C.; Khumalo, N.P.; Volkwyn, L.; Fenemore, B.; du Toit, G. Food allergy in south african children with atopic dermatitis. Pediatr. Allergy Immunol. 2014, 25, 572–579. [Google Scholar] [CrossRef]
- Suratannon, N.; Ngamphaiboon, J.; Wongpiyabovorn, J.; Puripokai, P.; Chatchatee, P. Component-resolved diagnostics for the evaluation of peanut allergy in a low-prevalence area. Pediatr. Allergy Immunol. 2013, 24, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Morejón, M.; Labrada-Rosado, A.; Torralba-Averoff, D.; Cruz-Jimenez, R.; Oliva-Díaz, Y.; Álvarez-Castelló, M.; Ciria-Martín, A.; Jiménez-Frandín, M.; Reyes-Zamora, M.C.; Castro-Almarales, R.L.; et al. Is peanut causing food allergy in Cuba? Preliminary assessment of allergic sensitization and IgE specificity profile to peanut allergens in Cuban allergic patients. World Allergy Organ. J. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Tham, E.H.; Shek, L.P.; Van Bever, H.P.; Vichyanond, P.; Ebisawa, M.; Wong, G.W.; Lee, B.W. Early introduction of allergenic foods for the prevention of food allergy from an asian perspective—An asia pacific association of pediatric allergy, respirology & immunology (APAPARI) consensus statement. Pediatr. Allergy Immunol. 2017, 29, 18–27. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, X.; Yao, Y.; Liu, X.; Wong, G. Allergy in china: Challenges in research, training and clinical practice. Clin. Exp. Allergy 2024, 54, 166–168. [Google Scholar] [CrossRef]
- Xing, Y.; Wong, G. Environmental influences and allergic diseases in the Asia-Pacific region: What will happen in next 30 years? Allergy Asthma Immunol. Res. 2022, 14, 21. [Google Scholar] [CrossRef]
- Loh, W.; Tang, M.L. The epidemiology of food allergy in the global context. Int. J. Environ. Res. Public Health 2018, 15, 2043. [Google Scholar] [CrossRef]
- Cannon, H.E. The economic impact of peanut allergies. Am. J. Manag. Care 2018, 24, S428–S433. [Google Scholar]
- Blaiss, M.S.; Meadows, J.A.; Yu, S.; Robison, D.R.; Hass, S.L.; E Norrett, K.; Guerin, A.; Latremouille-Viau, D.; A Tilles, S. Economic burden of peanut allergy in pediatric patients with evidence of reactions to peanuts in the United States. J. Manag. Care Spec. Pharm. 2021, 27, 516–527. [Google Scholar] [CrossRef]
- Shaker, M.; Chalil, J.M.; Tran, O.; Vlahiotis, A.; Shah, H.; King, T.; Green, T.D.; Greenhawt, M. Commercial claims costs related to health care resource use associated with a diagnosis of peanut allergy. Ann. Allergy Asthma Immunol. 2020, 124, 357–365. [Google Scholar] [CrossRef]
- Klemans, R.; Os-Medendorp, H.; Blankestijn, M.; Bruijnzeel-Koomen, C.; Knol, E.; Knulst, A. Diagnostic accuracy of specific ige to components in diagnosing peanut allergy: A systematic review. Clin. Exp. Allergy 2015, 45, 720–730. [Google Scholar] [CrossRef]
- Mahr, T.A.; Lieberman, J.A.; Haselkorn, T.; Damle, V.; Ali, Y.; Chidambaram, A.; Griffin, N.M.; Sublett, J.W. Characteristics of peanut allergy diagnosis in a US health care claims database (2011–2017). J. Allergy Clin. Immunol. Pract. 2021, 9, 1683–1694.e5. [Google Scholar] [CrossRef]
- Patel, R.; Koterba, A.P. Peanut Allergy. [Updated 2023 Jul 4]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- King, R.; Knibb, R.; Hourihane, J. Impact of peanut allergy on quality of life, stress and anxiety in the family. Allergy 2009, 64, 461–468. [Google Scholar] [CrossRef]
- Abrams, E.M.; Chan, E.S.; Sicherer, S.H. Peanut allergy: New advances and ongoing controversies. Pediatrics 2020, 31, 601–607. [Google Scholar] [CrossRef]
- Graham, F.; Caubet, J.; Eigenmann, P. Can my child with IgE-mediated peanut allergy introduce foods labeled with “may contain traces”? Pediatr. Allergy Immunol. 2020, 31, 601–607. [Google Scholar] [CrossRef]
- Anagnostou, A. Recent advances in immunotherapy and vaccine development for peanut allergy. Ther. Adv. Vaccines 2015, 3, 55–65. [Google Scholar] [CrossRef]
- Dose, J.; Schloesser, A.; Torres, G.G.; Venkatesh, G.; Häsler, R.; Flachsbart, F.; Lieb, W.; Nebel, A.; Rimbach, G.; Huebbe, P. Long-term resolution of peanut allergy in children and young adults: A systematic review of the literature. J. Allergy Clin. Immunol. 2019, 143, 428–431. [Google Scholar] [CrossRef]
- Hebling, C.M.; Ross, M.M.; Callahan, J.H.; McFarland, M.A. Size-selective fractionation and visual mapping of allergen protein chemistry in Arachis hypogaea. J. Proteome Res. 2012, 11, 5384–5395. [Google Scholar] [CrossRef]
- WHO/IUIS. Allergen Nomenclature. World Health Organization and International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee. 2024. Available online: https://allergen.org (accessed on 25 February 2025).
