Factors Associated with Vitamin D Testing: A Population-Based Cohort Study in Queensland, Australia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Outcomes
2.3. Explanatory Variables
2.4. Assigning an Indication to the First Vitamin D Test
2.5. Follow-Up
2.6. Eligibility
2.7. Statistical Analyses
3. Results
3.1. Trends in Vitamin D Testing and Deficiency
3.2. Factors Associated with Having a Vitamin D Test
3.3. Factors Associated with Being Vitamin D Deficient at the First Vitamin D Test
3.4. Factors Associated with Having a Repeat Vitamin D Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MBS | Medicare Benefits Schedule |
PBS | Pharmaceutical Benefits Scheme |
GP | General practitioner |
QSkin | QSkin Sun and Health Study |
25(OH)D | 25-hydroxyvitamin D |
QCR | Queensland Cancer Register |
SEIFA | Socio-Economic Indexes for Areas |
HR | Hazard ratio |
RR | Risk ratio |
IR | Incidence rate |
CI | Confidence interval |
BMI | Body mass index |
Ref | Reference category |
MHT | Menopausal hormone therapy |
NHMRC | National Health and Medical Research Council |
References
- Bilinski, K.; Boyages, S. Evidence of overtesting for vitamin D in Australia: An analysis of 4.5 years of Medicare Benefits Schedule (MBS) data. BMJ Open 2013, 3, e002955. [Google Scholar] [CrossRef]
- Shahangian, S.; Alspach, T.D.; Astles, J.R.; Yesupriya, A.; Dettwyler, W.K. Trends in laboratory test volumes for Medicare part B reimbursements, 2000–2010. Arch. Pathol. Lab. Med. 2013, 138, 189–203. [Google Scholar] [CrossRef]
- Felicia, T.; Ian, C.-Y.; Alan, G.; Vipin, B.; Angela, R. Reducing overutilisation of serum vitamin D testing at a tertiary care centre. BMJ Open Qual. 2020, 9, e000929. [Google Scholar] [CrossRef] [PubMed]
- Caillet, P.; Goyer-Joos, A.; Viprey, M.; Schott, A.-M. Increase of vitamin D assays prescriptions and associated factors: A population-based cohort study. Sci. Rep. 2017, 7, 10361. [Google Scholar] [CrossRef]
- Crowe, F.L.; Jolly, K.; MacArthur, C.; Manaseki-Holland, S.; Gittoes, N.; Hewison, M.; Scragg, R.; Nirantharakumar, K. Trends in the incidence of testing for vitamin D deficiency in primary care in the UK: A retrospective analysis of The Health Improvement Network (THIN), 2005–2015. BMJ Open 2019, 9, e028355. [Google Scholar] [CrossRef]
- Australian Government Department of Health. MBS Reviews-Vitamin D Testing Report; Australian Government Department of Health: Canberra, Australia, 2014.
- Australian Government Department of Health. Medicare Benefits Schedule Book; Australian Government Department of Health: Canberra, Australia, 2014.
