The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participant Recruitment
2.2. Study Design
2.3. Supplement Composition
2.4. Blood Sample Collection and Analysis
2.5. Treatment of Data and Statistical Analyses
3. Results
3.1. Temporal Pattern of Change in Ionised Calcium (iCa) Following Ingestion
3.2. Temporal Pattern of Change in Parathyroid Hormone (PTH) Following Ingestion
3.3. Temporal Change in C-Terminal Peptide of Type I Collagen (CTX) and Procollagen Type 1 Amino-Terminal Propeptide (P1NP) Following Ingestion
3.4. Temporal Change in Glucose-Dependent Insulinotropic Peptide (GIP) and Glucagon-like Peptide-1 (GLP-1) Following Ingestion
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; Declerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Chevalley, T. Bone health: Biology and nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B. Interaction of dietary calcium and protein in bone health in humans. J. Nutr. 2003, 133, 852S–854S. [Google Scholar] [CrossRef]
- Hone, M.; Nugent, A.P.; Walton, J.; McNulty, B.A.; Egan, B. Habitual protein intake, protein distribution patterns and dietary sources in Irish adults with stratification by sex and age. J. Hum. Nutr. Diet. 2020, 33, 465–476. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Agarwal, S.; Lieberman, H.R.; Fulgoni, V.L. Sources and Amounts of Animal, Dairy, and Plant Protein Intake of US Adults in 2007–2010. Nutrients 2015, 7, 7058–7069. [Google Scholar] [CrossRef]
- Heaney, R.P. Is the paradigm shifting? Bone 2003, 33, 457–465. [Google Scholar] [CrossRef]
- Reid, D.M.; New, S.A. Nutritional influences on bone mass. Proc. Nutr. Soc. 1997, 56, 977–987. [Google Scholar] [CrossRef]
- Pulses: Nutritious Seeds for a Sustainable Future; FAO: Rome, Italy, 2016; pp. 35–37. [CrossRef]
- Zenk, J.L.; Frestedt, J.L.; Kuskowski, M.A. Effect of Calcium Derived from Lithothamnion sp. on Markers of Calcium Metabolism in Premenopausal Women. J. Med. Food 2018, 21, 154–158. [Google Scholar] [CrossRef]
- Cashman, K.D. Calcium intake, calcium bioavailability and bone health. J. Nutr. 2002, 87 (Suppl. 2), S169–S177. [Google Scholar] [CrossRef]
- Zhong, Q.; Itokawa, T.; Sridhar, S.; Ding, K.H.; Xie, D.; Kang, B.; Bollag, W.B.; Bollag, R.J.; Hamrick, M.; Insogna, K.; et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E543–E548. [Google Scholar] [CrossRef] [PubMed]
- Stensen, S.; Gasbjerg, L.S.; Helsted, M.M.; Hartmann, B.; Christensen, M.B.; Knop, F.K. GIP and the gut-bone axis—Physiological, pathophysiological and potential therapeutic implications. Peptides 2020, 125, 170197. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.T.; Stevenson, E.J. Calcium co-ingestion augments postprandial glucose-dependent insulinotropic peptide(1–42), glucagon-like peptide-1 and insulin concentrations in humans. Eur. J. Nutr. 2014, 53, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2014, 105, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Dawson-Hughes, B.; Harris, S.S. Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. Am. J. Clin. Nutr. 2002, 75, 773–779. [Google Scholar] [CrossRef]
- Weaver, C.M. The growing years and prevention of osteoporosis in later life. Proc. Nutr. Soc. 2000, 59, 303–306. [Google Scholar] [CrossRef]
- British Nutrition Foundation. Calcium; British Nutrition Foundation: London, UK, 1989. [Google Scholar]
- Redmond, J.; Fulford, A.J.; Jarjou, L.; Zhou, B.; Prentice, A.; Schoenmakers, I. Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups. J. Clin. Endocrinol. Metab. 2016, 101, 3222–3230. [Google Scholar] [CrossRef]
- Qvist, P.; Christgau, S.; Pedersen, B.J.; Schlemmer, A.; Christiansen, C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): Effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 2002, 31, 57–61. [Google Scholar] [CrossRef]
- Pedersen, B.J.; Schlemmer, A.; Rosenquist, C.; Hassager, C.; Christiansen, C. Circadian rhythm in type I collagen formation in postmenopausal women with and without osteopenia. Osteoporos. Int. 1995, 5, 472–477. [Google Scholar] [CrossRef]