- Mueller, G.A.; Maleki, S.J.; Pedersen, L.C. The molecular basis of peanut allergy. Curr. Allergy Asthma Rep. 2016, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Koppelman, S.J.; Wensing, M.; Ertmann, M.; Knulst, A.C.; Knol, E.F. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil–histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin. Exp. Allergy 2004, 34, 583–590. [Google Scholar] [CrossRef]
- Koppelman, S.J.; Vlooswijk, R.A.A.; Knippels, L.M.J.; Hessing, M.; Knol, E.F.; Van Reijsen, F.C.; Bruijnzeel-Koomen, C.A.F.M. Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy 2001, 56, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Rabjohn, P.; Helm, E.M.; Stanley, J.S.; West, C.M.; Sampson, H.A.; Burks, A.W.; Bannon, G.A. Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J. Clin. Investig. 1999, 103, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Guo, F.; Chen, Y.W.; Howard, A.; Zhang, Y.Z. Crystal structure of Ara h 3, a major allergen in peanut. Mol. Immunol. 2009, 46, 1796–1804. [Google Scholar] [CrossRef]
- Burks, A.W.; Williams, L.W.; Helm, R.M.; Connaughton, C.; Cockrell, G.; O’Brien, T. Identification of a major peanut allergen, Ara h I, in patients with atopic dermatitis and positive peanut challenges. J. Allergy Clin. Immunol. 1991, 88, 172–179. [Google Scholar] [CrossRef]
- Gunal-Koroglu, D.; Karabulut, G.; Ozkan, G.; Yılmaz, H.; Gültekin-Subaşı, B.; Capanoglu, E. Allergenicity of alternative proteins: Reduction mechanisms and processing strategies. J. Agric. Food Chem. 2025, 73, 7522–7546. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Hurlburt, B.K.; Offermann, L.R.; McBride, J.K.; Majorek, K.A.; Maleki, S.J.; Chruszcz, M. Structure and function of the peanut panallergen Ara h 8. J. Biol. Chem. 2013, 288, 36890–36901. [Google Scholar] [CrossRef]
- Stanley, J.; King, N.; Burks, A.; Huang, S.K.; Sampson, H.; Cockrell, G.; Helm, R.M.; West, C.; Bannon, G.A. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut AllergenAra h 2. Arch. Biochem. Biophys. 1997, 342, 244–253. [Google Scholar] [CrossRef]
- Krause, S.; Reese, G.; Randow, S.; Zennaro, D.; Quaratino, D.; Palazzo, P.; Ciardiello, M.A.; Petersen, A.; Becker, W.-M.; Mari, A. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J. Allergy Clin. Immunol. 2009, 124, 771–778. [Google Scholar] [CrossRef]
- Schmidt, H.; Krause, S.; Gelhaus, C.; Petersen, A.; Janssen, O.; Becker, W.M. Detection and structural characterization of natural Ara h 7, the third peanut allergen of the 2S albumin family. J. Proteome Res. 2010, 9, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, T.J.; Howard, A.; Kothary, M.H.; McHugh, T.H.; Zhang, Y. Crystal structure of peanut (Arachis hypogaea) allergen Ara h 5. J. Agric. Food Chem. 2013, 61, 1573–1578. [Google Scholar] [CrossRef]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Ovchinnikova, T.V. Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens. Curr. Med. Chem. 2017, 24, 1772–1787. [Google Scholar] [CrossRef]
- Wen, H.W.; Borejsza-Wysocki, W.; DeCory, T.R.; Durst, R.A. Peanut allergy, peanut allergens, and methods for the detection of peanut contamination in food products. Compr. Rev. Food Sci. Food Saf. 2007, 6, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Mittag, D.; Akkerdaas, J.; Ballmer-Weber, B.K.; Vogel, L.; Wensing, M.; Becker, W.-M.; Koppelman, S.J.; Knulst, A.C.; Helbling, A.; Hefle, S.L.; et al. Ara h 8, a Bet v 1–homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J. Allergy Clin. Immunol. 2004, 114, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Salminen, T.A.; Blomqvist, K.; Edqvist, J. Lipid transfer proteins: Classification, nomenclature, structure, and function. Planta 2016, 244, 971–997. [Google Scholar] [CrossRef]
- Amador, V.C.; dos Santos-Silva, C.A.; Vilela, L.M.B.; Oliveira-Lima, M.; Rêgo, M.d.S.; Roldan-Filho, R.S.; de Oliveira-Silva, R.L.; Lemos, A.B.; de Oliveira, W.D.; Ferreira-Neto, J.R.C.; et al. Lipid transfer proteins (LTPs)—Structure, diversity and roles beyond antimicrobial activity. Antibiotics 2021, 10, 1281. [Google Scholar] [CrossRef]
- Iqbal, A.; Khan, R.S.; Shah, D.A.; Hussain, S.A.; Abdalla, A.N.; Wadood, A.; Mii, M. Lipid transfer proteins: Structure, classification and prospects of genetic engineering for improved disease resistance in plants. Plant Cell Tiss Organ Cult. 2023, 153, 3–17. [Google Scholar] [CrossRef]
- Palladino, C.; Breiteneder, H. Peanut allergens. Mol. Immunol. 2018, 100, 58–70. [Google Scholar] [CrossRef]
- Arkwright, P.D.; Summers, C.W.; Riley, B.J.; Alsediq, N.; Pumphrey, R.S. IgE sensitization to the nonspecific lipid-transfer protein Ara h 9 and peanut-associated bronchospasm. BioMed Res. Int. 2013, 2013, 746507. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, X.; Su, T.; Ma, C.; Wang, P. New insights into the role of seed oil body proteins in metabolism and plant development. Front. Plant Sci. 2019, 10, 1568. [Google Scholar] [CrossRef]
- Board, A.J.; Crowther, J.M.; Acevedo-Fani, A.; Meisrimler, C.N.; Jameson, G.B.; Dobson, R.C.J. How plants solubilise seed fats: Revisiting oleosin structure and function to inform commercial applications. Biophys. Rev. 2022, 14, 257–266. [Google Scholar] [CrossRef]
- Pons, L.; Chery, C.; Romano, A.; Namour, F.; Artesani, M.C.; Guéant, J.L. The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy 2002, 57, 88–93. [Google Scholar] [CrossRef]
- Schwager, C.; Kull, S.; Behrends, J.; Röckendorf, N.; Schocker, F.; Frey, A.; Homann, A.; Becker, W.M.; Jappe, U. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J. Allergy Clin. Immunol. 2017, 140, 1331–1338.e8. [Google Scholar] [CrossRef]