- Gonzalez-Chica, D.; Stocks, N. Changes to the frequency and appropriateness of vitamin D testing after the introduction of new Medicare criteria for rebates in Australian general practice: Evidence from 1.5 million patients in the NPS MedicineInsight database. BMJ Open 2019, 9, e024797. [Google Scholar] [CrossRef]
- Gordon, L.; Waterhouse, M.; Reid, I.R.; Neale, R.E. The vitamin D testing rate is again rising, despite new MBS testing criteria. Med. J. Aust. 2020, 213, 155–155.e1. [Google Scholar] [CrossRef]
- John, A.S.; Morris, H.; Richardson, A.; Lidbury, B.; Ward, G.; Badrick, T. Vitamin D testing: Impact of changes to testing guidelines on detection of patients at risk of vitamin D deficiency. Ann. Clin. Biochem. 2020, 58, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Felcher, A.H.; Gold, R.; Mosen, D.M.; Stoneburner, A.B. Decrease in unnecessary vitamin D testing using clinical decision support tools: Making it harder to do the wrong thing. J. Am. Med. Inform. Assoc. 2017, 24, 776–780. [Google Scholar] [CrossRef]
- Gowda, U.; Smith, B.J.; Wluka, A.E.; Fong, D.P.S.; Kaur, A.; Renzaho, A.M.N. Vitamin D testing patterns among general practitioners in a major Victorian primary health care service. Aust. N. Z. J. Public Health 2016, 40, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Tapley, A.; Magin, P.; Morgan, S.; Henderson, K.; Scott, J.; Thomson, A.; Spike, N.; McArthur, L.; Driel, M.; McElduff, P.; et al. Test ordering in an evidence free zone: Rates and associations of Australian general practice trainees’ vitamin D test ordering. J. Eval. Clin. Pract. 2015, 21, 1151–1156. [Google Scholar] [CrossRef]
- Wilson, L.F.; Xu, Z.; Mishra, G.D.; Dobson, A.J.; Doust, J. Did changes to recommended testing criteria affect the rate of vitamin D testing among Australian women. Arch. Osteoporos. 2020, 15, 162. [Google Scholar] [CrossRef]
- Olsen, C.M.; Green, A.C.; Neale, R.E.; Webb, P.M.; Cicero, R.A.; Jackman, L.M.; O’Brien, S.M.; Perry, S.L.; Ranieri, B.A.; Whiteman, D.C.; et al. Cohort profile: The QSkin Sun and Health Study. Int. J. Epidemiol. 2012, 41, 929–929i. [Google Scholar] [CrossRef]
- Lu, C.Y.; Barratt, J.; Vitry, A.; Roughead, E. Charlson and Rx-Risk comorbidity indices were predictive of mortality in the Australian health care setting. J. Clin. Epidemiol. 2011, 64, 223–228. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Socio-Economic Indexes for Areas (SEIFA): Technical Paper. Available online: https://www.abs.gov.au/statistics/detailed-methodology-information/concepts-sources-methods/socio-economic-indexes-areas-seifa-technical-paper/latest-release (accessed on 31 January 2024).
- Kim, H.-J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Australian Government-Services Australia. Medicare Items Reports. Available online: http://medicarestatistics.humanservices.gov.au/statistics/mbs_item.jsp (accessed on 10 March 2023).
- Wolff, A.E.; Jones, A.N.; Hansen, K.E. Vitamin D and musculoskeletal health. Nat. Clin. Pract. Rheumatol. 2008, 4, 580–588. [Google Scholar] [CrossRef]
- Kuznia, S.; Zhu, A.; Akutsu, T.; Buring, J.E.; Camargo, C.A., Jr.; Cook, N.R.; Chen, L.-J.; Cheng, T.-Y.D.; Hantunen, S.; Lee, I.M.; et al. Efficacy of vitamin D3 supplementation on cancer mortality: Systematic review and individual patient data meta-analysis of randomised controlled trials. Ageing Res. Rev. 2023, 87, 101923. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.M.; de Fazio, A.; Protani, M.M.; Ibiebele, T.I.; Nagle, C.M.; Brand, A.H.; Blomfield, P.I.; Grant, P.; Perrin, L.C.; Neale, R.E. Circulating 25-hydroxyvitamin D and survival in women with ovarian cancer. Am. J. Clin. Nutr. 2015, 102, 109–114. [Google Scholar] [CrossRef]
- Bergman, P.; Lindh, A.U.; Björkhem-Bergman, L.; Lindh, J.D. Vitamin D and respiratory tract infections: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2013, 8, e65835. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.; Rahman, A.; Majidi, A.; Waterhouse, M.; Neale, R.E. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 3020. [Google Scholar] [CrossRef]
- Pham, H.; Waterhouse, M.; Baxter, C.; Romero, B.D.; McLeod, D.S.A.; Armstrong, B.K.; Ebeling, P.R.; English, D.R.; Hartel, G.; O’Connell, R.L.; et al. Vitamin D supplementation and hospitalization for infection in older adults: A post-hoc analysis of data from the Australian D-Health Trial. Am. J. Clin. Nutr. 2023, 117, 350–356. [Google Scholar] [CrossRef]
- Hahn, J.; Cook, N.R.; Alexander, E.K.; Friedman, S.; Walter, J.; Bubes, V.; Kotler, G.; Lee, I.M.; Manson, J.E.; Costenbader, K.H. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022, 376, e066452. [Google Scholar] [CrossRef]
- McLaughlin, L.; Clarke, L.; Khalilidehkordi, E.; Butzkueven, H.; Taylor, B.; Broadley, S.A. Vitamin D for the treatment of multiple sclerosis: A meta-analysis. J. Neurol. 2018, 265, 2893–2905. [Google Scholar] [CrossRef] [PubMed]
- The Royal Australian College of General Practitioners. First Do No Harm: A Guide to Choosing Wisely in General Practice. Available online: https://www.racgp.org.au/clinical-resources/clinical-guidelines/key-racgp-guidelines/view-all-racgp-guidelines/first-do-no-harm/gp-resources/vitamin-d-testing (accessed on 20 April 2024).
