Predictors of Mental Health Outcomes in a Multidisciplinary Weight Management Program for Class 3 Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Management
2.2.1. Risk of Eating Disorders (EDE-QS) and Binge Eating Frequency
2.2.2. Psychological Distress (K10)
2.2.3. Health-Related Quality of Life (SF-36)
2.3. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Outcome Measures between Baseline and Follow-Up Assessments
3.3. Correlations among Outcome Measures
3.4. Results from Multiple Linear Regression Analysis
3.4.1. EDE-QS Global Score
3.4.2. Binge Eating Frequency
3.4.3. Psychological Distress
3.4.4. Physical Health Quality of Life (PHQoL)
3.4.5. Mental Health Quality of Life (MHQoL)
Baseline and Follow-Up Measures: Standardised Regression Coefficients (beta, β) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline and Follow-Up Measures # | Baseline EDE-QS | Follow-Up EDE-QS | Baseline Binge Eating | Follow-Up Binge Eating | Baseline K10 | Follow-Up K10 | Baseline PCS | Follow-Up PCS | Baseline MCS | Follow-Up MCS |
β | β | Β | β | β | β | β | β | β | β | |
Gender (female, male) | - | - | - | - | −0.10 | −0.03 | −0.08 | 0.06 | 0.05 | |
Age (continuous) | −0.09 | - | −0.20 * | - | −0.08 | - | −0.33 ** | −0.11 | - | |
Aboriginal | - | 0.04 | - | - | 0.17 * | 0.01 | −0.02 | −0.02 | ||
Baseline BMI | - | - | - | - | - | - | −0.30 ** | - | ||
Baseline EDE-QS Global | - | 0.23 ** | - | - | 0.58 ** | NI | −0.01 | NI | ||
Baseline binge eating | - | - | - | 0.23 ** | - | - | 0.17 ** | - | ||
Baseline K10 | 0.63 ** | NI | 0.42 ** | NI | - | 0.58 ** | −0.82 ** | NI | ||
Baseline PCS | - | - | - | - | 0.49 ** | −0.30 ** | - | |||
Baseline MCS | - | - | - | 0.15 | ||||||
Follow-up EDE-QS Global | - | - | 0.31 ** | −0.01 | ||||||
Follow-up binge eating | - | - | - | - | ||||||
Follow-up K10 | 0.32 ** | 0.39 ** | - | −0.13 | −0.62 ** | |||||
Follow-up PCS | - | |||||||||
Follow-up BMI | - | |||||||||
Follow-up weight loss | −0.35 ** | −0.08 | 0.17 * | |||||||
Adjusted R-square | 0.425 ** | 0.417 * | 0.256 ** | 0.237 ** | 0.462 ** | 0.583 ** | 0.147 ** | 0.294 ** | 0.670 ** | 0.636 ** |
4. Discussion
4.1. Strengths and Limitations
4.2. Study Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Obesity and Overweight. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 March 2024).
- Must, A.; Spadano, J.; Coakley, E.H.; Field, A.E.; Colditz, G.; Dietz, W.H. The Disease Burden Associated with Overweight and Obesity. JAMA 1999, 282, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Heo, M.; Pietrobelli, A.; Wang, D.; Heymsfield, S.B.; Faith, M.S. Obesity and Functional Impairment: Influence of Comorbidity, Joint Pain, and Mental Health. Obesity 2010, 18, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, M.; le Roux, C.W.; Docherty, N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Tremmel, M.; Gerdtham, U.G.; Nilsson, P.M.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Haines, J.; Neumark-Sztainer, D. Prevention of obesity and eating disorders: A consideration of shared risk factors. Health Educ. Res. 2006, 21, 770–782. [Google Scholar] [CrossRef] [PubMed]
- Da Luz, F.Q.; Sainsbury, A.; Mannan, H.; Touyz, S.; Mitchison, D.; Hay, P. Prevalence of obesity and comorbid eating disorder behaviors in South Australia from 1995 to 2015. Int. J. Obes. 2017, 41, 1148–1153. [Google Scholar] [CrossRef]
- Carey, M.; Small, H.; Yoong, S.L.; Boyes, A.; Bisquera, A.; Sanson-Fisher, R. Prevalence of comorbid depression and obesity in general practice: A cross-sectional survey. Br. J. General. Pract. 2014, 64, e122. [Google Scholar] [CrossRef] [PubMed]