- Petersen, A.; Kull, S.; Rennert, S.; Becker, W.-M.; Krause, S.; Ernst, M.; Gutsmann, T.; Bauer, J.; Lindner, B.; Jappe, U. Peanut defensins: Novel allergens isolated from lipophilic peanut extract. J. Allergy Clin. Immunol. 2015, 136, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Shafee, T.M.A.; Lay, F.T.; Phan, T.K.; Anderson, M.A.; Hulett, M.D. Convergent evolution of defensin sequence, structure and function. Cell. Mol. Life Sci. 2017, 74, 663–682. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.S.; Iqbal, A.; Malak, R.; Shehryar, K.; Attia, S.; Ahmed, T.; Khan, M.A.; Arif, M.; Mii, M. Plant defensins: Types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Stamnes, M.A.; Rutherford, S.L.; Zuker, C.S. Cyclophilins: A new family of proteins involved in intracellular folding. Trends Cell Biol. 1992, 2, 272–276. [Google Scholar] [CrossRef]
- Mattsson, L.; Valcour, A.; Holmqvist, M.; Larsson, H.; Lidholm, J. Cyclophilin—A novel cross-reactive determinant in peanut. Clin. Exp. Allergy 2021, 51, 620–622. [Google Scholar] [CrossRef]
- Ozias-Akins, P.; Breiteneder, H. The functional biology of peanut allergens and possible links to their allergenicity. Allergy 2019, 74, 888–898. [Google Scholar] [CrossRef]
- Fæste, C.K.; Namork, E. Differentiated patterns of legume sensitisation in peanut-allergic patients. Food Anal. Methods 2010, 3, 357–362. [Google Scholar] [CrossRef]
- Koppelman, S.J.; Hefle, S.L.; Taylor, S.L.; De Jong, G.A. Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: A comparative in vitro study and partial characterization of digestion-resistant peptides. Mol. Nutr. Food Res. 2010, 54, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Yusnawan, E.; Marquis, C.P.; Lee, N.A. Purification and characterization of Ara h1 and Ara h3 from four peanut market types revealed higher order oligomeric structures. J. Agric. Food Chem. 2012, 60, 10352–10358. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Sun, X.; Deng, Z.; Niu, B.; Chen, Q. Study on mechanism of increased allergenicity induced by Ara h 3 from roasted peanut using bone marrow-derived dendritic cells. Food Sci. Hum. Wellness 2023, 12, 755–764. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; El-Mezayen, R.; Zhuang, Y.; Dreskin, S.C. Ara h 2 and Ara h 6 have similar allergenic activity and are substantially redundant. Int. Arch. Allergy Immunol. 2013, 160, 251–258. [Google Scholar] [CrossRef]
- Hemmings, O.; Du Toit, G.; Radulovic, S.; Lack, G.; Santos, A.F. Ara h 2 is the dominant peanut allergen despite similarities with Ara h 6. J. Allergy Clin. Immunol. 2020, 146, 621–630.e5. [Google Scholar] [CrossRef] [PubMed]
- Dreskin, S.C.; Koppelman, S.J.; Andorf, S.; Nadeau, K.C.; Kalra, A.; Braun, W.; Negi, S.S.; Chen, X.; Schein, C.H. The importance of the 2S albumins for allergenicity and cross-reactivity of peanuts, tree nuts, and sesame seeds. J. Allergy Clin. Immunol. 2021, 147, 1154–1163. [Google Scholar] [CrossRef]
- Lehmann, K.; Schweimer, K.; Reese, G.; Randow, S.; Suhr, M.; Becker, W.M.; Vieths, S.; Rösch, P. Structure and stability of 2S albumin-type peanut allergens: Implications for the severity of peanut allergic reactions. Biochem. J. 2006, 395, 463–472. [Google Scholar] [CrossRef]
- Połomska, J.; Dydak, P.; Sozańska, B.; Sikorska-Szaflik, H. Peanut Allergy and Component-Resolved Diagnostics Possibilities—What Are the Benefits? Nutrients 2023, 15, 5132. [Google Scholar] [CrossRef]
- Apostolovic, D.; Marsh, J.T.; Baumert, J.; Taylor, S.L.; Westphal, A.; de Jongh, H.; Johnson, P.; de Jong, G.A.; Koppelman, S.J. Purification and initial characterization of Ara h 7, a peanut allergen from the 2S albumin protein family. J. Agric. Food Chem. 2021, 69, 6318–6329. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, F.C.; Klemans, R.J.; Meijer, Y.; van der Ent, C.K.; Knulst, A.C. Using Component-Resolved Diagnostics in the Management of Peanut-Allergic Patients. Curr. Treat. Options Allergy 2016, 3, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ackerbauer, D.; Bublin, M.; Radauer, C.; Varga, E.-M.; Hafner, C.; Ebner, C.; Szépfalusi, Z.; Fröschl, R.; Hoffmann-Sommergruber, K.; Eiwegger, T.; et al. Component-resolved IgE profiles in Austrian patients with a convincing history of peanut allergy. Int. Arch. Allergy Immunol. 2015, 166, 13–24. [Google Scholar] [CrossRef]
- Wang, J.; Hao, M.; Wang, Q.; Liu, M.; Liu, G.; Han, S.; Zhao, X.; Che, H. The conformational epitope of Ara h 5 was crucial to the severe reactivity of peanut allergy. Mol. Immunol. 2024, 176, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Hurlburt, B.; Cheng, H.; Offermann, L.; Chruszcz, M.; Santos, A.; Lack, G.; Maleki, S. Peanut panallergen Ara h 8 IgE and IgG4 epitopes. Clin. Transl. Allergy 2014, 4 (Suppl. S2), P30. [Google Scholar] [CrossRef]
- Kronfel, C.M.; Cheng, H.; McBride, J.K.; Nesbit, J.B.; Krouse, R.; Burns, P.; Cabanillas, B.; Crespo, J.F.; Ryan, R.; Simon, R.J.; et al. IgE epitopes of Ara h 9, Jug r 3, and Pru p 3 in peanut-allergic individuals from Spain and the US. Front. Allergy 2023, 3, 1090114. [Google Scholar] [CrossRef]
- Jappe, U.; Breiteneder, H. Peanut allergy—Individual molecules as a key to precision medicine. Allergy 2019, 74, 216–219. [Google Scholar] [CrossRef]
- Dramburg, S.; Hilger, C.; Santos, A.F.; Vecillas, L.d.L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI molecular allergology user’s guide 2.0. Pediatr. Allergy Immunol. 2023, 34, e13854. [Google Scholar] [CrossRef]