- The Royal College of Pathologists of Australasia. Position Statement: Use and Interpretation of Vitamin D Testing. Available online: https://www.rcpa.edu.au/Library/College-Policies/Position-Statements/Use-and-Interpretation-of-Vitamin-D-Testing (accessed on 22 May 2024).
- Demay, M.B.; Pittas, A.G.; Bikle, D.D.; Diab, D.L.; Kiely, M.E.; Lazaretti-Castro, M.; Lips, P.; Mitchell, D.M.; Murad, M.H.; Powers, S.; et al. Vitamin D for the prevention of disease: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2024, 109, 1907–1947. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.; Janda, M. Sun Exposure Summit Position Statement; The University of Queensland: Brisbane, Australia, 2023; Available online: https://doi.org/10.14264/f9e3744 (accessed on 20 May 2024).
- National Health and Medical Research Council (NHMRC). Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council (NHMRC): Canberra, Australia, 2017.
- Pratt, N.L.; Kerr, M.; Barratt, J.D.; Kemp-Casey, A.; Ellett, L.M.; Ramsay, E.; Roughead, E.E. The validity of the Rx-Risk Comorbidity Index using medicines mapped to the Anatomical Therapeutic Chemical (ATC) Classification System. BMJ Open 2018, 8, e021122. [Google Scholar] [CrossRef] [PubMed]
Characteristic | n (%) | IR | HR (95% CI) | |
---|---|---|---|---|
Crude Model | Adjusted Model 1 | |||
Sex | ||||
Male | 16,880 (47.9) | 493 | Ref | Ref |
Female | 18,370 (52.1) | 1223 | 2.42 (2.34, 2.50) | 2.52 (2.44, 2.61) |
Age at cohort entry (years) | ||||
<45 | 2859 (8.1) | 660 | Ref | Ref |
45 to <50 | 4986 (14.1) | 710 | 1.07 (1.00, 1.16) | 1.10 (1.02, 1.18) |
50 to <55 | 6375 (18.1) | 760 | 1.15 (1.07, 1.23) | 1.22 (1.13, 1.30) |
55 to <60 | 6659 (18.9) | 828 | 1.25 (1.16, 1.34) | 1.35 (1.26, 1.45) |
60 to <65 | 6516 (18.5) | 873 | 1.31 (1.22, 1.41) | 1.48 (1.38, 1.58) |
65+ | 7855 (22.3) | 1001 | 1.49 (1.40, 1.60) | 1.75 (1.64, 1.87) |
Ancestry origin | ||||
White European | 32,882 (94.1) | 815 | Ref | Ref |
Other 2 | 2054 (5.9) | 1008 | 1.23 (1.15, 1.31) | 1.21 (1.13, 1.29) |
Missing | 314 | |||
SEIFA category at baseline 3 | ||||
1—Most disadvantaged | 7306 (20.7) | 728 | Ref | Ref |
2 | 7300 (20.7) | 775 | 1.06 (1.01, 1.12) | 1.09 (1.04, 1.15) |
3 | 7082 (20.1) | 839 | 1.15 (1.09, 1.21) | 1.19 (1.13, 1.25) |
4 | 6807 (19.3) | 873 | 1.19 (1.14, 1.26) | 1.27 (1.20, 1.33) |
5—Least disadvantaged | 6755 (19.2) | 942 | 1.29 (1.22, 1.35) | 1.41 (1.34, 1.48) |
BMI category at baseline | ||||