- Gariepy, G.; Nitka, D.; Schmitz, N. The association between obesity and anxiety disorders in the population: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Busutil, R.; Espallardo, O.; Torres, A.; Martínez-Galdeano, L.; Zozaya, N.; Hidalgo-Vega, Á. The impact of obesity on health-related quality of life in Spain. Health Qual. Life Outcomes 2017, 15, 197. [Google Scholar] [CrossRef] [PubMed]
- Ul-Haq, Z.; Mackay, D.F.; Fenwick, E.; Pell, J.P. Meta-analysis of the association between body mass index and health-related quality of life among adults, assessed by the SF-36. Obesity 2013, 21, E322–E327. [Google Scholar] [CrossRef]
- Korhonen, P.E.; Seppälä, T.; Järvenpää, S.; Kautiainen, H. Body mass index and health-related quality of life in apparently healthy individuals. Qual. Life Res. 2014, 23, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, H.; Härter, M. Mental disorders in patients with obesity in comparison with healthy probands. Int. J. Obes. 2007, 31, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Carpiniello, B.; Pinna, F.; Pillai, G.; Nonnoi, V.; Pisano, E.; Corrias, S.; Orrù, M.G.; Orrù, W.; Velluzzi, F.; Loviselli, A. Psychiatric comorbidity and quality of life in obese patients. Results from a case-control study. Int. J. Psychiatry Med. 2009, 39, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Kodsi, R.; Chimoriya, R.; Medveczky, D.; Grudzinskas, K.; Atlantis, E.; Tahrani, A.A.; Kormas, N.; Piya, M.K. Clinical Use of the Edmonton Obesity Staging System for the Assessment of Weight Management Outcomes in People with Class 3 Obesity. Nutrients 2022, 14, 967. [Google Scholar] [CrossRef] [PubMed]
- Sarlio-Lähteenkorva, S.; Lahelma, E. The association of body mass index with social and economic disadvantage in women and men. Int. J. Epidemiol. 1999, 28, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Heraclides, A.; Brunner, E. Social mobility and social accumulation across the life course in relation to adult overweight and obesity: The Whitehall II study. J. Epidemiol. Community Health 2010, 64, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.M. Psychological aspects of weight maintenance and relapse in obesity. J. Psychosom. Res. 2002, 53, 1029–1036. [Google Scholar] [CrossRef]
- Grattan, B.J., Jr.; Connolly-Schoonen, J. Addressing weight loss recidivism: A clinical focus on metabolic rate and the psychological aspects of obesity. ISRN Obes. 2012, 2012, 567530. [Google Scholar] [CrossRef]
- Benasi, G.; Gostoli, S.; Zhu, B.; Offidani, E.; Artin, M.G.; Gagliardi, L.; Rignanese, G.; Sassi, G.; Fava, G.A.; Rafanelli, C. Well-Being Therapy and Lifestyle Intervention in Type 2 Diabetes: A Pilot Randomized Controlled Trial. Psychosom. Med. 2022, 84, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Kern, D.; Busch, A.; Schneider, K.L.; Miller, S.A.; Appelhans, B.M.; Waring, M.E.; Whited, M.C.; Pagoto, S. Psychosocial factors associated with treatment outcomes in women with obesity and major depressive disorder who received behavioral activation for depression. J. Behav. Med. 2019, 42, 522–533. [Google Scholar] [CrossRef]
- Molina, K.; Baskin, M.L.; Long, D.; Carson, T.L. Psychological and behavioral pathways between perceived stress and weight change in a behavioral weight loss intervention. J. Behav. Med. 2021, 44, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Liu, Y.; Hu, H.; Sun, J.; Liu, Y.; Wang, Z. Telemedicine management of type 2 diabetes mellitus in obese and overweight young and middle-aged patients during COVID-19 outbreak: A single-center, prospective, randomized control study. PLoS ONE 2022, 17, e0275251. [Google Scholar] [CrossRef]