- Bublin, M.; Kostadinova, M.; Radauer, C.; Hafner, C.; Szépfalusi, Z.; Varga, E.-M.; Maleki, S.J.; Hoffmann-Sommergruber, K.; Breiteneder, H. IgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. J. Allergy Clin. Immunol. 2013, 132, 118–124. [Google Scholar] [CrossRef]
- Bublin, M.; Breiteneder, H. Cross-reactivity of peanut allergens. Curr. Allergy Asthma Rep. 2014, 14, 426. [Google Scholar] [CrossRef] [PubMed]
- Hazebrouck, S.; Guillon, B.; Paty, E.; Dreskin, S.C.; Adel-Patient, K.; Bernard, H. Variable IgE cross-reactivity between peanut 2S-albumins: The case for measuring IgE to both Ara h 2 and Ara h 6. Clin. Exp. Allergy 2019, 49, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, P.M.; Potapova, E.; Panetta, V.; Lidholm, J.; Mattsson, L.; Scala, E.; Bernardini, R.; Caffarelli, C.; Casani, A.; Cervone, R.; et al. IgE to cyclophilins in pollen-allergic children: Epidemiologic, clinical, and diagnostic relevance of a neglected panallergen. J. Allergy Clin. Immunol. 2024, 153, 1586–1596. [Google Scholar] [CrossRef]
- Cosi, V.; Gadermaier, G. The Role of Defensins as Pollen and Food Allergens. Curr. Allergy Asthma Rep. 2023, 23, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Beyer, K.; Morrowa, E.; Li, X.M.; Bardina, L.; Bannon, G.A.; Burks, A.W.; Sampson, H.A. Effects of cooking methods on peanut allergenicity. J. Allergy Clin. Immunol. 2001, 107, 1077–1081. [Google Scholar] [CrossRef]
- Flinterman, A.E.; van Hoffen, E.; den Hartog Jager, C.F.; Koppelman, S.; Pasmans, S.G.; Hoekstra, M.O.; Bruijnzeel-Koomen, C.A.; Knulst, A.C.; Knol, E.F. Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time. Clin. Exp. Allergy 2007, 37, 1221–1228. [Google Scholar] [CrossRef]
- Matsuo, H.; Yokooji, T.; Taogoshi, T. Common food allergens and their IgE-binding epitopes. Allergol. Int. 2015, 64, 332–343. [Google Scholar] [CrossRef]
- Chen, X.; Negi, S.S.; Liao, S.; Gao, V.; Braun, W.; Dreskin, S.C. Conformational IgE epitopes of peanut allergens Ara h 2 and Ara h 6. Clin. Exp. Allergy 2016, 46, 1120–1128. [Google Scholar] [CrossRef]
- Sen, M.; Kopper, R.; Pons, L.; Abraham, E.C.; Burks, A.; Bannon, G.A. Protein structure plays a critical role in peanut allergen stability and may determine immunodominant IgE-binding epitopes. J. Immunol. 2002, 169, 882–887. [Google Scholar] [CrossRef]
- Smits, M.; Verhoeckx, K.; Knulst, A.; Welsing, P.; de Jong, A.; Houben, G.; Le, T.M. Ranking of 10 legumes according to the prevalence of sensitization as a parameter to characterize allergenic proteins. Toxicol. Rep. 2021, 8, 767–773. [Google Scholar] [CrossRef]
- Otsu, K.; Guo, R.; Dreskin, S.C. Epitope analysis of Ara h 2 and Ara h 6: Characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clin. Exp. Allergy 2015, 45, 471–484. [Google Scholar] [CrossRef]
- Bøgh, K.L.; Nielsen, H.; Madsen, C.B.; Mills, E.N.; Rigby, N.; Eiwegger, T.; Szépfalusi, Z.; Roggen, E.L. IgE epitopes of intact and digested Ara h 1: A comparative study in humans and rats. Mol. Immunol. 2012, 51, 337–346. [Google Scholar] [CrossRef]
- Ehlers, A.M.; Blankestijn, M.A.; Knulst, A.C.; Klinge, M.; Otten, H.G. Can alternative epitope mapping approaches increase the impact of B-cell epitopes in food allergy diagnostics? Clin. Exp. Allergy 2019, 49, 17–26. [Google Scholar] [CrossRef]
- Maleki, S.J.; Chung, S.Y.; Champagne, E.T.; Raufman, J.P. The effects of roasting on the allergenic properties of peanut proteins. J. Allergy Clin. Immunol. 2000, 106, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Kopper, R.A.; Shin, D.S.; Park, C.W.; Compadre, C.M.; Sampson, H.; Burks, A.W.; Bannon, G.A. Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. J. Immunol. 2000, 164, 5844–5849. [Google Scholar] [CrossRef] [PubMed]
- Hasan-Abad, A.M.; Mohammadi, M.; Mirzaei, H.; Mehrabi, M.; Motedayyen, H.; Arefnezhad, R. Impact of oligomerization on the allergenicity of allergens. Clin. Mol. Allergy 2022, 20, 5. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, S.; Sun, N. How does food matrix components affect food allergies, food allergens and the detection of food allergens? A systematic review. Trends Food Sci. Technol. 2022, 127, 280–290. [Google Scholar] [CrossRef]
- Rao, H.; Baricevic, I.; Bernard, H.; Smith, F.; Sayers, R.; Balasundaram, A.; Costello, C.A.; Padfield, P.; Semic-Jusufagic, A.; Simpson, A.; et al. The effect of the food matrix on the in vitro bio-accessibility and IgE reactivity of peanut allergens. Mol. Nutr. Food Res. 2020, 64, 1901093. [Google Scholar] [CrossRef]
- Akkerdaas, J.H.; Cianferoni, A.; Islamovic, E.; Kough, J.; Ladics, G.S.; McClain, S.; Poulsen, L.K.; Silvanovich, A.; Pereira Mouriès, L.; van Ree, R. Impact of Food Matrices on Digestibility of Allergens and Poorly Allergenic Homologs. Front. Allergy 2022, 3, 909410. [Google Scholar] [CrossRef] [PubMed]
- Valcour, A.; Jones, J.E.; Lidholm, J.; Borres, M.P.; Hamilton, R.G. Sensitization profiles to peanut allergens across the United States. Ann. Allergy Asthma Immunol. 2017, 119, 262–266.e1. [Google Scholar] [CrossRef]
- Kopper, R.A.; Odum, N.J.; Sen, M.; Helm, R.M.; Stanley, J.S.; Burks, A.W. Peanut protein allergens: The effect of roasting on solubility and allergenicity. Int. Arch. Allergy Immunol. 2005, 136, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shi, Y.; Zhao, Y.; Wang, J.; Wang, M.; Niu, B.; Chen, Q. Different thermal processing effects on peanut allergenicity. J. Sci. Food Agric. 2018, 99, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, B.; Jappe, U.; Novak, N. Allergy to peanut, soybean, and other legumes: Recent advances in allergen characterization, stability to processing and IgE cross-reactivity. Mol. Nutr. Food Res. 2018, 62, 1700446. [Google Scholar] [CrossRef]