Underweight | 341 (1.0) | 1281 | 1.36 (1.18, 1.56) | 1.15 (1.00, 1.32) |
Normal weight | 11,254 (33.0) | 929 | Ref | Ref |
Overweight | 13,453 (39.5) | 723 | 0.78 (0.76, 0.81) | 0.93 (0.89, 0.96) |
Obese | 9041 (26.5) | 845 | 0.91 (0.88, 0.95) | 0.99 (0.95, 1.03) |
Missing | 1161 | |||
History of regular smoking at baseline | ||||
Never | 19,093 (54.4) | 866 | Ref | Ref |
Past | 12,578 (35.8) | 793 | 0.92 (0.89, 0.95) | 1.01 (0.98, 1.05) |
Current | 3441 (9.8) | 740 | 0.86 (0.81, 0.91) | 0.97 (0.92, 1.03) |
Missing | 138 | |||
Number of alcoholic drinks per week at baseline | ||||
None | 6529 (18.6) | 996 | Ref | Ref |
<1 | 5765 (16.4) | 949 | 0.95 (0.91, 1.00) | 1.01 (0.96, 1.06) |
2–4 | 6304 (18.0) | 875 | 0.88 (0.84, 0.93) | 0.98 (0.93, 1.03) |
5–6 | 4592 (13.1) | 807 | 0.82 (0.77, 0.86) | 0.93 (0.88, 0.99) |
7–13 | 5711 (16.3) | 756 | 0.77 (0.73, 0.81) | 0.91 (0.87, 0.96) |
14+ | 6179 (17.6) | 601 | 0.61 (0.58, 0.65) | 0.88 (0.83, 0.93) |
Missing | 170 | |||
Sun exposure in the year prior to baseline | ||||
Low (≤3.5 h/week) | 5004 (15.3) | 1145 | Ref | Ref |
Medium (>3.5 to ≤10 h/week) | 7000 (21.4) | 895 | 0.79 (0.75, 0.83) | 0.94 (0.89, 0.99) |
High (>10 to ≤25 h/week) | 14,556 (44.5) | 782 | 0.69 (0.66, 0.73) | 0.87 (0.83, 0.91) |
Very high (>25 h/week) | 6115 (18.7) | 586 | 0.52 (0.49, 0.55) | 0.83 (0.78, 0.88) |
Missing | 2575 | |||
Sunscreen use in the year prior to baseline | ||||
Never | 7249 (20.7) | 797 | Ref | Ref |
Less than 50% of the time | 14,985 (42.7) | 801 | 1.01 (0.96, 1.05) | 0.97 (0.93, 1.01) |
More than 50% of the time | 9646 (27.5) | 849 | 1.06 (1.02, 1.11) | 0.98 (0.93, 1.02) |
All the time | 3183 (9.1) | 955 | 1.19 (1.12, 1.27) | 1.00 (0.94, 1.07) |
Missing | 187 | |||
Number of GP visits in the 12 months before cohort entry | ||||
0 | 3350 (9.5) | 428 | Ref | Ref |
1 | 3442 (9.8) | 604 | 1.40 (1.29, 1.53) | 1.30 (1.19, 1.42) |
2+ | 28,458 (80.7) | 914 | 2.09 (1.96, 2.24) | 1.61 (1.50, 1.73) |
Rx-Risk comorbidity index at cohort entry (unweighted) | ||||
0 | 18,718 (53.1) | 689 | Ref | Ref |
1 | 6828 (19.4) | 884 | 1.27 (1.22, 1.33) | 1.24 (1.19, 1.30) |
2+ | 9704 (27.5) | 1096 | 1.56 (1.51, 1.62) | 1.47 (1.41, 1.53) |
Skin phenotype (predisposition to skin cancers) 4 | ||||
Lowest risk | 12,461 (35.4) | 789 | Ref | Ref |
Medium risk | 11,238 (31.9) | 806 | 1.02 (0.98, 1.06) | 0.98 (0.94, 1.02) |
Highest risk | 11,551 (32.8) | 809 | 1.12 (1.08, 1.17) | 1.03 (0.99, 1.07) |
Skin cancer excision prior to baseline (self-report) | ||||