- Heath, L.; Jebb, S.; Stevens, R.; Wheeler, G.; Ahern, A.; Boyland, E.; Halford, J.; Aveyard, P. Effects of a group-based weight management programme on anxiety and depression: A randomised controlled trial (RCT). PLoS ONE 2022, 17, e0263228. [Google Scholar] [CrossRef]
- Breslin, G.; Sweeney, L.; Shannon, S.; Murphy, M.; Hanna, D.; Meade, M.; Armitage, C.J. The effect of an augmented commercial weight loss program on increasing physical activity and reducing psychological distress in women with overweight or obesity: A randomised controlled trial. J. Public Ment. Health 2020, 19, 145–157. [Google Scholar] [CrossRef]
- Young, M.D.; Drew, R.J.; Kay-Lambkin, F.; Collins, C.E.; Callister, R.; Kelly, B.J.; Bialek, C.; Morgan, P.J. Impact of a self-guided, eHealth program targeting weight loss and depression in men: A randomized trial. J. Consult. Clin. Psychol. 2021, 89, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, A.; Wilson, E.; Liu, J.; Kuroki, L.; Thaker, P.; McCourt, C.; Fuh, K.; Powell, M.; Mutch, D.; Khabele, D.; et al. Low quality of life and activity levels persist in obese endometrial cancer survivors despite participation in a behavioral weight loss intervention. Gynecol. Oncol. 2021, 162, S201. [Google Scholar] [CrossRef]
- Hesseldal, L.; Christensen, J.R.; Olesen, T.B.; Olsen, M.H.; Jakobsen, P.R.; Laursen, D.H.; Lauridsen, J.T.; Nielsen, J.B.; Søndergaard, J.; Brandt, C.J. Long-term Weight Loss in a Primary Care-Anchored eHealth Lifestyle Coaching Program: Randomized Controlled Trial. J. Med. Internet Res. 2022, 24, e39741. [Google Scholar] [CrossRef]
- Matson, T.E.; Anderson, M.L.; Renz, A.D.; Greenwood-Hickman, M.A.; McClure, J.B.; Rosenberg, D.E. Changes in Self-Reported Health and Psychosocial Outcomes in Older Adults Enrolled in Sedentary Behavior Intervention Study. Am. J. Health Promot. 2019, 33, 1053–1057. [Google Scholar] [CrossRef]
- Goldhaber-Fiebert, J.D.; Prince, L.; Xiao, L.; Lv, N.; Rosas, L.G.; Venditti, E.M.; Lewis, M.A.; Snowden, M.B.; Ma, J. First-Year Economic and Quality of Life Effects of the RAINBOW Intervention to Treat Comorbid Obesity and Depression. Obesity 2020, 28, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Kakoschke, N.; Zajac, I.T.; Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.; Brinkworth, G.D. Effects of very low-carbohydrate vs. high-carbohydrate weight loss diets on psychological health in adults with obesity and type 2 diabetes: A 2-year randomized controlled trial. Eur. J. Nutr. 2021, 60, 4251–4262. [Google Scholar] [CrossRef]
- Rosas, L.G.; Azar, K.M.J.; Lv, N.; Xiao, L.; Goldhaber-Fiebert, J.D.; Snowden, M.B.; Venditti, E.M.; Lewis, M.M.; Goldstein-Piekarski, A.N.; Ma, J. Effect of an Intervention for Obesity and Depression on Patient-Centered Outcomes: An RCT. Am. J. Prev. Med. 2020, 58, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Vreijling, S.R.; Penninx, B.W.J.H.; Bot, M.; Watkins, E.; Owens, M.; Kohls, E.; Hegerl, U.; Roca, M.; Gili, M.; Brouwer, I.A.; et al. Effects of dietary interventions on depressive symptom profiles: Results from the MooDFOOD depression prevention study. Psychol. Med. 2022, 52, 3580–3589. [Google Scholar] [CrossRef] [PubMed]
