Review of Research on Satellite Clock Bias Prediction Models in GNSS
Abstract
Highlights
- This review systematically summarizes and compares both classical and AI-based satellite clock bias prediction models, providing a comprehensive reference for model selection in real-time high-precision GNSS applications.
- We propose generalized modeling frameworks for classical and AI-driven approaches and analyze error sources from systematic, data, and applicability perspectives to enhance prediction robustness.
- This review identifies that AI models (e.g., LSTM, Transformer) outperform in complex nonlinear scenarios, whereas classical models (e.g., polynomial, Kalman) excel under short-term or stable conditions.
- We outline promising research directions including multi-source data fusion, integration of short- and long-term prediction, and enhanced model generalizability to advance next-generation GNSS timing services.
Abstract
1. Introduction
2. Model Error Analysis
3. Classical Prediction Models
3.1. Polynomial Model
3.2. Grey Model
3.3. Kalman Filter Model
3.4. Autoregressive Integrated Moving Average Model
3.5. Summary of Classical Models
4. Artificial Intelligence Prediction Models
4.1. ML-Based Models
4.2. MLP-Based Models
4.3. RNN-Based Models
4.4. Transformer-Based Models
4.5. Summary of AI Models
5. Conclusions
- Multi-source data fusion and processing
- 2.
- Integration of short-term and long-term prediction
- 3.
- Improving model generalization capability and robustness
- 4.
- Emphasizing real-time performance and computational efficiency
- 5.
- Innovating deep learning model architectures
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadas, T.; Kazmierski, K.; Kudłacik, I.; Marut, G.; Madraszek, S. Galileo High Accuracy Service in Real-Time PNT, Geoscience and Monitoring Applications. IEEE Geosci. Remote Sens. Lett. 2024, 21, 8000905. [Google Scholar] [CrossRef]
- Sun, R.; Yang, Y.; Chiang, K.-W.; Duong, T.-T.; Lin, K.-Y.; Tsai, G.-J. Robust IMU/GPS/VO Integration for Vehicle Navigation in GNSS Degraded Urban Areas. IEEE Sens. J. 2020, 20, 10110–10122. [Google Scholar] [CrossRef]
- Lutwak, R. Micro-Technology for Positioning, Navigation, and Timing towards PNT Everywhere and Always. In Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (INERTIAL), Laguna Beach, CA, USA, 25–26 February 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Iannucci, P.A.; Humphreys, T.E. Economical Fused LEO GNSS. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 426–443. [Google Scholar] [CrossRef]
- Zhai, W.; Wu, J.; Sun, C. Real Time Precision Clock Difference Determination and Accuracy Evaluation Based on iGMAS/IGS Orbit. In Proceedings of the 9th China Satellite Navigation Conference (CSNC), Harbin, China, 23–25 May 2018; pp. 5, 31–35. [Google Scholar]
- Breakiron, L.A.; Smith, A.L.; Fonville, B.C.; Powers, E.; Matsakis, D.N. The Accuracy of Two-Way Satellite Time Transfer Calibrations. In Proceedings of the 36th Annual Precise Time and Time Interval Systems and Applications Meeting, Washington, DC, USA, 7–9 December 2004. [Google Scholar]
- Yang, Y.; Mao, Y.; Sun, B. Basic Performance and Future Developments of BeiDou Global Navigation Satellite System. Satell. Navig. 2020, 1, 1. [Google Scholar] [CrossRef]
- Syam, W.P.; Priyadarshi, S.; Roqué, A.A.G.; Conesa, A.P.; Buscarlet, G.; Orso, M.D. Transformer Deep Learning for Accurate Orbit Corrections in Real-Time. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023; pp. 159–174. [Google Scholar] [CrossRef]