None | 21,066 (60.2) | 801 | Ref | Ref |
1 | 4879 (13.9) | 888 | 1.10 (1.06, 1.16) | 1.06 (1.01, 1.11) |
2–10 | 7504 (21.4) | 875 | 1.09 (1.05, 1.13) | 1.10 (1.06, 1.15) |
>10 | 1563 (4.5) | 750 | 0.94 (0.86, 1.01) | 1.03 (0.95, 1.12) |
Missing | 238 | |||
Skin cancer cryotherapy prior to baseline (self-report) | ||||
None | 16,029 (45.7) | 776 | Ref | Ref |
1–5 | 9164 (26.1) | 894 | 1.15 (1.10, 1.19) | 1.08 (1.04, 1.12) |
6–10 | 3282 (9.4) | 899 | 1.15 (1.09, 1.22) | 1.12 (1.06, 1.19) |
>10 | 6604 (18.8) | 820 | 1.05 (1.01, 1.10) | 1.09 (1.04, 1.14) |
Missing | 171 | |||
Diagnosed with in situ melanoma subsequent to baseline | ||||
No | 34,332 (97.4) | 829 | Ref | Ref |
Yes | 918 (2.6) | 679 | 0.91 (0.79, 1.04) | 0.97 (0.85, 1.11) |
Diagnosed with invasive melanoma subsequent to baseline | ||||
No | 34,739 (98.6) | 827 | Ref | Ref |
Yes | 511 (1.4) | 844 | 1.12 (0.95, 1.32) | 1.16 (0.99, 1.37) |
Treated for keratinocyte cancer subsequent to baseline | ||||
No | 25,271 (71.7) | 838 | Ref | Ref |
Yes | 9979 (28.3) | 785 | 1.04 (1.00, 1.08) | 1.06 (1.02, 1.10) |
Ever been prescribed with osteoporosis medication 5 | ||||
No | 33,836 (96.0) | 798 | Ref | Ref |
Yes | 1414 (4.0) | 2216 | 2.83 (2.64, 3.03) | 1.96 (1.83, 2.11) |
Recent osteoporosis medication 5,6 | ||||
No | 34,415 (97.6) | 822 | Ref | Ref |
Yes | 835 (2.4) | 5832 | 7.17 (5.90, 8.70) | 5.32 (4.38, 6.46) |
Ever been prescribed with antiepileptic medication 5 | ||||
No | 34,283 (97.3) | 821 | Ref | Ref |
Yes | 967 (2.7) | 1134 | 1.45 (1.31, 1.60) | 1.41 (1.28, 1.56) |
Recent antiepileptic medication 5,6 | ||||
No | 34,644 (98.3) | 826 | Ref | Ref |
Yes | 606 (1.7) | 2023 | 2.37 (1.62, 3.45) | 2.35 (1.61, 3.43) |
Ever been prescribed with menopausal hormone therapy 5,7 | ||||
No | 15,045 (81.9) | 1204 | Ref | Ref |
Yes | 3325 (18.1) | 1365 | 1.33 (1.25, 1.41) | 1.25 (1.18, 1.32) |
Recent menopausal hormone therapy 5,6,7 | ||||
No | 15,555 (84.7) | 1221 | Ref | Ref |
Yes | 2815 (15.3) | 1575 | 1.41 (1.16, 1.71) | 1.36 (1.12, 1.65) |
Indication 1 | % 2 | Mean 25(OH)D (SD) 3 | n (%) Deficient 3 |
---|---|---|---|
No apparent indication | 56.4 | 69.9 (22.2) | 1105 (16.4) |
Obesity (body mass index ≥30 kg/m2) | 22.3 | 62.7 (20.9) | 697 (26.2) |
Low sun exposure (≤3.5 h/week outdoors) | 18.6 | 61.8 (21.7) | 656 (29.8) |
Long-term glucocorticoid use 4 | 1.7 | 63.4 (21.2) | 53 (26.5) |
Recently prescribed with osteoporosis/antiepileptic medication 5 | 0.9 | 65.9 (23.2) | 29 (25.9) |