- Van Dammen, L.; Wekker, V.; de Rooij, S.R.; Mol, B.W.J.; Groen, H.; Hoek, A.; Roseboom, T.J. The effects of a pre-conception lifestyle intervention in women with obesity and infertility on perceived stress, mood symptoms, sleep and quality of life. PLoS ONE 2019, 14, e0212914. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Mueller, J.; Sharp, S.J.; Griffin, S.J.; Ahern, A.L. Long-term impact of a behavioral weight management program on depression and anxiety symptoms: 5-year follow-up of the WRAP trial. Obesity 2022, 30, 2396–2403. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.A.; Ross, L.M.; Piner, L.W.; Fos, L.B.; Slentz, C.A.; Bateman, L.A.; Willis, L.H.; Bales, C.W.; Siegler, I.C.; Wolever, R.Q.; et al. Amount and intensity effects of exercise training alone versus a combined diet and exercise lifestyle intervention on health-related quality of life in the STRRIDE-PD randomized trial. BMJ Open Diabetes Res. Care 2022, 10, e002584. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Lee, H.; Kamper, S.J.; O’Brien, K.M.; Wiggers, J.; Wolfenden, L.; Yoong, S.L.; Hodder, R.K.; Robson, E.K.; Haskins, R.; et al. Causal mechanisms of a healthy lifestyle intervention for patients with musculoskeletal pain who are overweight or obese. Clin. Rehabil. 2019, 33, 1088–1097. [Google Scholar] [CrossRef]
- Kempf, K.; Röhling, M.; Banzer, W.; Braumann, K.M.; Halle, M.; Schaller, N.; McCarthy, D.; Predel, H.G.; Schenkenberger, I.; Tan, S.; et al. High-Protein, Low-Glycaemic Meal Replacement Improves Physical Health-Related Quality of Life in High-Risk Persons for Metabolic Syndrome—A Subanalysis of the Randomised-Controlled ACOORH Trial. Nutrients 2022, 14, 3161. [Google Scholar] [CrossRef]
- Sommer, I.; Teufer, B.; Szelag, M.; Nussbaumer-Streit, B.; Titscher, V.; Klerings, I.; Gartlehner, G. The performance of anthropometric tools to determine obesity: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12699. [Google Scholar] [CrossRef] [PubMed]
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil. Med. 2014, 179, 208–217. [Google Scholar] [CrossRef]
- Ode, J.J.; Pivarnik, J.M.; Reeves, M.J.; Knous, J.L. Body mass index as a predictor of percent fat in college athletes and nonathletes. Med. Sci. Sports Exerc. 2007, 39, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Meeuwsen, S.; Horgan, G.W.; Elia, M. The relationship between BMI and percent body fat, measured by bioelectrical impedance, in a large adult sample is curvilinear and influenced by age and sex. Clin. Nutr. 2010, 29, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.C.; Goedecke, J.H.; Jennings, C.; Micklesfield, L.; Dugas, L.; Lambert, E.V.; Plank, L.D. BMI, fat and muscle differences in urban women of five ethnicities from two countries. Int. J. Obes. 2007, 31, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Metsios, G.S. The need to redefine age- and gender-specific overweight and obese body mass index cutoff points. Nutr. Diabetes 2015, 5, e186. [Google Scholar] [CrossRef] [PubMed]
- Suliga, E.; Ciesla, E.; Głuszek-Osuch, M.; Rogula, T.; Głuszek, S.; Kozieł, D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients 2019, 11, 2598. [Google Scholar] [CrossRef]
- Kamariya, C.; Vachhani, U. Usefulness of anthropometric parameters and the bioelectrical impedance analysis in assessment of obesity in young adults. J. Med. Sci. Educ. 2019, 6, 95–98. [Google Scholar]
- Termaat, J.; Piya, M.K.; McBride, K.A. Community-based care needs for adults with class III obesity before and after tertiary weight management: An exploratory study. Obes. Sci. Pract. 2024, 10, e732. [Google Scholar] [CrossRef] [PubMed]