- Chen, Q.; Yi, T. Brief analysis on global four major navigation satellite systems. J. Navig. Position. 2020, 8, 115–120. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)–Achievements, Prospects and Challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Nie, Z.; Gao, Y.; Wang, Z.; Ji, S.; Yang, H. An Approach to GPS Clock Prediction for Real-Time PPP during Outages of RTS Stream. GPS Solut. 2017, 22, 14. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise Orbit Determination for Quad-Constellation Satellites at Wuhan University: Strategy, Result Validation, and Comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Yin, Q.; Lou, Y.; Yi, W. Comparison and analysis of igs real-time products. J. Geod. Geodyn. 2012, 32, 1671–5942. [Google Scholar]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of Precise Orbit and Clock Products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 2017, 21, 279–290. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, G.; Fu, W.; Chen, X. A Real-Time Linear Prediction Algorithm for Detecting Abnormal BDS-2/BDS-3 Satellite Clock Offsets. Remote Sens. 2023, 15, 1831. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, J.; Leung, H.; Ma, K.F.; Wang, W. A Review of Deep Learning Models for Time Series Prediction. IEEE Sens. J. 2021, 21, 7833–7848. [Google Scholar] [CrossRef]
- Hassan, T.; Hassan, A. Employing artificial intelligence in Galileo orbital error prediction for real-time offline positioning. GPS Solut. 2025, 29, 135. [Google Scholar] [CrossRef]
- Mei, G.; Zhao, F.; Qi, F.; Zhong, D.; An, S. Characteristics of the space-borne rubidium atomic clocks for the BeiDou III navigation satellite system. Sci. Sin.-Phys. Mech. Astron. 2021, 51, 118–124. [Google Scholar] [CrossRef]
- Zhang, H.; JU, B.; GU, D.; Liu, Y. Precise orbit determination for TH02-02 satellites based on BDS3 and GPS observations. Chin. J. Aeronaut. 2023, 36, 475–485. [Google Scholar] [CrossRef]
- Jiao, Y.; Kou, Y. Analysis, modeling and simulation of GPS satellite clock errors. Sci. Sin. Phys. Mech. Astron. 2011, 41, 596. [Google Scholar] [CrossRef]
- Liu, L.; Du, L.; Zhu, L.; Han, C. Satellite clock parameter short-term prediction using piece-wise adaptive filter with state noise compensation. In China Satellite Navigation Conference (CSNC) 2012 Proceedings, Proceedings of the CSNC2012, Guanzhou, China, 15–19 May 2012; Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 160, pp. 527–538. [Google Scholar] [CrossRef]
- Xie, X. Precise Orbit and Clock Determination for BDS-3 Satellites Using Inter-Satellite Link Observations. Ph.D. Dissertation, Wuhan University, Wuhan, China, 2020. [Google Scholar] [CrossRef]
- Ding, S.; Yang, H.; Yang, X.; Zhang, Z. Influence of the second-order ionospheric delay on GPS PPP time transfer. Xi’an Dianzi Keji Daxue Xuebao/J. Xidian Univ. 2021, 48, 50–56, 82. [Google Scholar] [CrossRef]
- Han, S.C.; Kwon, J.H.; Jekeli, C. Accurate Absolute GPS Positioning through Satellite Clock Error Estimation. J. Geod. 2001, 75, 33–43. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, S.; Wu, W. Research on Time Scale Algorithm Based on Hydrogen Masers. IEEE Instrum. Meas. Mag. 2020, 23, 35–40. [Google Scholar] [CrossRef]
- Panfilo, G.; Tavella, P. Atomic Clock Prediction Based on Stochastic Differential Equations. Metrologia 2008, 45, S108–S116. [Google Scholar] [CrossRef]
- Allan, D.W.; Levine, J. A Historical Perspective on the Development of the Allan Variances and Their Strengths and Weaknesses. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2016, 63, 513–519. [Google Scholar] [CrossRef]
