You are currently viewing a new version of our website. To view the old version click .
Remote Sensing
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

24 December 2025

Comparative Assessment of Eight Satellite Precipitation Products over the Complex Terrain of the Lower Yarlung Zangpo Basin: Performance Evaluation and Topographic Influence Analysis

,
,
,
,
,
and
1
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
2
The National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3
POWERCHINA Chengdu Engineering Corporation Limited, Chengdu 610072, China
*
Author to whom correspondence should be addressed.
Remote Sens.2026, 18(1), 63;https://doi.org/10.3390/rs18010063 
(registering DOI)

Abstract

Real-time precipitation monitoring through satellite remote sensing represents a critical technological frontier for operational hydrology in data-scarce mountainous regions. Following a comprehensive evaluation of reanalysis precipitation products in the downstream Yarlung Zangpo watershed, this investigation advances understanding by systematically assessing eight satellite-based precipitation retrieval algorithms against ground truth observations from 18 meteorological stations (2014–2022). Multi-temporal performance analysis employed statistical metrics including correlation analysis, root mean square error, mean absolute error, and bias assessment to characterize algorithm reliability across annual, monthly, and seasonal scales. Representative monthly spatial analysis (January, April, July) and comprehensive 12 month × 18 station heatmap visualization revealed pronounced seasonal performance variations and elevation-dependent error patterns. Satellite retrieval algorithms demonstrated systematic underestimation tendencies, with observational precipitation averaging 2358 mm/yr, substantially exceeding remote sensing estimates across six of eight products. IMERG_EarlyRun and IMERG_LateRun achieved optimal performance with annual correlation coefficients of 0.41/0.37 and minimal bias (relative bias: −3.0%/1.4%), substantially outperforming other products. Unexpectedly, IMERG_FinalRun exhibited severe deterioration (correlation: 0.37, relative bias: −73.8%) compared to Early/Late Run products despite comprehensive gauge adjustment, indicating critical limitations of statistical correction procedures in data-sparse mountainous environments. Temporal analysis revealed substantial year-to-year performance variability across all products, with algorithm accuracy strongly modulated by annual precipitation characteristics and underlying meteorological conditions. Station-level assessment demonstrated that 100% of stations showed underestimation for IMERG_FinalRun versus balanced patterns for IMERG_EarlyRun/LateRun (53% underestimation, 47% overestimation), confirming systematic gauge-adjustment failures. Supplementary terrain–precipitation analysis indicated GSMaP_MVK_G shows superior spatial pattern representation, while IMERG_LateRun excels in capturing temporal variations, suggesting multi-product integration strategies for comprehensive monitoring. Comparative assessment with previous reanalysis evaluation establishes that satellite products offer superior real-time availability but exhibit greater temporal variability compared to model-based approaches’ consistent performance. IMERG_EarlyRun and IMERG_LateRun are recommended for operational real-time applications, GSMaP_MVK_G for terrain-sensitive spatial analysis, and reanalysis products for seasonal assessment, while IMERG_FinalRun and FY2 require substantial improvement before deployment in high-altitude watershed management systems.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.