- Saboor Aftab, S.A.; Halder, L.; Piya, M.K.; Reddy, N.; Fraser, I.; Menon, V.; Bridgwater, S.; Kendrick, D.; Kumar, S.; Barber, T.M. Predictors of Weight Loss at 1 Year After Laparoscopic Adjustable Gastric Banding and the Role of Presurgical Quality of Life. Obes. Surg. 2014, 24, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Wimmelmann, C.L.; Dela, F.; Mortensen, E.L. Psychological predictors of mental health and health-related quality of life after bariatric surgery: A review of the recent research. Obes. Res. Clin. Pract. 2014, 8, e314–e324. [Google Scholar] [CrossRef] [PubMed]
- Medveczky, D.M.; Kodsi, R.; Skelsey, K.; Grudzinskas, K.; Bueno, F.; Ho, V.; Kormas, N.; Piya, M.K. Class 3 Obesity in a Multidisciplinary Metabolic Weight Management Program: The Effect of Preexisting Type 2 Diabetes on 6-Month Weight Loss. J. Diabetes Res. 2020, 2020, 9327910. [Google Scholar] [CrossRef] [PubMed]
- Piya, M.K.; Chimoriya, R.; Yu, W.; Grudzinskas, K.; Myint, K.P.; Skelsey, K.; Kormas, N.; Hay, P. Improvement in Eating Disorder Risk and Psychological Health in People with Class 3 Obesity: Effects of a Multidisciplinary Weight Management Program. Nutrients 2021, 13, 1425. [Google Scholar] [CrossRef] [PubMed]
- Kobuch, S.; Tsang, F.; Chimoriya, R.; Gossayn, D.; O’Brien, S.; Jamal, J.; Laks, L.; Tahrani, A.; Kormas, N.; Piya, M.K. Obstructive sleep apnoea and 12-month weight loss in adults with class 3 obesity attending a multidisciplinary weight management program. BMC Endocr. Disord. 2021, 21, 227. [Google Scholar] [CrossRef]
- Chimoriya, R.; Ho, V.; Wang, Z.V.; Chang, R.; Boumelhem, B.B.; Simmons, D.; Kormas, N.; Gorrell, M.D.; Piya, M.K. Application and Diagnostic Performance of Two-Dimensional Shear Wave Elastography and Liver Fibrosis Scores in Adults with Class 3 Obesity. Nutrients 2024, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Prnjak, K.; Mitchison, D.; Griffiths, S.; Mond, J.; Gideon, N.; Serpell, L.; Hay, P. Further development of the 12-item EDE-QS: Identifying a cut-off for screening purposes. BMC Psychiatry 2020, 20, 146. [Google Scholar] [CrossRef] [PubMed]
- Gideon, N.; Hawkes, N.; Mond, J.; Saunders, R.; Tchanturia, K.; Serpell, L. Development and Psychometric Validation of the EDE-QS, a 12 Item Short Form of the Eating Disorder Examination Questionnaire (EDE-Q). PLoS ONE 2016, 11, e0152744. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.T.; Walters, E.E.; Zaslavsky, A.M. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.; Slade, T. Interpreting scores on the Kessler Psychological Distress Scale (K10). Aust. N. Z. J. Public Health 2001, 25, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. 4817.0.55.001—Information Paper: Use of the Kessler Psychological Distress Scale in ABS Health Surveys, Australia, 2007–2008. 2012. Available online: https://www.abs.gov.au/ausstats/[email protected]/mf/4817.0.55.001 (accessed on 1 March 2024).
- Ware, J.E. SF-36 Health Survey. Manual and Interpretation Guide; The Health Institute: Boston, MA, USA, 1993; pp. 6:1–6:22. [Google Scholar]
- Ware, J.; Kosinski, M.; Keller, S. SF-36 Physical and Mental Health Summary Scales: A User’s Manual; Health Assessment Lab: Boston, MA, USA, 1994. [Google Scholar]