- Lei, Y.; Cai, H.; Zhao, D. A Novel Method for Satellite Clock Bias Prediction Based on Phase Space Reconstruction and Gaussian Processes. Acta Metrol. Sin. 2016, 37, 318–322. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z.; Wang, N.; Li, L. Prediction of Navigation Satellite Clock Bias Considering Clock’s Stochastic Variation Behavior with Robust Least Square Collocation. Acta Geod. Cartogr. Sin. 2016, 45, 646–655. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, Y. Satellite Clock Error Prediction of Improved Polynomial and Periodic Model. GNSS World China 2018, 43, 91–95. [Google Scholar] [CrossRef]
- Liang, Y.; Ren, C.; Yang, X.; Pang, G.; Lan, L. A Grey Model Based on First Differences in the Application of Satellite Clock Bias Prediction. Chin. Astron. Astrophys. 2016, 40, 79–93. [Google Scholar] [CrossRef]
- Mei, C.; Huang, H.; Jiang, K.; Xia, L.; Pan, X. Application of Discrete Grey Model Based on Stepwise Ratio Sequence in the Satellite Clock Offset Prediction. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1154–1160. [Google Scholar] [CrossRef]
- Jiang, Y. Application research of GM(1,1) model of power function transform in BDS satellite clock bias prediction. GNSS World China 2020, 45, 49–54. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.; Li, X.; Xiao, B. Prediction Method of Satellite Clock Bias Based on Grey Model of First-order Difference of Vondrfik Filter. Acta Astron. Sin. 2018, 59, 75–84. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, X.; Chen, Y. Improved Grey Model and Application in Real-Time GPS Satellite Clock Bias Prediction. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 2, pp. 419–423. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, M.; Duan, T.; Wang, C.; Hu, R. Enhancing Satellite Clock Bias Prediction Accuracy in the Case of Jumps with an Improved Grey Model. Math. Probl. Eng. 2020, 2020, 81–86. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, M.; Duan, T.; Wang, C.; Hu, R. Satellite clock bias prediction based on particle swarm optimization and weighted grey regression combined model. J. Harbin Inst. Technol. 2020, 52, 144–151, 182. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Liu, J.; Wu, W.; Liu, Z. Predicting Satellite Clock Errors Using Grey Model Optimizedby Adaptive TS-IPSO. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 854–859. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Xu, X. Application of L-M Algorithm Optimized Gray Model in GPS Satellite Clock Error Predication. J. Henan Polytech. Univ. 2020, 39, 47–52. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, J.; Zhang, Z.; Wei, S. BDS Clock Error Prediction Based on SAFA-FDGM(1,1) Model. J. Geod. Geodyn. 2021, 41, 672–675. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Z.; Chen, M.; Yang, W. Application and Accuracy Analysis of Dynamic Grey Model in Satellite Clock Error Prediction. Explor. Sci. Technol. 2016, 1, 23–25, 36. [Google Scholar] [CrossRef]
- Tan, X.; Xu, J.; Li, F.; Wu, M.; Chen, D.; Liang, Y. Improved GM (1,1) Model by Optimizing Initial Condition to Predict Satellite Clock Bias. Math. Probl. Eng. 2022, 2022, 3895884. [Google Scholar] [CrossRef]
- Davis, J.; Greenhall, C.; Stacey, P. A Kalman filter clock algorithm for use in the presence of flicker frequency modulation noise. Metrologia 2005, 42, 1–10. [Google Scholar] [CrossRef]
