Multi-Model Synergistic Satellite-Derived Bathymetry Fusion Approach Based on Mamba Coral Reef Habitat Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. ICESat-2 ATL03 Data
2.2.2. Sentinel-2 Multispectral Imagery
2.2.3. Tide Data
2.3. Research Methodology
2.3.1. Coral Reef Habitat Classification Mamba Model
2.3.2. Multi-Model Synergistic SDB Fusion Approach Based on Coral Reef Habitat Classification
2.3.3. DBSCAN Denoising Algorithm
3. Results
3.1. Results of Coral Reef Habitat Classification
3.2. Results of Satellite-Derived Bathymetry Fusion Model Construction
3.2.1. ICESAT-2/ATL03 Underwater Topography Extraction
3.2.2. Bathymetry Fusion Model Construction
3.3. Results of Shallow Water Bathymetry
3.3.1. Accuracy of Bathymetry Estimation
3.3.2. Shallow Water Bathymetry Map
4. Discussion
4.1. Influence of Different Amounts of Training Bathymetry Data on the Model
4.2. Uncertainty Influence Analysis of the Model and Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandlburger, G. A review of active and passive optical methods in hydrography. Int. Hydrogr. Rev. 2022, 28, 8–52. [Google Scholar] [CrossRef]
- Cesbron, G.; Melet, A.; Almar, R.; Lifermann, A.; Tullot, D.; Crosnier, L. Pan-European Satellite-derived coastal bathymetry—Review, user needs and future services. Front. Mar. Sci. 2021, 8, 740830. [Google Scholar] [CrossRef]
- He, J.; Zhang, S.; Cui, X.; Feng, W. Remote sensing for shallow bathymetry: A systematic review. Earth-Sci. Rev. 2024, 258, 104957. [Google Scholar] [CrossRef]
- Wedding, L.; Friedlander, A.; McGranaghan, M.; Yost, R.; Monaco, M. Using bathymetric LiDAR to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii. Remote Sens. Environ. 2008, 112, 59–4165. [Google Scholar] [CrossRef]
- Kutser, T.; Hedley, J.; Giardino, C.; Roelfsema, C.; Brando, V.E. Remote sensing of shallow waters—A 50 year retrospective and future directions. Remote Sens. Environ. 2020, 240, 111619. [Google Scholar] [CrossRef]
- Campbell, S.J.; Kartawijaya, T.; Sabarini, E.K. Connectivity in reef fish assemblages between seagrass and coral reef habitats. Aquat. Biol. 2011, 13, 65–77. [Google Scholar] [CrossRef]
- Honda, K.; Nakamura, Y.; Nakaoka, M.; Uy, W.H.; Fortes, M.D. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines. PLoS ONE 2013, 8, e65735. [Google Scholar] [CrossRef]
- James, R.K.; Keyzer, L.M.; Van De Velde, S.J.; Herman, P.M.; Van Katwijk, M.M.; Bouma, T.J. Climate change mitigation by coral reefs and seagrass beds at risk: How global change compromises coastal ecosystem services. Sci. Total Environ. 2023, 857, 159576. [Google Scholar] [CrossRef]
- Yen, P.P.; Sydeman, W.J.; Hyrenbach, K.D. Marine bird and cetacean associations with bathymetric habitats and shallow-water topographies: Implications for trophic transfer and conservation. J. Mar. Syst. 2004, 50, 79–99. [Google Scholar] [CrossRef]
- Dennison, W. Seagrasses: Biology, ecology and conservation. Bot. Mar. 2009, 52, 365–366. [Google Scholar] [CrossRef]
- Britton-Simmons, K.H.; Rhoades, A.L.; Pacunski, R.E.; Galloway, A.W.; Lowe, A.T.; Sosik, E.A.; Dethier, M.N.; Duggins, D.O. Habitat and bathymetry influence the landscape-scale distribution and abundance of drift macrophytes and associated invertebrates. Limnol. Oceanogr. 2012, 57, 176–184. [Google Scholar] [CrossRef]
- Cameron, M.J.; Lucieer, V.; Barrett, N.S.; Johnson, C.R.; Edgar, G.J. Understanding community-habitat associations of temperate reef fishes using fine-resolution bathymetric measures of physical structure. Mar. Ecol. Prog. Ser. 2014, 506, 213–229. [Google Scholar] [CrossRef]
- Costa, B.M.; Battista, T.A.; Pittman, S.J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sens. Environ. 2009, 113, 1082–1100. [Google Scholar] [CrossRef]
- Bio, A.; Gonçalves, J.A.; Magalhães, A.; Pinheiro, J.; Bastos, L. Combining low-cost sonar and high-precision global navigation satellite system for shallow water bathymetry. Estuaries Coasts 2020, 45, 1000–1011. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Chénier, R.; Faucher, M.A.; Ahola, R. Satellite-derived bathymetry for improving Canadian Hydrographic Service charts. ISPRS Int. J. Geoinf. 2018, 7, 306. [Google Scholar] [CrossRef]