- Al Amer, R.; Al Khalifa, K.; Alajlan, S.A.; Al Ansari, A. Analyzing the Psychometric Properties of the Short Form-36 Quality of Life Questionnaire in Patients with Obesity. Obes. Surg. 2018, 28, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. National Health Survey SF-36 Population Norms Australia; Australian Bureau of Statistics: Sydney, Australia, 1995. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Guerrini-Usubini, A.; Cattivelli, R.; Scarpa, A.; Musetti, A.; Varallo, G.; Franceschini, C.; Castelnuovo, G. The interplay between emotion dysregulation, psychological distress, emotional eating, and weight status: A path model. Int. J. Clin. Health Psychol. 2023, 23, 100338. [Google Scholar] [CrossRef]
- Tsekoura, E.; Kostopoulou, E.; Fouzas, S.; Souris, E.; Gkentzi, D.; Jelastopulu, E.; Varvarigou, A. The association between obesity and the risk for development of eating disorders—A large-scale epidemiological study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6051–6056. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.K.; Eriksen, L.; Vedul-Kjelsås, E.; Strømmen, M.; Kulseng, B.; Mårvik, R.; Holen, A. Prevalence of all relevant eating disorders in patients waiting for bariatric surgery: A comparison between patients with and without eating disorders. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2010, 15, e247–e255. [Google Scholar] [CrossRef] [PubMed]
- Dalle Grave, R.; Calugi, S.; Petroni, M.L.; Di Domizio, S.; Marchesini, G. Weight management, psychological distress and binge eating in obesity. A reappraisal of the problem. Appetite 2010, 54, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Colles, S.L.; Dixon, J.B.; O’Brien, P.E. Loss of Control Is Central to Psychological Disturbance Associated with Binge Eating Disorder. Obesity 2008, 16, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Stunkard, A.J.; Costello Allison, K. Two forms of disordered eating in obesity: Binge eating and night eating. Int. J. Obes. 2003, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barbuti, M.; Brancati, G.E.; Calderone, A.; Fierabracci, P.; Salvetti, G.; Weiss, F.; Carignani, G.; Santini, F.; Perugi, G. Prevalence of mood, panic and eating disorders in obese patients referred to bariatric surgery: Patterns of comorbidity and relationship with body mass index. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2022, 27, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Didie, E.R.; Fitzgibbon, M. Binge eating and psychological distress: Is the degree of obesity a factor? Eat. Behav. 2005, 6, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Darby, A.; Hay, P.; Mond, J.; Rodgers, B.; Owen, C. Disordered eating behaviours and cognitions in young women with obesity: Relationship with psychological status. Int. J. Obes. 2007, 31, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Hachem, A.; Brennan, L. Quality of Life Outcomes of Bariatric Surgery: A Systematic Review. Obes. Surg. 2016, 26, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Picot, J.; Jones, J.; Colquitt, J.L.; Gospodarevskaya, E.; Loveman, E.; Baxter, L.; Clegg, A.J. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: A systematic review and economic evaluation. Health Technol. Assess. 2009, 13, 1–214. [Google Scholar] [CrossRef] [PubMed]
- Butryn, M.L.; Webb, V.; Wadden, T.A. Behavioral treatment of obesity. Psychiatr. Clin. N. Am. 2011, 34, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Olateju, I.V.; Ogwu, D.; Owolabi, M.O.; Azode, U.; Osula, F.; Okeke, R.; Akabalu, I. Role of Behavioral Interventions in the Management of Obesity. Cureus 2021, 13, e18080. [Google Scholar] [CrossRef] [PubMed]