- Greenhall, C. Forming stable timescales from the Jones-Tryon Kalman filter. Metrologia 2003, 40, S335–S341. [Google Scholar] [CrossRef]
- Guo, H. Study on the Analysis Theories and Algorithms of the Time and Frequency Characterization for Atomic Clocks of Navi-gation Satellites. Ph.D. Dissertation, PLA Information Engineering University, Zhengzhou, China, 2006. [Google Scholar]
- Guo, H.; Yang, Y.; He, H.; Xu, T. Determination of Covariance Matrix of Kalman Filter Used for Time Prediction of Atomic Clocks of Navigation Satellites. Acta Geod. Cartogr. Sin. 2010, 39, 146–150. [Google Scholar]
- Howe, D.; Beard, R.; Greenhall, C.; Vernotte, F.; Riley, B. A Total Estimator of the Hadamard Function Used for GPS Operations. In Proceedings of the 32nd Annual Precise Time and Time Interval (PTTI) Meeting, Reston, VA, USA, 28–30 November 2000. [Google Scholar]
- Hutseil, T. Relating the hadamard variance to MCS kalman filter clock estimation. In Proceedings of the 27th Annual Precise Time and Time Interval Systems and Applications Meeting, San Diego, CA, USA, 1–29 November 1995. [Google Scholar]
- Davis, J.; Bhattarai, S.; Ziebart, M. Development of a Kalman Filter Based GPS Satellite Clock Time-Offset Prediction Algorithm. In Proceedings of the 2012 European Frequency and Time Forum, Gothenburg, Sweden, 23–27 April 2012; pp. 152–156. [Google Scholar] [CrossRef]
- Pihlajasalo, J.; Leppäkoski, H.; Kuismanen, S.; Ali-Löytty, S.; Piché, R. Methods for Long-Term GNSS Clock Offset Prediction. In Proceedings of the 2019 International Conference on Localization and GNSS (ICL-GNSS), Nuremberg, Germany, 4–6 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Pratt, J.; Axelrad, P.; Larson, K.M.; Lesage, B.; Gerren, R.; DiOrio, N. Satellite Clock Bias Estimation for iGPS. GPS Solut. 2013, 17, 381–389. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, L. Improved Kalman filter for the rubidium atomic clock error prediction. J. Xi’an Univ. Posts Telecommun. 2019, 24, 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; He, Z.; Yang, H. Clock Bias Prediction Based on Linear Weighted Combination Kalman Filter. Acta Astron. Sin. 2012, 53, 213–221. [Google Scholar] [CrossRef]
- Qafisheh, M.; Martín, A.; Capilla, R.M.; Anquela, A.B. SVR and ARIMA Models as Machine Learning Solutions for Solving the Latency Problem in Real-Time Clock Corrections. GPS Solut. 2022, 26, 85. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, C.; Song, S.; Chen, Q.; Liu, Z. Characteristic Analysis and Short-Term Prediction of GPS/BDS Satellite Clock Correction. In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume III, Proceedings of the CSNC2016, Changsha, China, 18–20 May 2016; Springer Nature: Berlin/Heidelberg, Germany, 2016; Volume 390, pp. 187–200. [Google Scholar] [CrossRef]
- Jiang, S.; Li, B. Application of ARIMA Model in Short-Term Satellite Clock Error Prediction. J. Navig. Position. 2019, 7, 118–124. [Google Scholar] [CrossRef]
- Yan, K.; Chang, G.; Zhou, T.; Zhao, Z. Sparse auto-regressive modeling for satellite clock offsets prediction. Hydrogr. Surv. Charting 2021, 41, 28–32, 37. [Google Scholar] [CrossRef]
- González, S.G. Advanced ARIMA Model for Clock Bias Prediction. Master’s Thesis, Technical University of Madrid, Madrid, Spain, 2018. [Google Scholar]
- Kim, M.; Kim, J. Predicting IGS RTS Corrections Using ARMA Neural Networks. Math. Probl. Eng. 2015, 2015, 851761. [Google Scholar] [CrossRef]
- Han, S.; Zhang, G.; Zhang, N.; Zhu, J. New algorithm for detecting AO outliers in AR model and its application in the prediction of GPS satellite clock errors. Acta Geod. Cartogr. Sin. 2019, 48, 1225–1235. [Google Scholar] [CrossRef]
