Analysis of Extracting Prior BRDF from MODIS BRDF Data
Abstract
:1. Introduction
2. Data and Methods
2.1. MODIS Products and Multi-Angular Observations
2.2. AFX and Archetypal BRDF Database
2.3. Proportion of Each BRDF Archetype Class
2.4. Fitting Archetypal BRDFs to Multi-Angular Observations
3. Results
3.1. Composition of Reflectance Anisotropy within IGBP Land Cover
3.1.1. Point Assessment
3.1.2. Spatial Assessment
3.1.3. Temporal and Spatial Assessment
3.2. Composition of Reflectance Anisotropy in 0.1-NDVI Intervals
3.3. Comparison of NBAR and NDVI Values
4. Discussion
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviation
AFX | Anisotropy Flat indeX |
BRDF | Bidirectional Reflectance Distribution Function |
ENF | Evergreen Needleleaf Forest |
IGBP | International Geosphere-Biosphere Program |
MF | Mixed Forest |
MISR | Multi-angle Imaging SpectroRadiometer |
MODIS | MODerate-resolution Imaging Spectroradiometer |
NBAR | Nadir BRDF-Adjusted Reflectance |
NDVI | Normalized Difference Vegetation Index |
NIR | Near-Infrared |
POLDER | POLarization and Directionality of the Earth’s Reflectances |
RTLSR | RossThick-LiSparse-Reciprocal |
SZA | Solar Zenith Angle |
References
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; US Department of Commerce: Washington, DC, USA, 1977.
- Jin, Y.; Gao, F.; Schaaf, C.B.; Li, X.; Strahler, A.H.; Bruegge, C.J.; Martonchik, V.J. Improving MODIS surface BRDF/Albedo retrieval with MISR multiangle observations. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1593–1604. [Google Scholar]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Roman, M.O.; Gatebe, C.K.; Yanmin, S.; Zhuosen, W.; Feng, G.; Masek, J.G.; He, T.; Liang, S.; Schaaf, C.B. Use of in situ and airborne multiangle data to assess MODIS- and Landsat-based estimates of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1393–1404. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo NADIR reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Strugnell, N.C.; Lucht, W. An algorithm to infer continental-scale albedo from AVHRR data, land cover class, and field observations of typical BRDFs. J. Clim. 2001, 14, 1360–1376. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Jiao, Z.; Woodcock, C.; Schaaf, C.B.; Tan, B.; Liu, J.; Gao, F.; Strahler, A.; Li, X.; Wang, J. Improving MODIS land cover classification by combining MODIS spectral and angular signatures in a Canadian boreal forest. Can. J. Remote Sens. 2011, 37, 184–203. [Google Scholar] [CrossRef]
- Jin, Y.; Schaaf, C.B.; Gao, F.; Li, X.; Strahler, A.H.; Lucht, W. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals: 1. Algorithm performance. J. Geophys. Res. Atmos. 2003, 108, 4158–4162. [Google Scholar] [CrossRef]
- Barnsley, M.J.; Strahler, A.H.; Morris, K.P.; Muller, J.P. Sampling the surface bidirectional reflectance distribution function (BRDF): Evaluation of current and future satellite sensors. Remote Sens. Rev. 1994, 8, 271–311. [Google Scholar] [CrossRef]
- Li, X.; Gao, F.; Wang, J.; Strahler, A. A priori knowledge accumulation and its application to linear BRDF model inversion. J. Geophys. Res. Atmos. 2001, 106, 11925–11935. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.Y.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Claverie, M. Intercomparison of Landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRAD network. Remote Sens. Environ. 2014, 152, 627–637. [Google Scholar] [CrossRef]
- Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.O.; Breon, F.M. Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Nino, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS-1 Symposium; Fraden, S.C., Marcanti, E.P., Becker, M.A., Eds.; Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Bacour, C.; Bréon, F.M. Variability of biome reflectance directional signatures as seen by POLDER. Remote Sens. Environ. 2005, 98, 80–95. [Google Scholar] [CrossRef]