Characteristics | n | Median 25-Hydroxyvitamin D (25th, 75th Percentile) | % Deficient 1 | Crude RR(95% CI) | Adjusted RR (95% CI) 3 |
---|---|---|---|---|---|
Sex | |||||
Male | 4240 | 68 (55, 83) | 17.0 | Ref | Ref |
Female | 8712 | 64 (50, 77) | 23.4 | 1.38 (1.28–1.49) | 1.38 (1.27–1.49) |
Age at cohort entry (years) | |||||
<45 | 839 | 64 (50, 79) | 23.1 | 1.05 (0.91–1.22) | 1.02 (0.88–1.18) |
45 to <50 | 1614 | 64 (50, 77) | 24.0 | 1.09 (0.97–1.22) | 1.08 (0.96–1.21) |
50 to <55 | 2211 | 64 (51.5, 78.5) | 22.0 | Ref | Ref |
55 to <60 | 2409 | 65 (52, 78) | 21.6 | 0.98 (0.88–1.09) | 0.99 (0.88–1.10) |
60 to <65 | 2539 | 66 (52, 79) | 21.3 | 0.97 (0.87–1.08) | 0.99 (0.89–1.11) |
65+ | 3340 | 66 (53, 81) | 18.9 | 0.86 (0.77–0.95) | 0.90 (0.81–1.00) |
Ancestry origin | |||||
White European | 12,028 | 66 (52, 80) | 20.3 | Ref | Ref |
Other 4 | 797 | 58 (44, 72) | 35.9 | 1.77 (1.60–1.95) | 1.66 (1.51–1.84) |
SEIFA category at baseline 5 | |||||
1—Most disadvantaged | 2430 | 67 (54, 80) | 19.3 | Ref | Ref |
2 | 2580 | 65 (52, 79) | 20.0 | 1.04 (0.93–1.16) | 1.01 (0.91–1.13) |
3 | 2616 | 66 (53, 81) | 19.9 | 1.03 (0.92–1.16) | 0.99 (0.89–1.11) |
4 | 2577 | 65 (51, 79) | 22.2 | 1.15 (1.03–1.29) | 1.11 (0.99–1.23) |
5—Least disadvantaged | 2749 | 63 (50, 77) | 24.8 | 1.29 (1.16–1.43) | 1.25 (1.12–1.38) |
BMI category at baseline | |||||
Underweight | 168 | 70 (55, 89) | 17.3 | 1.05 (0.75–1.48) | 1.03 (0.74–1.44) |
Normal weight | 4445 | 69 (55, 82) | 16.4 | Ref | Ref |
Overweight | 4536 | 66 (53, 79) | 19.6 | 1.20 (1.10–1.31) | 1.30 (1.19–1.43) |
Obese | 3374 | 60 (47, 74) | 29.8 | 1.82 (1.67–1.98) | 1.95 (1.80–2.12) |
History of regular smoking at baseline | |||||
Never | 7326 | 65 (52, 79) | 20.7 | Ref | Ref |
Past | 4465 | 66 (52, 80) | 20.4 | 0.98 (0.91–1.06) | 1.03 (0.96–1.11) |
Current | 1113 | 62 (47, 76) | 28.9 | 1.39 (1.26–1.54) | 1.45 (1.31–1.60) |
Number of alcoholic drinks per week at baseline | |||||
None | 2691 | 63 (48, 77) | 26.5 | Ref | Ref |
<1 | 2321 | 62 (50, 76) | 24.2 | 0.91 (0.83–1.00) | 0.89 (0.81–0.98) |
2–4 | 2417 | 66 (54, 80) | 17.6 | 0.66 (0.60–0.74) | 0.65 (0.59–0.73) |
5–6 | 1649 | 67 (53, 81) | 18.7 | 0.70 (0.63–0.79) | 0.71 (0.63–0.80) |
7–13 | 2010 | 68 (54, 82) | 18.1 | 0.68 (0.61–0.76) | 0.70 (0.63–0.78) |
14+ | 1797 | 66 (53, 81) | 20.8 | 0.78 (0.70–0.87) | 0.86 (0.77–0.97) |
Sun exposure in the year prior to baseline | |||||
Low (≤3.5 h/week) | 2260 | 60 (46, 75) | 30.1 | Ref | Ref |