- Ma, Z.; Li, G.; Zhang, Q.; Li, X. Likelihood Ratio Method for Outlier Detection and Estimation in BeiDou Satellite Clock Offset. J. Geomat. Sci. Technol. 2019, 36, 221–226. [Google Scholar] [CrossRef]
- Zhang, G.; Han, S.; Ye, J.; Hao, R.; Zhang, J.; Li, X.; Jia, K. A Method for Precisely Predicting Satellite Clock Bias Based on Robust Fitting of ARMA Models. GPS Solut. 2022, 26, 3. [Google Scholar] [CrossRef]
- Xiao, Y.; Tang, S. Short-term prediction of satellite clock bias based on PSO-SVM refined QP model. J. Guilin Univ. Technol. 2019, 39, 893–898. [Google Scholar] [CrossRef]
- He, L.; Zhou, H.; Liu, Z.; Wen, Y.; He, X. Improving Clock Prediction Algorithm for BDS-2/3 Satellites Based on LS-SVM Method. Remote Sens. 2019, 11, 2554. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Gao, Y.; Zhang, J.; Wang, S. Hydrogen Atomic Clock Difference Prediction Based on the LSSVM. J. Eng. 2019, 2019, 9017–9021. [Google Scholar] [CrossRef]
- He, L.; Zhou, H.; Zhu, S.; Zeng, P. An Improved QZSS Satellite Clock Offsets Prediction Based on the Extreme Learning Machine Method. IEEE Access 2020, 8, 156557–156568. [Google Scholar] [CrossRef]
- Lei, Y.; Guo, J. A network structure design method for ELM and its application to prediction of satellite clock bias. J. Time Freq. 2015, 38, 209–215. [Google Scholar] [CrossRef]
- Ya, S.; Zhao, X.; Liu, C.; Chen, J.; Liu, C. Improved BDS-2/3 Satellite Ultra-Fast Clock Bias Prediction Based with the SSA-ELM Model. Sensors 2023, 23, 2453. [Google Scholar] [CrossRef]
- Sun, W.; Zou, Y. Short Term Load Forecasting Based on BP Neural Network Trained by PSO. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 5, pp. 2863–2868. [Google Scholar] [CrossRef]
- Du, L.; Chen, H.; Yuan, Y.; Song, L.; Meng, X. Global Navigation Satellite System Receiver Positioning in Harsh Environments via Clock Bias Prediction by Empirical Mode Decomposition and Back Propagation Neural Network Method. Sensors 2024, 24, 2342. [Google Scholar] [CrossRef]
- Sun, P.; Wei, D.; Sun, B. Genetic Algorithm Optimization in the Prediction of Satellite Clock Bias by BP Neural Network. Acta Astron. Sin. 2020, 61, 92–104. [Google Scholar] [CrossRef]
- Lv, D.; Ou, J.; Yu, S. Prediction of the satellite clock bias based on MEA-BP neural network. Acta Geod. Cartogr. Sin. 2020, 49, 993–1003. [Google Scholar] [CrossRef]
- Bai, H.; Cao, Q.; An, S. Mind Evolutionary Algorithm Optimization in the Prediction of Satellite Clock Bias Using the Back Propagation Neural Network. Sci. Rep. 2023, 13, 2095. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Wu, D.; Lei, Y. Neural Network Satellite Clock Bias Prediction Based on the Whale Optimization Algorithm. Adv. Nat. Comput. Fuzzy Syst. Knowl. Discov. 2022, 89, 1152–1160. [Google Scholar] [CrossRef]
- Ya, S.; Zhao, X.; Liu, C.; Chen, J.; Liu, C.; Hu, H. Enhancing Short-Term Prediction of BDS-3 Satellite Clock Bias Based with BSO Optimized BP Neural Network. Int. J. Aerosp. Eng. 2022, 2022, 1–18. [Google Scholar] [CrossRef]
- Lv, D.; Liu, G.; Ou, J.; Wang, S.; Gao, M. Prediction of GPS Satellite Clock Offset Based on an Improved Particle Swarm Algorithm Optimized BP Neural Network. Remote Sens. 2022, 14, 2407. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Qu, Y.; Li, L.; Wang, N. Improving Prediction Performance of GPS Satellite Clock Bias Based on Wavelet Neural Network. GPS Solut. 2017, 21, 523–534. [Google Scholar] [CrossRef]
