Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Mixing Layer Height
2.2. Calculation of Eddy Dissipation Rate Using Doppler Lidar
2.3. Calculation Eddy Dissipation Rate from Radiosonde
3. Estimated EDR Using Doppler Lidar Data and a Genetic Algorithm
3.1. Comparison of FFT Between Lidar and Sonde
3.2. Comparison of Eddy Dissipation Rates Inside and Outside the Boundary Layer
3.3. Using the Improved Method to Obtain EDR
- Select data: choose 30 min of vertical wind-field data at a specific altitude.
- FFT processing: perform an FFT using the Welch FFT method with a window size of 50 samples, approximately corresponding to 65 s at a sampling interval of about 1.3 s (subject to slight variations in the data).
- Denoising: denoise the spectrum by averaging the 10 highest frequency points. This step is critical as noise near the 0.1 Hz end could otherwise skew the results, especially in scenarios where low-frequency signals are obscured by background noise.
- Adaptive fitting: Finally, employ an adaptive fitting approach using genetic algorithms to pinpoint the frequency range that yields the minimal fitting error. This method allows for dynamic adjustment to identify the most suitable frequency range for the −5/3 slope, enhancing the robustness and accuracy of the EDR calculation. Genetic algorithms are optimization techniques inspired by natural selection processes, utilizing operations such as selection, crossover, and mutation to evolve solutions to complex problems [41,42]. This paper employs genetic algorithms to identify the optimal frequency range that minimizes the mean absolute error (MAE) of the −5/3 slope in the FFT frequency spectrum.
- Repeat the Process: Repeat these steps for all heights and time intervals to ensure comprehensive data analysis.
4. Statistical Analysis of EDR Results
4.1. Daily Evolution of Eddy Dissipation Rate with MLH
4.2. EDR Evolution in the Presence of Lower Lever Jet
4.3. Variation of EDR with Altitude in Different Seasons at Different Boundary-Layer Development Stages
5. Comparison of EDR Between Airborne Doppler Lidar and ARM SGP Doppler Lidar
5.1. Comparison of Vertical Wind Fields Between ADL and SGP Sites
5.2. Comparison of EDR Between ADL and SGP Sites
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Travouillon, T.; Ashley, M.C.B.; Burton, M.G.; Storey, J.W.V.; Loewenstein, R.F. Atmospheric turbulence at the South Pole and its implications for astronomy. Astron. Astrophys. 2017, 400, 1163–1172. [Google Scholar] [CrossRef]
- Mizuno, S.; Ohba, H.; Ito, K. Machine learning-based turbulence-risk prediction method for the safe operation of aircrafts. J. Big Data 2022, 9, 29. [Google Scholar] [CrossRef]
- Arnon, S. Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Opt. Lett. 2003, 28, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Jabczyński, J.K.; Gontar, P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems. Def. Technol. 2021, 17, 1160–1167. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Y.; Peng, T.; Wan, X.; Huang, X.; Wang, Y.; Xu, D. Investigating wind characteristics and temporal variations in the lower troposphere over the northeastern Qinghai–Tibet Plateau using a Doppler LiDAR. Remote Sens. 2024, 16, 1840. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Wei, W.; Wu, B.; Cai, X.; Song, Y. Effects of turbulence structure and urbanization on the heavy haze pollution process. Atmos. Chem. Phys. 2019, 19, 1041–1057. [Google Scholar] [CrossRef]
- Holland, W.R.; McWilliams, J.C. Computer modeling in physical oceanography from the global circulation to turbulence. Phys. Today 1987, 40, 51–57. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Lee, E.H.; Lee, E.; Park, R.; Kwon, Y.C.; Hong, S.Y. Impact of turbulent mixing in the stratocumulus-topped boundary layer on numerical weather prediction. Asia-Pac. J. Atmos. Sci. 2018, 54, 371–384. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Optis, M. Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain? Geosci. Model Dev. 2020, 13, 4271–4285. [Google Scholar] [CrossRef]