- Gruber, P.; Becker, W.M.; Hofmann, T. Influence of the maillard reaction on the allergenicity of rAra h 2, a recombinant major allergen from peanut (Arachis hypogaea), its major epitopes, and peanut agglutinin. J. Agric. Food Chem. 2005, 53, 2289–2296. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, M.; Ding, Y.; Chen, J.; Niu, B.; Chen, Q. Effects of Maillard reaction on structural modification and potential allergenicity of peanut 7S globulin (Ara h 1). J. Sci. Food Agric. 2020, 100, 5617–5626. [Google Scholar] [CrossRef]
- Vissers, Y.M.; Iwan, M.; Adel-Patient, K.; Stahl Skov, P.; Rigby, N.M.; Johnson, P.E.; Mandrup Müller, P.; Przybylski-Nicaise, L.; Schaap, M.; Ruinemans-Koerts, J.; et al. Effect of roasting on the allergenicity of major peanut allergens Ara h 1 and Ara h 2/6: The necessity of degranulation assays. Clin. Exp. Allergy 2011, 41, 1631–1642. [Google Scholar] [CrossRef]
- Shah, F.; Shi, A.; Ashley, J.; Kronfel, C.; Wang, Q.; Maleki, S.J.; Adhikari, B.; Zhang, J. Peanut allergy: Characteristics and approaches for mitigation. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1361–1387. [Google Scholar] [CrossRef]
- Kroghsbo, S.; Rigby, N.M.; Johnson, P.E.; Adel-Patient, K.; Bøgh, K.L.; Salt, L.J.; Mills, E.N.C.; Madsen, C.B. Assessment of the sensitizing potential of processed peanut proteins in Brown Norway rats: Roasting does not enhance allergenicity. PLoS ONE 2014, 9, e96475. [Google Scholar] [CrossRef]
- Tian, Y.; Rao, H.; Zhang, K.; Tao, S.; Xue, W.T. Effects of different thermal processing methods on the structure and allergenicity of peanut allergen Ara h 1. Food Sci. Nutr. 2018, 6, 1706–1714. [Google Scholar] [CrossRef]
- Grzeskowiak, L.E.; Tao, B.; Aliakbari, K.; Chegeni, N.; Morris, S.; Chataway, T. Oral immunotherapy using boiled peanuts for treating peanut allergy: An open-label, single-arm trial. Clin. Exp. Allergy 2023, 53, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Mi, Y.; Ji, S. In vitro evaluating the influence of grape seed polyphenol extract on the digestibility of macronutrients. J. Health Sci. 2016, 4, 167–176. [Google Scholar]
- Cohen, C.; Zhao, W.; Beaudette, L.; Lejtenyi, D.; Jean-Claude, B.; Mazer, B. High-pressure and temperature autoclaving of peanuts reduces the proportion of intact allergenic proteins. Authorea 2021, preprints. [Google Scholar] [CrossRef]
- Mondoulet, L.; Paty, E.; Drumare, M.F.; Ah-Leung, S.; Scheinmann, P.; Willemot, R.M.; Wal, J.M.; Bernard, H. Influence of thermal processing on the allergenicity of peanut proteins. J. Agric. Food Chem. 2005, 53, 4547–4553. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, B.; Pedrosa, M.M.; Rodríguez, J.; Muzquiz, M.; Maleki, S.J.; Cuadrado, C.; Burbano, C.; Crespo, J.F. Influence of enzymatic hydrolysis on the allergenicity of roasted peanut protein extract. Int. Arch. Allergy Immunol. 2012, 157, 41–50. [Google Scholar] [CrossRef]
- Yang, W.W.; Mwakatage, N.R.; Goodrich-Schneider, R.; Krishnamurthy, K.; Rababah, T.M. Mitigation of major peanut allergens by pulsed ultraviolet light. Food Bioprocess Technol. 2012, 5, 2728–2738. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Champagne, E.T. Reducing the allergenic capacity of peanut extracts and liquid peanut butter by phenolic compounds. Food Chem. 2009, 115, 1345–1349. [Google Scholar] [CrossRef]
- Luo, C.; Hu, C.; Gao, J.; Li, X.; Wu, Z.; Yang, A.; Chen, H. A potential practical approach to reduce Ara h 6 allergenicity by gamma irradiation. Food Chem. 2013, 136, 1141–1147. [Google Scholar] [CrossRef]
- Gocki, J.; Bartuzi, Z. Role of immunoglobulin G antibodies in diagnosis of food allergy. Postep. Dermatol. I Alergol. 2016, 33, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.; Rustgi, S. Peanut Genotypes with Reduced Content of Immunogenic Proteins by Breeding, Biotechnology, and Management: Prospects and Challenges. Plants 2025, 14, 626. [Google Scholar] [CrossRef]
- Perkins, T.; Schmitt, D.A.; Isleib, T.G.; Cheng, H.; Maleki, S.J. Breeding a hypoallergenic peanut. J. Allergy Clin. Immunol. 2006, 117, S328. [Google Scholar] [CrossRef]
- Chandran, M.; Chu, Y.; Maleki, S.J.; Ozias-Akins, P. Stability of transgene expression in reduced allergen peanut (Arachis hypogaea L.) across multiple generations and at different soil sulfur levels. J. Agric. Food Chem. 2015, 63, 1788–1797. [Google Scholar] [CrossRef]
- Cabanos, C.S.; Katayama, H.; Urabe, H.; Kuwata, C.; Murota, Y.; Abe, T.; Okumoto, Y.; Maruyama, N. Heavy-ion beam irradiation is an effective technique for reducing major allergens in peanut seeds. Mol. Breed. 2012, 30, 1037–1044. [Google Scholar] [CrossRef]
- Yu, J.; Yu, X.; Shi, L.; Liu, W. Comprehensive Analyses of Advanced Glycation end Products and Heterocyclic Amines in Peanuts during the Roasting Process. Molecules 2023, 28, 7012. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Deng, X.Y.; Faustinelli, P.; Ozias-Akins, P. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Rep. 2008, 27, 85–92. [Google Scholar] [CrossRef]
- Ananga, A.; Dodo, H.; Konan, K. Elimination of the three major allergens in transgenic peanut (Arachis hypogea L.). Vitr. Cell. Dev. Biol.-Anim. 2008, 44, S36–S37. [Google Scholar]
- Conner, J.A.; Guimaraes, L.A.; Zhang, Z.; Marasigan, K.; Chu, Y.; Korani, W.; Ozias-Akins, P. Multiplexed silencing of 2S albumin genes in peanut. Plant Biotechnol. J. 2024, 22, 2438. [Google Scholar] [CrossRef]