- Wang, X.; Chai, H.; Wang, C. A High-Precision Short-Term Prediction Method with Stable Performance for Satellite Clock Bias. GPS Solut. 2020, 24, 105. [Google Scholar] [CrossRef]
- Ai, Q.; Xu, T.; Li, J.; Xiong, H. The Short-Term Forecast of BeiDou Satellite Clock Bias Based on Wavelet Neural Network. In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I, Proceedings of the CSNC2016, Changsha, China, 18–20 May 2016; Sun, J., Liu, J., Fan, S., Wang, F., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2016; Volume 388, pp. 145–154. [Google Scholar] [CrossRef]
- Zhang, J. Research of Satellites Clock Error Prediction Based on Neural Networks. Comput. Eng. Des. 2014, 35, 3254–3257. [Google Scholar]
- Wang, R.; Cai, H.; Pan, Z. Satellite Clock Bias Prediction Algorithm with Multi System Based on RBF Neural Network. J. Ocean Technol. 2019, 38, 56–61. [Google Scholar] [CrossRef]
- Gnyś, P.; Przestrzelski, P. Application of long short term memory neural networks for GPS satellite clock bias prediction. TASK Q. 2021, 25, 381–395. [Google Scholar] [CrossRef]
- Huang, B.; Ji, Z.; Zhai, R.; Xiao, C.; Yang, F.; Yang, B.; Wang, Y. Clock Bias Prediction Algorithm for Navigation Satellites Based on a Supervised Learning Long Short-Term Memory Neural Network. GPS Solut. 2021, 25, 80. [Google Scholar] [CrossRef]
- He, S.; Liu, J.; Zhu, X.; Dai, Z.; Li, D. Research on Modeling and Predicting of BDS-3 Satellite Clock Bias Using the LSTM Neural Network Model. GPS Solut. 2023, 27, 108. [Google Scholar] [CrossRef]
- Cai, C.; Liu, M.; Li, P.; Li, Z.; Lv, K. Enhancing Satellite Clock Bias Prediction in BDS with LSTM-Attention Model. GPS Solut. 2024, 28, 92. [Google Scholar] [CrossRef]
- Yang, S.; Yi, X.; Dong, R.; Wu, Y.; Shuai, T.; Zhang, J.; Ren, Q.; Gong, W. Long-Term Autonomous Time-Keeping of Navigation Constellations Based on Sparse Sampling LSTM Algorithm. Satell. Navig. 2024, 5, 15. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Kong, Y.; Yang, C. Improved SSA-Based GRU Neural Network for BDS-3 Satellite Clock Bias Forecasting. Sensors 2024, 24, 1178. [Google Scholar] [CrossRef]
- Liang, Y.F.; Xu, J.N.; Li, F.N.; Jiang, P.F. Nonlinear Autoregressive Model With Exogenous Input Recurrent Neural Network to Predict Satellites’ Clock Bias. IEEE Access 2021, 9, 24416–24424. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, J.; Wu, M. Elman Neural Network Based on Particle Swarm Optimization for Prediction of GPS Rapid Clock Bias. In China Satellite Navigation Conference (CSNC 2022) Proceedings, Proceedings of the CSNC 2022, Beijing, China, 25–27 May 2022; Springer: Berlin/Heidelberg, Germany, 2022; Volume 910, pp. 361–371. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Pan, X.; Zhao, W.; Huang, W.; Zhang, S.; Jin, L. Short-term prediction of satellite clock bias based on improved self-attention model. J. Chin. Inert. Technol. 2023, 31, 1092–1101. [Google Scholar] [CrossRef]
Prediction Models | Model Features | |
---|---|---|
Classical Prediction Models | QP | Advantages: Simple implementation, suitable for short-term prediction, and high computational efficiency. Limitations: Poor nonlinear adaptability, weak extrapolation performance |
GM | Advantages: Strong small-sample adaptability, low data requirements, fast modeling. Limitations: Unstable long-term prediction, limited applicability. | |
Kalman | Advantages: Strong dynamic tracking capability, suitable for multi-variable fusion, and effective noise handling. Limitations: High model complexity, dependent on model assumptions | |