- Tennekes, H.; John, L.L. A First Course in Turbulence; MIT press: Cambridge, MA, USA, 1972. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds Numbers. Dokl. Akad. Nauk. SSSR 1941, 30, 301. [Google Scholar]
- Lin, G.; Wang, Z.; Chu, Y.; Ziegler, C.L.; Hu, X.-M.; Xue, M.; Geerts, B.; Paleri, S.; Desai, A.R.; Yang, K.; et al. Airborne measurements of scale-dependent latent heat flux impacted by water vapor and vertical velocity over heterogeneous land surfaces during the CHEESEHEAD19 campaign. J. Geophys. Res. Atmos. 2024, 129, e2023JD039586. [Google Scholar] [CrossRef]
- Dudhia, J. A history of mesoscale model development. Asia-Pac. J. Atmos. Sci. 2014, 50, 121–131. [Google Scholar]
- Dudhia, J.; Berg, L.K.; Liu, Y.; Yang, B.; Qian, Y.; Olson, J.; Pekour, M.; Hou, Z. Sensitivity of turbine-height wind speeds to parameters in the planetary boundary-layer parametrization used in the Weather Research and Forecasting model: Extension to wintertime conditions. Bound.-Layer Meteor. 2019, 170, 507–518. [Google Scholar]
- Yang, B.; Qian, Y.; Berg, L.K.; Ma, P.L.; Wharton, S.; Bulaevskaya, V.; Shaw, W.J. Sensitivity of turbine-height wind speeds to parameters in planetary boundary-layer and surface-layer schemes in the weather research and forecasting model. Bound.-Layer Meteor. 2017, 162, 117–142. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn. 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); NCAR Technical Notes; NCAR: Boulder, CO, USA, 1994. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Huang, X.Y. A Description of the Advanced Research WRF Version 4; NCAR Technical Notes; NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Zhang, J.A.; Drennan, W.M.; Black, P.G.; French, J.R. Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci. 2009, 66, 2455–2467. [Google Scholar] [CrossRef]
- Sarakinos, S.; Busse, A. Investigation of rough-wall turbulence over barnacle roughness with increasing solidity using direct numerical simulations. Phys. Rev. Fluids. 2022, 7, 064602. [Google Scholar] [CrossRef]
- Kenjereš, S.; Kuile, B. Modelling and simulations of turbulent flows in urban areas with vegetation. J. Wind Eng. Ind. Aerodyn. 2013, 123, 43–55. [Google Scholar] [CrossRef]
- O’Connor, E.J.; Illingworth, A.J.; Brooks, I.M.; Westbrook, C.D.; Hogan, R.J.; Davies, F.; Brooks, B.J. A method for estimating the turbulent kinetic energy dissipation rate from a vertically pointing Doppler lidar, and independent evaluation from balloon-borne in situ measurements. J. Atmos. Oceanic Technol. 2010, 27, 1652–1664. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Mirocha, J.; van Beeck, J. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteor. 2014, 153, 409–440. [Google Scholar] [CrossRef]
- Freire, L.S.; Dias, N.L.; Chamecki, M. Effects of path averaging in a sonic anemometer on the estimation of turbulence-kinetic-energy dissipation rates. Bound.-Layer Meteor. 2019, 173, 99–113. [Google Scholar] [CrossRef]
- Peña, A.; Mirocha, J.D. One-year-long turbulence measurements and modeling using large-eddy simulation domains in the Weather Research and Forecasting model. Appl. Energy. 2024, 363, 123069. [Google Scholar] [CrossRef]
- Wildmann, N.; Bodini, N.; Lundquist, J.K.; Bariteau, L.; Wagner, J. Estimation of turbulence dissipation rate from Doppler wind lidars and in situ instrumentation for the Perdigão 2017 campaign. Atmos. Meas. Tech. 2019, 12, 6401–6423. [Google Scholar] [CrossRef]
- Smalikho, I.; Köpp, F.; Rahm, S. Measurement of atmospheric turbulence by 2-μm Doppler lidar. J. Atmos. Oceanic Technol. 2005, 22, 1733–1747. [Google Scholar] [CrossRef]
- McCaffrey, K.; Bianco, L.; Wilczak, J.M. Improved observations of turbulence dissipation rates from wind profiling radars. Atmos. Meas. Tech. 2017, 10, 2595–2611. [Google Scholar] [CrossRef]
- Jiang, P.; Yuan, J.; Wu, K.; Wang, L.; Xia, H. Turbulence detection in the atmospheric boundary layer using coherent Doppler wind lidar and microwave radiometer. Remote Sens. 2022, 14, 2951. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Sharman, R.D.; Lundquist, J.K. Turbulence dissipation rate in the atmospheric boundary layer: Observations and WRF mesoscale modeling during the XPIA field campaign. Mon. Weather Rev. 2018, 146, 351–371. [Google Scholar] [CrossRef]