- Gelaye, Y.; Luo, H. Application of epigenetics for allergen-free peanut production: A comprehensive review. Epigenetics Insights 2025, 18, e006. [Google Scholar] [CrossRef]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Cabanillas, B.; Maleki, S.J.; Rodríguez, J.; Burbano, C.; Muzquiz, M.; Jiménez, M.A.; Pedrosa, M.M.; Cuadrado, C.; Crespo, J.F. Heat and pressure treatments effects on peanut allergenicity. Food Chem. 2012, 132, 360–366. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Ahmedna, M.; Goktepe, I. Reduction of major peanut allergens Ara h 1 and Ara h 2, in roasted peanuts by ultrasound assisted enzymatic treatment. Food Chem. 2013, 141, 762–768. [Google Scholar] [CrossRef]
- Yu, J.; Hernandez, M.; Li, H.; Goktepe, I.; Robinette, C.; Auerbach, A.; Peden, D.; Ahmedna, M. Allergenicity of roasted peanuts treated with a non-human digestive protease. Food Res. Int. 2015, 69, 341–347. [Google Scholar] [CrossRef]
- Mikiashvili, N.; Yu, J. Changes in immunoreactivity of allergen-reduced peanuts due to post-enzyme treatment roasting. Food Chem. 2018, 256, 188–194. [Google Scholar] [CrossRef]
- Yu, J.; Mikiashvili, N. Effectiveness of different proteases in reducing allergen content and IgE-binding of raw peanuts. Food Chem. 2020, 307, 125565. [Google Scholar] [CrossRef]
- Meng, S.; Tan, Y.; Chang, S.; Li, J.; Maleki, S.; Puppala, N. Peanut allergen reduction and functional property improvement by means of enzymatic hydrolysis and transglutaminase crosslinking. Food Chem. 2020, 302, 125186. [Google Scholar] [CrossRef]
- Shu, E.; Wang, S.; Kong, X.; Sun, X.; Yang, Q.; Chen, Q.; Niu, B. Effects of Flavourzyme and Alkaline Protease Treatment on Structure and Allergenicity of Peanut Allergen Ara h 1. Food Technol. Biotechnol. 2024, 62, 4–14. [Google Scholar] [CrossRef]
- Guo, R.; Shi, X.; White, B.; Sanders, T.; Burks, A.; Davis, J.; Kulis, M. Allergenicity of peanut proteins is retained following enzymatic hydrolysis. J. Allergy Clin. Immunol. 2011, 129, AB367. [Google Scholar] [CrossRef]
- Ahmed, I.; Chen, H.; Li, J.; Wang, B.; Li, Z.; Huang, G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5856–5879. [Google Scholar] [CrossRef]
- Chung, S.; Champagne, E.T. Effect of enzyme treatment on the allergenic properties of peanuts. J. Allergy Clin. Immunol. 2003, 111, S247. [Google Scholar] [CrossRef]
- Radosavljevic, J.; Nordlund, E.; Mihajlovic, L.; Krstic, M.; Bohn, T.; Buchert, J.; Velickovic, T.C.; Smit, J. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy. Mol. Nutr. Food Res. 2014, 58, 635–646. [Google Scholar] [CrossRef]
- Pi, X.; Fu, G.; Dong, B.; Yang, Y.; Wan, Y.; Xie, M. Effects of fermentation with Bacillus natto on the allergenicity of peanut. LWT 2021, 141, 110862. [Google Scholar] [CrossRef]
- Yang, S.; Du, T.; Zhang, Y.; Wei, B.; Hardie, W.J.; Tang, H.; Liu, Z.; Liu, Q.; Xiao, M.; Xiong, T.; et al. Co-fermentation of peanut milk by selected lactic acid bacteria on its protein structure, Ara h 1’s immunoreactivity, physical-chemical properties and sensory attributes. Food Biosci. 2024, 61, 104408. [Google Scholar] [CrossRef]
- Mattison, C.P.; Dupre, R.A.; Clermont, K.; Gibbons, J.G.; Yu, J.H. Proteomic characterization of peanut flour fermented by Rhizopus oryzae. Heliyon 2024, 10, e34793. [Google Scholar] [CrossRef]
- Hao, L.; Sun, J.; Pei, M.; Zhang, G.; Li, C.; Li, C.; Ma, X.; He, S.; Liu, L. Impact of non-covalent bound polyphenols on conformational, functional properties and in vitro digestibility of pea protein. Food Chem. 2022, 383, 132623. [Google Scholar] [CrossRef]
- He, W.; He, K.; Liu, X.; Ye, L.; Lin, X.; Ma, L.; Yang, P.; Wu, X. Modulating the allergenicity and functional properties of peanut protein by covalent conjugation with polyphenols. Food Chem. 2023, 415, 135733. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Jiang, T.; Gu, Y.; Yao, L.; Du, H.; Luo, J.; Che, H. Contribution of five major apple polyphenols in reducing peanut protein sensitization and alleviating allergencitiy of peanut by changing allergen structure. Food Res. Int. 2023, 164, 112297. [Google Scholar] [CrossRef] [PubMed]
- Cirkovic Velickovic, T.D.; Stanic-Vucinic, D.J. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Compr. Rev. Food Sci. Food Saf. 2018, 17, 82–103. [Google Scholar] [CrossRef] [PubMed]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem. 2022, 375, 131904. [Google Scholar] [CrossRef]
- Suárez-Fariñas, M.; Suprun, M.; Kearney, P.; Getts, R.; Grishina, G.; Hayward, C.; Luta, D.; Porter, A.; Witmer, M.; du Toit, G.; et al. Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy 2021, 76, 3789–3797. [Google Scholar] [CrossRef]
- Togias, A.; Cooper, S.F.; Acebal, M.L.; Assa’aD, A.; Baker, J.R.; Beck, L.A.; Block, J.; Byrd-Bredbenner, C.; Chan, E.S.; Eichenfield, L.F.; et al. Addendum guidelines for the prevention of peanut allergy in the united states: Report of the national institute of allergy and infectious diseases-sponsored expert panel. Allergy Asthma Clin. Immunol. 2017, 13. [Google Scholar] [CrossRef]
- Caffarelli, C.; Mauro, D.; Mastrorilli, C.; Bottau, P.; Cipriani, F.; Ricci, G. Solid food introduction and the development of food allergies. Nutrients 2018, 10, 1790. [Google Scholar] [CrossRef]
- Ödling, M.; Sundqvist, A.; Brandström, J.; Nopp, A.; Andersson, N.; Nilsson, C.; Kull, I. Peanut oral immunotherapy may improve health-related quality of life among severe peanut allergic adolescents. Clin. Transl. Allergy 2023, 13, e12225. [Google Scholar] [CrossRef]
- Children’s Hospital of Philadelphia. Oral Immunotherapy 101: Learning Module. 2025. Available online: https://www.chop.edu/centers-programs/oral-immunotherapy-program/oral-immunotherapy-101-learning-module (accessed on 4 March 2025).