ARIMA | Advantages: Captures temporal dependencies, and suitable for long-term prediction. Limitations: Requires data stationarity, poor adaptability to nonlinear variations | |
AI Prediction Models | ML-based | Advantages: Simple model structure with fast training speed. Limitations: Relies on manual feature extraction, suitable for relatively simple datasets or limited computing resources. |
MLP-based | Advantages: Simple structure with fast computation, ideal for small-scale high-dimensional data. Limitations: Unable to capture temporal dependencies in sequential data. | |
RNN-based | Advantages: Capable of handling long-term dependencies, and suitable for longer sequence prediction. Limitations: Prone to vanishing/exploding gradients, slower computation speed. | |
Transformer-based | Advantages: High computational efficiency, parallel processing capability, captures long-range dependencies, suitable for long time series. Limitations: High model complexity, requires large training datasets. Demands substantial computing resources with a relatively slow training process |
Type | Model | Institution | Year | Periodical | Model Accuracy |
---|---|---|---|---|---|
Classical Model | polynomial model | GFZ | 2014 | GPS Solutions | real-time prediction accuracy is superior to 0.55 ns. |
WUM | 2017 | The standard deviation of the clock bias is 0.15 ns. | |||
Grey Model | NTSC | 2018 | Acta Astronomica Sinica | 24-h prediction accuracy is 1.27 ns. | |
Kalman Filter | XISM | 2023 | Acta Geodaetica et Cartographica Sinica | 6-h prediction accuracy is 8~9 ns. | |
Tampere | 2019 | ICL-GNSS | 30-days prediction accuracy is 5.22~241.79 ns | ||
ARIMA | IEU | 2021 | GPS Solutions | 30-days prediction accuracy is 18.16-86.28 ns | |
Deep-learning Model | MLPs | 2020 | 1-h prediction accuracy is superior to 0.3 ns. | ||
3-days prediction accuracy is 1.59 ns | |||||
RNNs | XSCC | 2021 | |||
SYSU | 2023 | 3~7 days prediction accuracy is 8.6~19.2 ns. | |||
SSC | 2024 | Satellite Navigation | 10-days prediction accuracy is 0.316 ns | ||
Transformer | GMV UK | 2023 | ION GNSS | 2-h prediction accuracy is below 2 ns |
The Dimensions Considered | Preferred Model |
---|---|
The amount of data is very small (n < 100) | GM, QP |
High computational efficiency/interpretability | ML-based, QP |
The data is stable and the trend is obvious. | ARIMA |
Dynamic system, multi-sensor fusion | Kalman Filter |
Medium-sized sequence data | LSTM/GRU |
Massive data, long sequence prediction | Transformer-based |
Limited computing resources | ML-based, ARIMA |
Requires rapid deployment and debugging | ML-based, ARIMA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Meng, Z.; Wang, G.; Liu, M.; Yan, E. Review of Research on Satellite Clock Bias Prediction Models in GNSS. Remote Sens. 2025, 17, 3177. https://doi.org/10.3390/rs17183177
Lv Y, Meng Z, Wang G, Liu M, Yan E. Review of Research on Satellite Clock Bias Prediction Models in GNSS. Remote Sensing. 2025; 17(18):3177. https://doi.org/10.3390/rs17183177
Chicago/Turabian StyleLv, Yinhong, Zhijun Meng, Guangming Wang, Mingkai Liu, and Enqi Yan. 2025. "Review of Research on Satellite Clock Bias Prediction Models in GNSS" Remote Sensing 17, no. 18: 3177. https://doi.org/10.3390/rs17183177
APA StyleLv, Y., Meng, Z., Wang, G., Liu, M., & Yan, E. (2025). Review of Research on Satellite Clock Bias Prediction Models in GNSS. Remote Sensing, 17(18), 3177. https://doi.org/10.3390/rs17183177