- Caleyachetty, R.; Barber, T.M.; Mohammed, N.I.; Cappuccio, F.P.; Hardy, R.; Mathur, R.; Banerjee, A.; Gill, P. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2021, 9, 419–426. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
#All | 115 | 100.0 |
Gender | ||
Female | 88 | 76.5 |
Male | 27 | 23.5 |
Age groups (in years) | ||
18–29 | 9 | 7.8 |
30–44 | 29 | 25.2 |
45–64 | 55 | 47.8 |
65 and above | 22 | 19.1 |
Ethnicity | ||
Caucasian | 90 | 78.3 |
Aboriginal and Torres State Islander | 9 | 7.8 |
Other | 16 | 13.9 |
Employment Status | ||
Fulltime employed | 19 | 16.7 |
Part time employed | 12 | 10.5 |
Pension/Retired | 54 | 47.4 |
Unemployed/other | 29 | 25.4 |
Binge eating at baseline (days per week) | ||
0 Days | 52 | 46.0 |
1–2 days | 36 | 31.9 |
3–5 days | 12 | 10.6 |
6–7 days | 13 | 11.5 |
Hypertension | 78 | 67.8 |
Fatty liver diseases | 30 | 26.1 |
Gastro oesophageal reflux disorder | 48 | 42.1 |
Type 2 diabetes | 65 | 56.5 |
n | Mean (SD) | |
Age/years | 115 | 51.3 (13.8) |
Cholesterol (mmol/L) | 103 | 4.5 (1.1) |
Triglyceride (mmol/L) | 101 | 1.9 (1.0) |
HDL (mmol/L) | 76 | 1.2 (0.3) |
LDL (mmol/L) | 74 | 2.5 (1.0) |
Physical function | 112 | 32.6 (25.6) |
Baseline body mass index (BMI) | 115 | 51.1 (8.6) |
Baseline psychological distress (K10) | 113 | 25.9 (9.8) |
Baseline EDE-QS Global | 114 | 15.9 (6.7) |
Baseline binge eating | 113 | 0.9 (1.0) |
Baseline physical quality of life (PCS) | 112 | 29.5 (10.2) |
Baseline mental quality of life (MCS) | 112 | 40.1 (12.4) |
Baseline body weight | 115 | 140.6 (26.0) |
Measures/Pairwise Matched Females, Males, and Total Sample | Gender | n | Baseline: Mean (SD) | 12-Month Follow-Up Mean (SD) | T0 vs. T1: p-Values: Paired t-Test | Correlation: T0 and T1 (r) | Effect Size: Cohens’ d (95%CI) |
---|---|---|---|---|---|---|---|
Body mass index | Female | 88 | 52.1 (8.6) | 49.0 (9,0) | <0.001 | 0.91 ** | 0.82 (0.58, 1.06) |
Male | 27 | 48.0 (8.1) | 44.8 (7.1) | <0.001 | 0.93 ** | 1.09 (0.60, 1.56) | |
Total | 115 | 51.1 (8.6) | 48.0 (8.7) | <0.001 | 0.91 ** | 0.87 (0.65, 1.08) | |
p-Values: t-test | 0.014 | 0.007 | |||||
Body weight | Female | 88 | 138.1 (26.1) | 130.1 (27.0) | <0.001 | 0.93 ** | 0.83 (0.59, 1.07) |
Male | 27 | 148.8 (24.6) | 138.5 (23.0) | <0.001 | 0.94 ** | 1.22 (0.72, 1.72) | |
Total | 115 | 140.6 (26.0) | 132.0 (26.2) | <0.001 | 0.94 ** | 0.91 (0.69, 1.13) | |
p-Values: t-test | 0.029 | 0.058 | |||||
Psychological distress | Female | 85 | 27.0 (9.9) | 21.8 (9.4) | <0.001 | 0.67 ** | 0.68 (0.44, 0.91) |
Male | 27 | 22.1 (9.0) | 17.6 (7.7) | 0.001 | 0.66 ** | 0.65 (0.22, 1.06) | |
Total | 112 | 25.8 (9.8) | 20.8 (9.1) | <0.001 | 0.69 ** | 0.67 (0.46, 0.87) | |
p-Values: t-test | 0.009 | 0.009 | |||||
EDE-QS | Female | 85 | 16.4 (6.7) | 13.8 (6.3) | 0.001 | 0.37 ** | 0.36 (014, 0.58) |
Male | 27 | 14.4 (7.0) | 12.2 (6.3) | 0.046 | 0.52 ** | 0.34 (−0.06, 0.72) | |
Total | 112 | 15.9 (6.7) | 13.4(6.3) | 0.000 | 0.42 ** | 0.35 (0.16, 0.55) | |
p-Values: t-test | 0.093 | 0.120 | |||||
Binge eating | Female | 83 | 0.9 (1.0) | 0.7 (0.8) | 0.019 | 0.33 ** | 0.23 (0.01, 0.45) |
Male | 25 | 0.8 (1.0) | 0.5 (0.6) | 0.083 | 0.28 | 0.29 (−0.12, 0.68) | |
Total | 108 | 0.9 (1.0) | 0.6 (0.7) | 0.006 | 0.33 ** | 0.24 (0.05, 0,43) | |
p-Values: t-test | 0.148 | 0.108 | |||||
Physical quality of life | Female | 85 | 29.9 (10.5) | 37.0 (11.4) | <0.001 | 0.55 ** | −0.69 (−0.92, −0.43) |
Male | 27 | 28.3 (9.2) | 34.7 (9.6) | 0.001 | 0.50 ** | −0.67 (−1.09, −0.25) | |
Total | 112 | 29.5 (10.2) | 36.5 (11.0) | <0.001 | 0.54 ** | −0.69 (−0.89, −0.48) | |