- Blumchen, K.; Ulbricht, H.; Staden, U.; Dobberstein, K.; Beschorner, J.; de Oliveira, L.C.L.; Shreffler, W.G.; Sampson, H.A.; Niggemann, B.; Wahn, U.; et al. Oral peanut immunotherapy in children with peanut anaphylaxis. J. Allergy Clin. Immunol. 2010, 126, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Venter, C.; Sicherer, S.H.; Greenhawt, M. Management of peanut allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Odisho, N.; Carr, T.F.; Cassell, H. Food Allergy: Labelling and exposure risks. J. Food Allergy 2020, 2, 115–118. [Google Scholar] [CrossRef] [PubMed]
Amino Acid (AA) | Raw Peanuts | Roasted Peanuts (Dry Roasted) | Peanut Flour (22% Fat) | Peanut Flour (Fat Free) | Soybean (Dry Roasted) |
---|---|---|---|---|---|
Tryptophan | 0.25 | 0.23 | 0.328 | 0.507 | 0.575 |
Threonine | 0.883 | 0.811 | 1.16 | 1.79 | 1.72 |
Isoleucine | 0.907 | 0.833 | 1.19 | 1.84 | 1.92 |
Leucine | 1.67 | 1.54 | 2.19 | 3.38 | 3.22 |
Lysine | 0.926 | 0.85 | 1.21 | 1.87 | 2.63 |
Methionine | 0.317 | 0.291 | 0.415 | 0.641 | 0.534 |
Cystine | 0.331 | 0.304 | 0.433 | 0.669 | 0.638 |
Phenylalanine | 1.38 | 1.23 | 1.75 | 2.7 | 2.07 |
Tyrosine | 1.05 | 0.963 | 1.37 | 2.12 | 1.5 |
Valine | 1.08 | 0.993 | 1.42 | 2.19 | 1.98 |
Arginine | 3.08 | 2.83 | 4.04 | 6.24 | 3.07 |
Histidine | 0.652 | 0.599 | 0.854 | 1.32 | 1.07 |
Alanine | 1.02 | 0.941 | 1.34 | 2.08 | 1.86 |
Aspartic acid | 3.15 | 2.89 | 4.12 | 6.37 | 4.98 |
Glutamic acid | 5.39 | 4.95 | 7.06 | 10.9 | 7.67 |
Glycine | 1.55 | 1.43 | 2.04 | 3.14 | 1.83 |
Proline | 1.14 | 1.04 | 1.49 | 2.3 | 2.32 |
Serine | 1.27 | 1.17 | 1.66 | 2.57 | 2.29 |
Total AA | 26.46 | 23.895 | 34.07 | 52.627 | 41.877 |
Country | Sample Size | Age Group | Prevalence (%) | Reference |
---|---|---|---|---|
Australia | Various | Infants | about 3.0% | [41] |
Australia | 7290 | Infants | 2.6% | [42] |
United States | 51,819 | Children Adults | 2.2% 1.8% | [34,43] |
United Kingdom | 5171 1303 | Children Children | 1.85% 2.5% | [36,44] |
Netherlands | 1421 | 2-year-olds | 1.69% | [39] |
Germany | 13,300 | Adults | ahout 1.1% | [45] |
Europe region | Whole population | 1.0–2.1 | [46] | |
Italy | about 6900 visits | Various | 0.7% | [47] |
Israel | 4657 | Schoolchildren | 0.17% | [36] |
China | 138,740 | Various | 0.2–0.3% | [48,49] |
Hong Kong | 7393 | 14 years old or younger | 0.3–0.5% | [50] |
Taiwan | 16,200 | All age groups | 1.3% in children, 1.6% in adolescents, and 0.9% in adults | [51] |
Turkey | 534 food allergy patients 10,096 | 13–18 years old (preschooler, school age, and adolescents) Adolescents | 14.9% of food-allergic population 0.05% (IgE confirmed) | [52,53] |
Saudi Arabia | 15,142 2130 | Various Children 5–18 years | 4% 4% | [54,55] |
South Africa | Various | Children | <3% | [56] |
Thailand | Various | 6 months–7 years | Very low | [57] |
Cuba | 316 food-allergic patients | Adults and children | 4.6% in adult population 18.6% in food-allergic adults 25.8% in food-allergic children | [58] |
Allergen | Biochemical Name | Molecular Weight (SDS-PAGE) | Amino Acid Length * | GenBank Nucleotide | GenBank Protein |
---|---|---|---|---|---|
Ara h 1.0101 Ara h 1.0101 | Cupin (vicillin-type, 7S globulin) | 64 kDa | 626 | L34402 | AAB00861 P43238 |
Ara h 2.0101 Ara h 2.0201 | Conglutin (2S albumin) | 17 kDa (16.67 and 18.05 kDa) | 156 172 | AY007229 AY158467 | AAK96887 AAN77576 |
Ara h 3.0101 Ara h 3.0201 | Cupin (legumin-type, 11S globulin, and glycinin) | 60 kDa, 37 kDa (fragment) | 507 530 | AF093541 AF086821 | AAC63045 AAD47382 |
Ara h 4 (Ara h 3.0201) | Renamed to Ara h 3.02 | Same as Ara h 3 | |||
Ara h 5 | Profilin | 15 kDa (14.051 kDa) | 131 | AF059616 | AAD55587 |
Ara h 6 | Conglutin (2S albumin) | 15 kDa | 129 | AF092846 | AAD56337 |
Ara h 7.0101 Ara h 7.0201 Ara h 7.0301 | Conglutin (2S albumin) | 15 kDa 17.374 kDa 17.3 kDa | 131 164 158 | AF091737 EU046325 AY722691 | AAD56719 ABW17159 AAU21496 |
Ara h 8.0101 Ara h 8.0201 | Pathogenesis-related protein, PR-10, and Bet v 1 family member | 17 kDa 16.9 kDa | 158 157 | AY328088 EF436550 | AAQ91847 ABP97433 |
Ara h 9.0101 Ara h 9.0201 | Non-specific lipid-transfer protein type 1 | 9.8 kDa | 116 92 | EU159429 EU161278 | ABX56711 ABX75045 |
Ara h 10.0101 Ara h 10.02.01 | Oleosin | 16 kDa 15.4 kDa | 169 150 | AY722694 AY722695 | AAU21499 AAU21500 |
Ara h 11.0101 Ara h11.0201 | Oleosin | 14 kDa | 137 137 | DQ097716 | AAZ20276 AAZ20277 |
Ara h 12 | Defensin | 8 kDa (reducing), 12 kDa (non-reducing), and 5.184 kDa (mass) | - | EY396089 | |