Medium (>3.5 to ≤10 h/week) | 2742 | 64 (50, 76) | 24.0 | 0.80 (0.73–0.87) | 0.79 (0.72–0.87) |
High (>10 to ≤25 h/week) | 5180 | 67 (54, 80) | 18.6 | 0.62 (0.57–0.67) | 0.64 (0.59–0.70) |
Very high (>25 h/week) | 1737 | 69 (57, 84) | 13.9 | 0.46 (0.40–0.53) | 0.52 (0.45–0.60) |
Sunscreen use in the year prior to baseline | |||||
Never | 2348 | 64 (50, 79) | 24.4 | Ref | Ref |
Less than 50% of the time | 5054 | 65 (52, 79) | 21.5 | 0.88 (0.81–0.96) | 0.82 (0.75–0.90) |
More than 50% of the time | 3388 | 66 (54, 80) | 18.2 | 0.75 (0.68–0.83) | 0.67 (0.60–0.74) |
All the time | 1206 | 64 (50, 80) | 22.7 | 0.93 (0.82–1.06) | 0.79 (0.70–0.90) |
Number of GP visits in the 12 months before cohort entry | |||||
0 | 711 | 65 (52, 80) | 21.4 | Ref | Ref |
1 | 1007 | 65 (52, 78) | 20.8 | 0.97 (0.81–1.17) | 0.94 (0.78–1.13) |
2+ | 11,234 | 65 (52, 79) | 21.4 | 1.00 (0.86–1.16) | 0.98 (0.85–1.14) |
Rx-Risk comorbidity index (unweighted) at cohort entry | |||||
0 | 6073 | 66 (52, 80) | 20.4 | Ref | Ref |
1 | 2654 | 66 (52, 79) | 20.6 | 1.01 (0.92–1.10) | 1.07 (0.98–1.17) |
2+ | 4225 | 64 (51, 78) | 23.1 | 1.13 (1.05–1.22) | 1.34 (1.23–1.46) |
Skin phenotype (predisposition to skin cancers) 6 | |||||
Lowest risk | 4407 | 66 (52, 80) | 20.4 | Ref | Ref |
Medium risk | 4061 | 66 (53, 80) | 20.1 | 0.99 (0.91–1.07) | 0.98 (0.90–1.07) |
Highest risk | 4484 | 64 (50, 77) | 23.4 | 1.15 (1.06–1.24) | 1.11 (1.03–1.20) |
Skin cancer excision prior to baseline (self-report) 7 | |||||
No | 7497 | 64 (51, 78) | 22.7 | Ref | Ref |
Yes | 5357 | 66 (53, 80) | 19.4 | 0.86 (0.80–0.92) | 0.88 (0.82–0.94) |
Missing | 98 | ||||
Skin cancer cryotherapy prior to baseline (self-report) 7 | |||||
No | 5495 | 64 (50, 77) | 23.9 | Ref | Ref |
Yes | 7381 | 66 (53, 80) | 19.4 | 0.81 (0.76–0.87) | 0.81 (0.76–0.87) |
Missing | 76 | ||||
Diagnosed with in situ melanoma subsequent to baseline 7 | |||||
No | 12,763 | 65 (52, 79) | 21.4 | Ref | Ref |
Yes | 189 | 69 (56, 81) | 16.4 | 0.77 (0.55–1.06) | 0.83 (0.61–1.14) |
Diagnosed with invasive melanoma subsequent to baseline 7 | |||||
No | 12,828 | 65 (52, 79) | 21.3 | Ref | Ref |
Yes | 124 | 69 (54, 82) | 18.5 | 0.87 (0.60–1.26) | 0.96 (0.66–1.38) |
Treated for keratinocyte cancer subsequent to baseline 7 | |||||
No | 10,205 | 65 (51, 79) | 22.1 | Ref | Ref |
Yes | 2747 | 67 (54, 81) | 18.3 | 0.83 (0.76–0.90) | 0.88 (0.81–0.97) |
Osteoporosis medication 7 | |||||
No | 12,251 | 65 (52, 79) | 21.6 | Ref | Ref |
Yes | 701 | 69 (56, 85) | 15.5 | 0.72 (0.60–0.86) | 0.72 (0.61–0.87) |