p-Values: t-test | 0.227 | 0.162 | |||||
Mental quality of life | Female | 85 | 38.5 (11.9) | 42.6 (13.3) | 0.003 | 0.49 ** | −0.32 (−0.54, −0.10) |
Male | 27 | 45.2 (12.9) | 49.8 (11.7) | 0.002 | 0.82 ** | −0.61 (−1.02, −0.19) | |
Total | 112 | 40.1 (12.4) | 44.3 (13.2) | <0.001 | 0.59 ** | −0.36 (−0.55, −0.17) | |
p-Values: t-test | 0.010 | 0.005 |
Measures and Correlation Coefficient (r) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Measures | Baseline BMI | Baseline EDE-QS | Baseline Binge Eating | Baseline K10 | Baseline PCS | Baseline MCS | Follow-Up BMI | Follow-Up EDEQS | Follow-Up Binge Eating | Follow-Up K10 | Follow-Up PCS | Follow-Up MCS | Follow-Up Weight Loss |
Gender (female/male) | −0.20 * | −0.13 | −0.10 | −0.22 * | −0.07 | 0.23 * | −0.21 * | −0.11 | −0.11 | −0.20 * | −0.09 | 0.23 * | |
Age (continuous) | −0.18 | −0.27 ** | −0.32 ** | −0.30 ** | −0.28 ** | 0.24 * | −0.26 ** | −0.08 | −0.10 | −0.14 | −0.21 * | 0.11 | |
Aboriginal | 0.24 * | 0.18 | 0.17 | 0.32 ** | 0.06 | −0.28 ** | 0.28 ** | 0.21 * | 0.16 | 0.28 ** | 0.13 | −0.26 * | |
Baseline BMI | - | 0.11 | 0.05 | 0.16 | −0.24 * | −0.07 | 0.91 ** | 0.09 | 0.04 | 0.15 | −0.05 | −0.04 | |
Baseline EDE-QS Global | 0.11 | - | - | 0.65 ** | −0.04 | −0.50 ** | 0.15 | 0.42 ** | - | 0.49 ** | −0.02 | −0.38 ** | |
Baseline binge eating | 0.05 | - | - | 0.48 ** | −0.01 | −0.23 * | 0.04 | - | 0.33 ** | 0.27 ** | 0.12 | −0.21 * | |
Baseline K10 | 0.16 | 0.65 ** | 0.48 ** | - | −0.10 | −0.78 ** | 0.20 * | 0.33 ** | 0.42 ** | 0.69 ** | −0.10 | −0.55 ** | |
Baseline PCS | −0.24 * | −0.04 | −0.01 | −0.10 | - | −0.19 * | −0.21 * | −0.16 | −0.03 | −0.18 | 0.54 ** | 0.05 | |
Baseline MCS | −0.07 | −0.50 ** | −0.23 * | −0.78 ** | −0.19 * | - | −0.14 | −0.28 ** | −0.28 ** | −0.62 ** | 0.07 | 0.59 ** | |
Follow-up BMI | - | 0.28 ** | 0.10 | 0.27 ** | −0.12 | −0.20 * | |||||||
Follow-up EDE-QS Global | 0.28 ** | - | - | 0.55 ** | −0.15 | −0.48 ** | −0.45 ** | ||||||
Follow-up binge eating | 0.10 | - | - | 0.45 ** | −0.02 | −0.43 ** | −0.14 | ||||||
Follow-up K10 | 0.27 ** | 0.55 ** | 0.45 ** | - | −0.20 * | −0.78 ** | −0.28 ** | ||||||
Follow-up PCS | −0.12 | −0.15 | −0.02 | −0.20 * | - | 0.06 | 0.14 | ||||||
Follow-up MCS | −0.20 * | −0.48 ** | −0.43 ** | −0.78 ** | 0.06 | - | 0.37 ** | ||||||
Follow-up weight loss | - | −0.45 ** | −0.14 | −0.28 ** | 0.14 | 0.37 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lam, A.; Piya, M.K.; Foroughi, N.; Mohsin, M.; Chimoriya, R.; Kormas, N.; Conti, J.; Hay, P. Predictors of Mental Health Outcomes in a Multidisciplinary Weight Management Program for Class 3 Obesity. Nutrients 2024, 16, 1068. https://doi.org/10.3390/nu16071068
Lam A, Piya MK, Foroughi N, Mohsin M, Chimoriya R, Kormas N, Conti J, Hay P. Predictors of Mental Health Outcomes in a Multidisciplinary Weight Management Program for Class 3 Obesity. Nutrients. 2024; 16(7):1068. https://doi.org/10.3390/nu16071068
Chicago/Turabian StyleLam, Ashley, Milan K. Piya, Nasim Foroughi, Mohammed Mohsin, Ritesh Chimoriya, Nic Kormas, Janet Conti, and Phillipa Hay. 2024. "Predictors of Mental Health Outcomes in a Multidisciplinary Weight Management Program for Class 3 Obesity" Nutrients 16, no. 7: 1068. https://doi.org/10.3390/nu16071068
APA StyleLam, A., Piya, M. K., Foroughi, N., Mohsin, M., Chimoriya, R., Kormas, N., Conti, J., & Hay, P. (2024). Predictors of Mental Health Outcomes in a Multidisciplinary Weight Management Program for Class 3 Obesity. Nutrients, 16(7), 1068. https://doi.org/10.3390/nu16071068