Ara h 13 | Defensin | 8 kDa (reducing), 11 kDa (non-reducing), and 5.472 kDa (mass) | - | EY396019 EE124955 | |
Ara h 14 (3 isomers) | Oleosin | 17.5 kDa | 176 | AF325917 AF325918 AY605694 | AAK13449 AAK13450 AAT11925 |
Ara h 15 | Oleosin | 17 kDa | 176 | AY722696 | AAU21501 |
Ara h 16 | Non-specific lipid transfer protein type 2, nsLTP-2 | 8.5 kDa by SDS PAGE, reducing | 166 | KX592166 | ASU04353 |
Ara h 17 | Non-specific lipid transfer protein type 1, nsLTP-1 | 11 kDa by SDS-PAGE, reducing | 93 | KX592165 | ASU04352 |
Ara h 18 | Cyclophilin, peptidyl-prolyl cis-trans isomerase | 21 kDa | 172 | XM_025819515 | XP_025675300 |
AA | Ara h 1 | Ara h 2 | Ara h 3 | Ara h 4 | Ara h 5 | Ara h 6 | Ara h 7 | Ara h 8 | Ara h 9 | Ara h 10 | Ara h 11 | Ara h 12 | Ara h 13 | Ara h 14 | Ara h 15 | Ara h 16 | Ara h 17 | Ara h 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A (Ala) | 33 | 11 | 32 | 32 | 8 | 5 | 11 | 11 | 20 | 15 | 17 | 7 | 2 | 14 | 20 | 5 | 9 | 11 |
C (Cys) | 7 | 8 | 4 | 8 | 2 | 10 | 6 | 0 | 9 | 1 | 0 | 9 | 9 | 1 | 1 | 8 | 8 | 4 |
D (Asp) | 30 | 9 | 25 | 24 | 7 | 9 | 8 | 9 | 1 | 6 | 2 | 3 | 5 | 9 | 8 | 0 | 1 | 7 |
E (Glu) | 68 | 14 | 50 | 50 | 8 | 11 | 15 | 16 | 0 | 4 | 3 | 3 | 5 | 1 | 1 | 1 | 0 | 9 |
F (Phe) | 22 | 3 | 23 | 31 | 3 | 3 | 2 | 5 | 4 | 6 | 5 | 6 | 6 | 4 | 5 | 0 | 2 | 12 |
G (Gly) | 45 | 7 | 36 | 40 | 18 | 9 | 10 | 17 | 12 | 20 | 17 | 4 | 6 | 19 | 28 | 5 | 9 | 25 |
H (His) | 15 | 3 | 10 | 13 | 3 | 3 | 1 | 2 | 0 | 4 | 2 | 4 | 3 | 3 | 1 | 0 | 0 | 4 |
I (Ile) | 25 | 3 | 19 | 20 | 13 | 3 | 2 | 12 | 5 | 9 | 8 | 1 | 5 | 12 | 13 | 2 | 9 | 9 |
K (Lys) | 36 | 3 | 9 | 8 | 6 | 2 | 2 | 18 | 5 | 8 | 5 | 6 | 8 | 6 | 6 | 3 | 7 | 10 |
L (Leu) | 43 | 17 | 33 | 37 | 11 | 7 | 15 | 10 | 11 | 16 | 17 | 5 | 8 | 17 | 14 | 6 | 4 | 7 |
M (Met) | 8 | 4 | 0 | 1 | 5 | 8 | 4 | 2 | 5 | 4 | 2 | 2 | 2 | 5 | 2 | 0 | 0 | 5 |
N (Asn) | 41 | 7 | 39 | 38 | 4 | 7 | 7 | 6 | 6 | 2 | 1 | 4 | 3 | 1 | 1 | 3 | 7 | 8 |
P (Pro) | 38 | 8 | 29 | 30 | 9 | 3 | 10 | 9 | 8 | 8 | 6 | 1 | 1 | 10 | 7 | 9 | 5 | 7 |
Q (Gln) | 43 | 23 | 44 | 45 | 7 | 19 | 21 | 1 | 3 | 9 | 9 | 1 | 2 | 11 | 4 | 2 | 4 | 6 |
R (Arg) | 59 | 17 | 56 | 51 | 1 | 13 | 20 | 1 | 5 | 7 | 6 | 1 | 5 | 9 | 6 | 4 | 1 | 8 |
S (Ser) | 45 | 11 | 34 | 34 | 6 | 9 | 10 | 6 | 8 | 10 | 6 | 2 | 3 | 12 | 16 | 8 | 15 | 12 |
T (Thr) | 21 | 1 | 15 | 14 | 8 | 2 | 2 | 13 | 6 | 20 | 13 | 5 | 1 | 20 | 13 | 5 | 6 | 12 |
V (Val) | 33 | 2 | 27 | 28 | 5 | 4 | 9 | 12 | 7 | 16 | 13 | 5 | 3 | 19 | 8 | 5 | 4 | 13 |
W (Trp) | 5 | 1 | 3 | 5 | 2 | 0 | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
Y (Tyr) | 9 | 4 | 19 | 20 | 5 | 2 | 2 | 7 | 1 | 3 | 4 | 1 | 1 | 2 | 11 | 2 | 2 | 2 |
SUM | 626 | 156 | 507 | 529 | 131 | 129 | 160 | 157 | 116 | 169 | 137 | 71 | 79 | 176 | 166 | 68 | 93 | 172 |
Allergen Groups | Allergens | Stability | Allergenic Potential | Reference |
---|---|---|---|---|
Cupins | Ara h 1, Ara h 3 | Stable to heat but less stable to digestion | High | [78,108,129] |
2S Albumins | Ara h 2, Ara h 6, and Ara h 7 | Extremely stable to heat and gastric digestion | Very High | [108,112,115,130] |
Profilin | Ara h 5 | Stable | Moderate to High | [119] |
PR-10 Protein | Ara h 8 | Unstable to heat and digestion | Moderate | [120] |
Oleosins | Ara h 10, 11, 14, and 15 | Highly stable | High | [99] |
Non-specific lipid transfer proteins (nsLTPs) | Ara h 9, Ara h 16, and Ara h 17 | Highly resistant to heat and digestion | Moderate | [86] |
Peanut defensins | Ara h 12, Ara h 13 | Resistant to heat and digestion | Low | [100] |
Cyclophilin | Ara h 18 | Not fully elucidated | Low | [104,123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Eghbali, M. Research Advancements in Peanut Proteins, Their Allergenic Potentials, and the Approaches to Mitigate Peanut Allergenicity. Nutrients 2025, 17, 3078. https://doi.org/10.3390/nu17193078
Yu J, Eghbali M. Research Advancements in Peanut Proteins, Their Allergenic Potentials, and the Approaches to Mitigate Peanut Allergenicity. Nutrients. 2025; 17(19):3078. https://doi.org/10.3390/nu17193078
Chicago/Turabian StyleYu, Jianmei, and Mahshid Eghbali. 2025. "Research Advancements in Peanut Proteins, Their Allergenic Potentials, and the Approaches to Mitigate Peanut Allergenicity" Nutrients 17, no. 19: 3078. https://doi.org/10.3390/nu17193078
APA StyleYu, J., & Eghbali, M. (2025). Research Advancements in Peanut Proteins, Their Allergenic Potentials, and the Approaches to Mitigate Peanut Allergenicity. Nutrients, 17(19), 3078. https://doi.org/10.3390/nu17193078