Next Article in Journal
Using Ridge Regression Models to Estimate Grain Yield from Field Spectral Data in Bread Wheat (Triticum Aestivum L.) Grown under Three Water Regimes
Previous Article in Journal
Correlations between Urbanization and Vegetation Degradation across the World’s Metropolises Using DMSP/OLS Nighttime Light Data
Article Menu

Export Article

Open AccessArticle
Remote Sens. 2015, 7(2), 2089-2108;

Comparative Analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD Sensor Data for Grassland Monitoring Applications

International Institute for Earth System Science, Nanjing University, Nanjing 210093, China
Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in North-Western China of Ministry of Education, Ningxia University, Yinchuan 750021, China
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Author to whom correspondence should be addressed.
Academic Editors: Clement Atzberger and Prasad S. Thenkabail
Received: 27 October 2014 / Revised: 19 January 2015 / Accepted: 9 February 2015 / Published: 13 February 2015
Full-Text   |   PDF [12530 KB, uploaded 13 February 2015]   |  


The increasing number of Chinese sensor types used for terrestrial remote sensing has necessitated an additional effort to evaluate and standardize the data they acquire. In this study, we assessed the potential use of GF-1 WFV (Wild Field Camera), ZY-3 MUX (Multi-spectral camera), and HJ-1 CCD (Charge Coupled Device) sensor data for grassland monitoring by comparing spectral field measurements, vegetation coverage, and the leaf area index (LAI) of grassland stands with reflectance in the red and near-infrared bands and the Normalized Difference Vegetation Index (NDVI). Based on spectral field measurements, the characteristic differences of spectral response functions of the sensors were analyzed. Based on simulations using the SAIL bidirectional canopy reflectance model coupled with the PROSPECT leaf optical properties model (PROSAIL), we investigated the effects of changes in the sensors’ zenith angle caused by side sway. The following conclusions were drawn. (1) Differences in the adjusted coefficients of determination (R2) exist when comparing correlations between the reflectances from the three sensor types in different bands. The values of R2 are 0.556–0.893 and 0.819–0.850 for the infrared and red bands, respectively, and these data show a better correlation for the red band than for the infrared band. Fitted slope equations revealed inconsistencies in the data between the different sensor types. In the red band, GF-1 WFV and HJ-1 CCD data are the most consistent, but in the near-infrared band, GF-1 WFV and ZY-3 MUX data are the most consistent; (2) The correlation of NDVIs obtained from the different sensor types is high (R2 between 0.758 and 0.852); however, the consistency is low in that the NDVI based on GF-1 WFV data is significantly higher than that based on ZY-3 MUX and HJ-1 CCD data. In contrast, the mean difference is small between the NDVIs based on ZY-3 MUX and HJ-1 CCD; (3) Correlation analysis between ground grass-coverage and measured LAI data shows that the three sensor types are better at estimating coverage than the LAI, and that the GF-1 WFV sensor gave the best performance; (4) Changes in the sensors’ zenith angle caused by side sway were proven to have greater impact on reflectance and NDVI than the spectral response function; (5) For LAI values of 0–3, the NDVI changes significantly with increasing LAI, and differences between the three sensor types are obvious. For LAI > 3.5, the NDVI appears to experience a saturated tendency, which greatly reduces the differences between the sensors. View Full-Text
Keywords: GF-1 WFV; ZY-3 MUX; HJ-1 CCD; vegetation index; grassland monitoring; PROSAIL model GF-1 WFV; ZY-3 MUX; HJ-1 CCD; vegetation index; grassland monitoring; PROSAIL model

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Wang, L.; Yang, R.; Tian, Q.; Yang, Y.; Zhou, Y.; Sun, Y.; Mi, X. Comparative Analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD Sensor Data for Grassland Monitoring Applications. Remote Sens. 2015, 7, 2089-2108.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top