- Chu, Y.F.; Liu, D.; Wang, Z.Z. Basic principle and technical progress of Doppler wind lidar. Chin. J. Quantum Electron. 2020, 37, 580. [Google Scholar]
- Rajput, A.; Singh, N.; Singh, J.; Rastogi, S. Insights of boundary layer turbulence over the complex terrain of Central Himalaya from GVAX field campaign. Asia-Pac. J. Atmos. Sci. 2024, 60, 143–164. [Google Scholar] [CrossRef]
- Beu, C.M.; Landulfo, E. Turbulence Kinetic Energy Dissipation Rate Estimate for a Low-Level Jet with Doppler Lidar Data: A Case Study. Earth Interact. 2022, 26, 112–121. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Krishnamurthy, R.; Pekour, M.; Berg, L.K.; Choukulkar, A. Spatial and temporal variability of turbulence dissipation rate in complex terrain. Atmos. Chem. Phys. 2019, 19, 4367–4382. [Google Scholar] [CrossRef]
- Sisterson, D.L.; Peppler, R.A.; Cress, T.S.; Lamb, P.J.; Turner, D.D. The ARM southern great plains (SGP) site. Meteor. Monogr. 2016, 57, 6.1–6.14. [Google Scholar] [CrossRef]
- Newsom, R.K.; Krishnamurthy, R. Doppler Lidar (DL) Instrument Handbook (No. DOE/SC-ARM/TR-101); DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Cambridge, UK, 2022. [Google Scholar]
- Chu, Y.; Wang, Z.; Xue, L.; Deng, M.; Lin, G.; Xie, H.; Wang, Y. Characterizing warm atmospheric boundary layer over land by combining Raman and Doppler lidar measurements. Opt. Express 2022, 30, 11892–11911. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Newsom, R.K. Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos. Meas. Tech. 2018, 11, 4291–4308. [Google Scholar] [CrossRef]
- Li, Q.; Rapp, M.; Schrön, A.; Schneider, A.; Stober, G. Derivation of turbulent energy dissipation rate with the Middle Atmosphere Alomar Radar System (MAARSY) and radiosondes at Andøya, Norway. Ann. Geophys. 2016, 34, 1209–1229. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1st ed.; MIT Press: Cambridge, MA, USA, 1992; 228p. [Google Scholar]
- Li, Y.; Hu, H.; Wang, Q. Non-dominated sorting genetic algorithm II (NSGA2)-based parameter optimization of the MSMGWB model used in remote infrared sensing prediction for hot combustion gas plume. Remote Sens. 2024, 16, 3116. [Google Scholar] [CrossRef]
- Gasch, P.; Kasic, J.; Maas, O.; Wang, Z. Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow—An LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems. Atmos. Meas. Tech. 2023, 16, 5495–5523. [Google Scholar] [CrossRef]
- Souprayen, C.; Vanneste, J.; Hertzog, A.; Hauchecorne, A. Atmospheric gravity wave spectra: A stochastic approach. J. Geophys. Res. Atmos. 2001, 106, 24071–24086. [Google Scholar] [CrossRef]
- Shin, H.H.; Xue, L.; Li, W.; Firl, G.; D’Amico, D.F.; Muñoz-Esparza, D.; Vogelmann, A.M. Large-scale forcing impact on the development of shallow convective clouds revealed from LASSO large-eddy simulations. J. Geophys. Res. Atmos. 2021, 126, e2021JD035208. [Google Scholar] [CrossRef]
Parameters | SGP | PBLMAPS |
---|---|---|
Lidar model | Stream Line Pro | ADL |
Nyquist velocity (B) | ±19.4 m/s | ±80 m/s |
Points per range gate (M) | 10 | 10 |
Range gate resolution | 30 m | 18 to 90 m |
frequency | 15 k | 10 k |
Vertical wind | sgpdlfptC1.b1 sgpdlfptE37.b1 | vertical wind, resolution 1–3 s |
Horizontal wind | sgpdlprofwind4newsC1.c1 | / |
Radiosonde | sgppblhtsonde1mcfarlC1.s1 | / |
C1 coordinates | 36.6073°N, 97.4876°W | / |
E32 coordinates | 36.3104°N, 97.9274°W | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.; Lin, G.; Deng, M.; Wang, Z. Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar. Remote Sens. 2025, 17, 1652. https://doi.org/10.3390/rs17091652
Chu Y, Lin G, Deng M, Wang Z. Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar. Remote Sensing. 2025; 17(9):1652. https://doi.org/10.3390/rs17091652
Chicago/Turabian StyleChu, Yufei, Guo Lin, Min Deng, and Zhien Wang. 2025. "Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar" Remote Sensing 17, no. 9: 1652. https://doi.org/10.3390/rs17091652
APA StyleChu, Y., Lin, G., Deng, M., & Wang, Z. (2025). Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar. Remote Sensing, 17(9), 1652. https://doi.org/10.3390/rs17091652