- Jiao, Z.; Hill, M.J.; Schaaf, C.B.; Zhang, H.; Wang, Z.; Li, X. An Anisotropic Flat Index (AFX) to derive BRDF archetypes from MODIS. Remote Sens. Environ. 2014, 141, 168–187. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, Z.; Dong, Y.; Li, X. Evaluation of BRDF archetypes for representing surface reflectance anisotropy using MODIS BRDF data. Remote Sens. 2015, 7, 7826–7845. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, H.; Dong, Y.; Liu, Q.; Xiao, Q.; Li, X. An algorithm for retrieval of surface albedo from small view-angle airborne observations through the use of BRDF archetypes as prior knowledge. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Wanner, W.; Strahler, A.H.; Hu, B.; Lewis, P.; Muller, J.P.; Li, X.; Barker Schaaf, C.L. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res. Atmos. 1997, 102, 17143–17161. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, X. Effects of multiple view angles on the classification of forward-modeled MODIS reflectance. Can. J. Remote Sens. 2012, 38, 461–474. [Google Scholar]
- Morisette, J.T.; Privette, J.L.; Justice, C.O. A framework for the validation of MODIS Land products. Remote Sens. Environ. 2002, 83, 77–96. [Google Scholar] [CrossRef]
- Myneni, R.B.; Asrar, G.; Hall, F.G. A three-dimensional radiative transfer method for optical remote sensing of vegetated land surfaces. Remote Sens. Environ. 1992, 41, 105–121. [Google Scholar] [CrossRef]
- Ross, J.K. The Radiation Regime and Architecture of Plant Stands; Dr. W. Junk: Norwell, MA, USA, 1981. [Google Scholar]
- Li, X.; Strahler, A.H. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. A hotspot function in a simple bidirectional reflectance model for satellite applications. J. Geophys. Res. Atmos. 1997, 102, 25907–25913. [Google Scholar] [CrossRef]
- Qin, W.; Xiang, Y. On the hotspot effect of leaf canopies: Modeling study and influence of leaf shape. Remote Sens. Environ. 1994, 50, 95–106. [Google Scholar]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Jiao, Z.; Schaaf, C.B.; Dong, Y.; Román, M.; Hill, M.J.; Chen, J.M.; Wang, Z.; Zhang, H.; Saenz, E.; Poudyal, R.; et al. A method for improving hotspot directional signatures in BRDF models used for MODIS. Remote Sens. Environ. 2016, 186, 135–151. [Google Scholar] [CrossRef]
Band | Archetype Class | AFX Range | AFX | fiso | fvol | fgeo | Fiso | Fvol | Fgeo |
---|---|---|---|---|---|---|---|---|---|
Red | 1 | (0.382, 0.680] | 0.618 | 0.1424 | 0.0082 | 0.0406 | 0.5 | 0.0288 | 0.1426 |
2 | (0.680, 0.795] | 0.736 | 0.119 | 0.0305 | 0.027 | 0.5 | 0.1282 | 0.1134 | |
3 | (0.795, 0.899] | 0.843 | 0.1195 | 0.0485 | 0.0202 | 0.5 | 0.2029 | 0.0845 | |
4 | (0.899, 1.026] | 0.956 | 0.1324 | 0.0816 | 0.0155 | 0.5 | 0.3082 | 0.0585 | |
5 | (1.026, 1.240] | 1.107 | 0.0893 | 0.0862 | 0.0049 | 0.5 | 0.4826 | 0.0274 | |
6 | (1.240, 1.946] | 1.386 | 0.0396 | 0.086 | 0.0007 | 0.5 | 1.0859 | 0.0088 | |
NIR | 1 | (0.541, 0.804] | 0.744 | 0.3148 | 0.0767 | 0.069 | 0.5 | 0.1218 | 0.1096 |
2 | (0.804, 0.896] | 0.853 | 0.2995 | 0.1424 | 0.0515 | 0.5 | 0.2377 | 0.086 | |
3 | (0.896, 0.966] | 0.931 | 0.2829 | 0.1774 | 0.0384 | 0.5 | 0.3135 | 0.0679 | |
4 | (0.966, 1.042] | 1.002 | 0.2819 | 0.1985 | 0.0269 | 0.5 | 0.3521 | 0.0477 | |
5 | (1.042, 1.142] | 1.091 | 0.2763 | 0.2388 | 0.0145 | 0.5 | 0.4321 | 0.0262 | |
6 | (1.142, 1.361] | 1.203 | 0.2909 | 0.3291 | 0.0023 | 0.5 | 0.5657 | 0.004 |
Band | Number of Pixels | AFX1 | AFX2 | AFX3 | AFX4 | AFX5 | AFX6 |
---|---|---|---|---|---|---|---|
B1 | 4.6 × 107 | 19.1 | 16.4 | 14.4 | 14.0 | 19.1 | 17.0 |
B2 | 12.7 | 10.4 | 9.3 | 10.5 | 16.8 | 40.3 | |
B2 (B1∈AFX1) | 8.9 × 105 | 25.6 | 15.8 | 11.1 | 10.3 | 12.2 | 25.1 |
B2 (B1∈AFX5) | 8.8 × 105 | 7.9 | 7.4 | 7.6 | 9.7 | 19.2 | 48.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Jiao, Z.; Dong, Y.; Du, P.; Li, Y.; Lian, Y.; Cui, T. Analysis of Extracting Prior BRDF from MODIS BRDF Data. Remote Sens. 2016, 8, 1004. https://doi.org/10.3390/rs8121004
Zhang H, Jiao Z, Dong Y, Du P, Li Y, Lian Y, Cui T. Analysis of Extracting Prior BRDF from MODIS BRDF Data. Remote Sensing. 2016; 8(12):1004. https://doi.org/10.3390/rs8121004
Chicago/Turabian StyleZhang, Hu, Ziti Jiao, Yadong Dong, Peng Du, Yang Li, Yi Lian, and Tiejun Cui. 2016. "Analysis of Extracting Prior BRDF from MODIS BRDF Data" Remote Sensing 8, no. 12: 1004. https://doi.org/10.3390/rs8121004
APA StyleZhang, H., Jiao, Z., Dong, Y., Du, P., Li, Y., Lian, Y., & Cui, T. (2016). Analysis of Extracting Prior BRDF from MODIS BRDF Data. Remote Sensing, 8(12), 1004. https://doi.org/10.3390/rs8121004