- Heaney, R.P. The bone remodeling transient: Interpreting interventions involving bone-related nutrients. Nutr. Rev. 2001, 59, 327–334. [Google Scholar] [CrossRef]
- Jensen, N.W.; Clemmensen, K.K.B.; Jensen, M.M.; Pedersen, H.; Færch, K.; Diaz, L.J.; Quist, J.S.; Størling, J. Associations between Postprandial Gut Hormones and Markers of Bone Remodeling. Nutrients 2021, 13, 3197. [Google Scholar] [CrossRef] [PubMed]
- Nissen, A.; Christensen, M.; Knop, F.K.; Vilsboll, T.; Holst, J.J.; Hartmann, B. Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J. Clin. Endocrinol. Metab. 2014, 99, E2325–E2329. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.B.; Lund, A.; Calanna, S.; Jørgensen, N.R.; Holst, J.J.; Vilsbøll, T.; Knop, F.K. Glucose-Dependent Insulinotropic Polypeptide (GIP) Inhibits Bone Resorption Independently of Insulin and Glycemia. J. Clin. Endocrinol. Metab. 2018, 103, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Amigo-Benavent, M.; Power-Grant, O.; FitzGerald, R.J.; Jakeman, P. The insulinotropic and incretin response to feeding a milk-based protein matrix in healthy young women. J. Funct. Foods 2020, 72, 1040–1056. [Google Scholar] [CrossRef]
- Muleya, M.; Bailey, E.F.; Bailey, E.H. A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Res. Int. 2024, 175, 11375. [Google Scholar] [CrossRef]
- Spencer, H.; Norris, C.; Osis, D. Further studies of the effect of zinc on intestinal absorption of calcium in man. J. Am. Coll. Nutr. 1992, 11, 561–566. [Google Scholar] [CrossRef]
- Wood, R.J.; Zheng, J.J. High dietary calcium intakes reduce zinc absorption and balance in humans. Am. J. Clin. Nutr. 1997, 65, 1803–1809. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2022, 14, 180. [Google Scholar] [CrossRef]
- Hettiarachchi, M.; Cooke, R.; Norton, C.; Jakeman, P. Temporal Change in Biomarkers of Bone Turnover Following Late Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix in Postmenopausal Women with Osteopenia. Nutrients 2019, 11, 1413. [Google Scholar] [CrossRef]
- Norton, C.; Hettiarachchi, M.; Cooke, R.; Kozior, M.; Kontro, H.; Daniel, R.; Jakeman, P. Effect of 24-Week, Late-Evening Ingestion of a Calcium-Fortified, Milk-Based Protein Matrix on Biomarkers of Bone Metabolism and Site-Specific Bone Mineral Density in Postmenopausal Women with Osteopenia. Nutrients 2022, 14, 3486. [Google Scholar] [CrossRef]
Mean | SD | |
---|---|---|
Age (year) | 26.5 | 4.4 |
Height (cm) | 173.1 | 9.6 |
Body mass (kg) | 72.5 | 14.0 |
Body mass index (kg·m−2) | 24.1 | 3.3 |
Fat mass (%) | 20.5 | 8.2 |
Fat-free mass (kg) | 57.2 | 9.7 |
Bone mass (kg) | 2.89 | 0.5 |
Aquamin F | Vicia faba L. | ||||
---|---|---|---|---|---|
g/100 g | mg/2.45 g | Mean | Range | ||
Calcium | 32.63 | 800 | g/kg body mass | 0.33 | |
Magnesium | 2.59 | 65 | Powder mass (g) | 30.9 | 19.8 |
Phosphorous | 0.044 | 1.1 | Protein mass (g) | 23.9 | 15.3 |
Zinc | 0.2 | 0.005 | Energy (kcal) | 117 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozior, M.; Demehin, O.A.; Ryan, M.M.; O’Connell, S.; Jakeman, P.M. The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults. Nutrients 2024, 16, 3110. https://doi.org/10.3390/nu16183110
Kozior M, Demehin OA, Ryan MM, O’Connell S, Jakeman PM. The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults. Nutrients. 2024; 16(18):3110. https://doi.org/10.3390/nu16183110
Chicago/Turabian StyleKozior, Marta, Olusoji Aboyeji Demehin, Michelle Mary Ryan, Shane O’Connell, and Philip Michael Jakeman. 2024. "The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults" Nutrients 16, no. 18: 3110. https://doi.org/10.3390/nu16183110
APA StyleKozior, M., Demehin, O. A., Ryan, M. M., O’Connell, S., & Jakeman, P. M. (2024). The Temporal Change in Ionised Calcium, Parathyroid Hormone and Bone Metabolism Following Ingestion of a Plant-Sourced Marine Mineral + Protein Isolate in Healthy Young Adults. Nutrients, 16(18), 3110. https://doi.org/10.3390/nu16183110