Antiepileptic medication 7 | |||||
No | 12,621 | 65 (52, 79) | 21.1 | Ref | Ref |
Yes | 331 | 61 (46, 76) | 29.6 | 1.40 (1.18–1.66) | 1.49 (1.26–1.76) |
Menopausal hormone therapy 7,8 | |||||
No | 7484 | 63 (50, 77) | 24.1 | Ref | Ref |
Yes | 1228 | 66 (53, 78) | 19.5 | 0.81 (0.72–0.91) | 0.82 (0.73–0.93) |
Characteristic | HR (95% CI) | |
---|---|---|
Crude Model | Adjusted Model 1 | |
Sex | ||
Male | Ref | Ref |
Female | 1.27 (1.22, 1.33) | 1.25 (1.20, 1.29) |
Age at time of the preceding test (years) | ||
<45 | Ref | Ref |
45 to <50 | 1.23 (1.07, 1.42) | 1.18 (1.03, 1.36) |
50 to <55 | 1.28 (1.11, 1.47) | 1.21 (1.05, 1.38) |
55 to <60 | 1.38 (1.20, 1.59) | 1.28 (1.12, 1.47) |
60 to <65 | 1.46 (1.26, 1.68) | 1.32 (1.16, 1.51) |
65+ | 1.60 (1.39, 1.84) | 1.45 (1.26, 1.65) |
GP visits per year before the preceding test | ||
0–2 | Ref | Ref |
3–4 | 1.10 (1.05, 1.16) | 1.04 (0.99, 1.09) |
5–6 | 1.17 (1.11, 1.23) | 1.08 (1.03, 1.14) |
>6 | 1.45 (1.39, 1.52) | 1.24 (1.18, 1.30) |
Rx-Risk index (unweighted) at time of the preceding test | ||
0 | Ref | Ref |
1 | 1.10 (1.06, 1.15) | 1.06 (1.02, 1.11) |
2+ | 1.28 (1.24, 1.33) | 1.17 (1.12, 1.21) |
Result of previous vitamin D test (nmol/L) 2 | ||
<50 | 1.38 (1.33, 1.44) | 1.46 (1.40, 1.53) |
50 to <75 | Ref | Ref |
75+ | 0.97 (0.94, 1.01) | 0.93 (0.90, 0.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, V.; McLeod, D.S.A.; Olsen, C.M.; Pandeya, N.; Waterhouse, M.; Whiteman, D.C.; Neale, R.E. Factors Associated with Vitamin D Testing: A Population-Based Cohort Study in Queensland, Australia. Nutrients 2025, 17, 2549. https://doi.org/10.3390/nu17152549
Tran V, McLeod DSA, Olsen CM, Pandeya N, Waterhouse M, Whiteman DC, Neale RE. Factors Associated with Vitamin D Testing: A Population-Based Cohort Study in Queensland, Australia. Nutrients. 2025; 17(15):2549. https://doi.org/10.3390/nu17152549
Chicago/Turabian StyleTran, Vu, Donald S. A. McLeod, Catherine M. Olsen, Nirmala Pandeya, Mary Waterhouse, David C. Whiteman, and Rachel E. Neale. 2025. "Factors Associated with Vitamin D Testing: A Population-Based Cohort Study in Queensland, Australia" Nutrients 17, no. 15: 2549. https://doi.org/10.3390/nu17152549
APA StyleTran, V., McLeod, D. S. A., Olsen, C. M., Pandeya, N., Waterhouse, M., Whiteman, D. C., & Neale, R. E. (2025). Factors Associated with Vitamin D Testing: A Population-Based Cohort Study in Queensland, Australia. Nutrients, 17(15), 2549. https://doi.org/10.3390/nu17152549