- Al Najar, M.; Thoumyre, G.; Bergsma, E.W.; Almar, R.; Benshila, R.; Wilson, D.G. Satellite derived bathymetry using deep learning. Mach. Learn. 2023, 112, 1107–1130. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Thoumyre, G.; Solange, L.C.; Loyer, S.; Artigues, S.; Salles, G.; Garlan, T.; Lifermann, A. Satellite-derived bathymetry from correlation of Sentinel-2 spectral bands to derive wave kinematics: Qualification of Sentinel-2 S2Shores estimates with hydrographic standards. Coast. Eng. 2024, 189, 104458. [Google Scholar] [CrossRef]
- Wicaksono, P.; Harahap, S.D.; Hendriana, R. Satellite-derived bathymetry from WorldView-2 based on linear and machine learning regression in the optically complex shallow water of the coral reef ecosystem of Kemujan island. Remote Sens. Appl. 2024, 33, 101085. [Google Scholar] [CrossRef]
- Liu, C.; Xie, H.; Xu, Q.; Li, J.; Sun, Y.; Ji, M.; Tong, X. Diffuse attenuation coefficient and bathymetry retrieval in shallow water environments by integrating satellite laser altimetry with optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104318. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Liu, Y.; Dong, Z.; Tang, Q.; Li, Z. Very high-resolution satellite-derived bathymetry using panchromatic and multispectral image fusion. Appl. Opt. 2025, 64, 2835–2846. [Google Scholar] [CrossRef]
- Lowell, K.; Rzhanov, Y. An Empirical Evaluation of the Localised Accuracy of Satellite-Derived Bathymetry and SDB Depth Change. Mar. Geod. 2025, 48, 47–71. [Google Scholar] [CrossRef]
- Viaña-Borja, S.; González-Villanueva, R.; Alejo, I.; Stumpf, R.; Navarro, G.; Caballero, I. Satellite-derived bathymetry using Sentinel-2 in mesotidal coasts. Coast. Eng. 2025, 195, 104644. [Google Scholar] [CrossRef]
- Quang, N.; Banno, M.; Ha, N. Satellite derived bathymetry using empirical and machine learning approaches: A case study in the highly dynamic coastal water. Coast. Eng. J. 2025, 67, 232–251. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, S.; Wu, Z.; Wu, S.; Chen, H.; Song, C.; Mao, Z.; Shen, W. A novel spatial graph attention networks for satellite-derived bathymetry in coastal and island waters. J. Environ. Manag. 2025, 380, 125034. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Babbel, B.J.; Parrish, C.E.; Magruder, L.A. ICESat-2 elevation retrievals in support of satellite-derived bathymetry for global science applications. Geophys. Res. Lett. 2021, 48, e2020GL090629. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.; Herzfeld, U.; Thomas, N.; Markel, J.; Jasinski, M.; Imahori, G.; Herrmann, J.; Trantow, T.; Borsa, A.; et al. ICESat-2 bathymetry: Advances in methods and science. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Y.; Le, Y.; Dong, Y.; Dai, G.; Wang, L. Refraction and coordinate correction with the JONSWAP model for ICESat-2 bathymetry. ISPRS Int. J. Geoinf. 2022, 186, 285–300. [Google Scholar] [CrossRef]
- Jia, K.; Ma, Y.; Zhang, J.; Wang, B.; Zhang, X.; Cui, A. A denoising methodology for detecting ICESat-2 bathymetry photons based on quasi full-waveform. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Giribabu, D.; Hari, R.; Sharma, J.; Ghosh, K.; Padiyar, N.; Sharma, A.; Bera, A.K.; Srivastav, S.K. Performance assessment of GEBCO_2023 gridded bathymetric data in selected shallow waters of Indian ocean using the seafloor from ICESat-2 photons. Mar. Geophys. Res. 2024, 45, 1. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, N.; Liu, Z.; Yang, B.; Yang, F.; Wang, X.H.; Li, S. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets. Remote Sens. Environ. 2020, 250, 112047. [Google Scholar] [CrossRef]
- Xu, N.; Ma, Y.; Zhou, H.; Zhang, W.; Zhang, Z.; Wang, X.H. A method to derive bathymetry for dynamic water bodies using ICESat-2 and GSWD data sets. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.H.; Ma, Y.; Yang, F. Satellite-derived bathymetry with sediment classification using ICESat-2 and multispectral imagery: Case studies in the South China Sea and Australia. Remote Sens. 2023, 15, 1026. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Yang, X. Bathymetry derivation and slope-assisted benthic mapping using optical satellite imagery in combination with ICESat-2. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103700. [Google Scholar] [CrossRef]
- Lv, J.; Gao, C.; Qi, C.; Li, S.; Su, D.; Zhang, K.; Yang, F. Arctic supraglacial lake derived bathymetry combining ICESat-2 and spectral stratification of satellite imagery. EGUsphere 2025, 2025, 1–22. Available online: https://egusphere.copernicus.org/preprints/2025/egusphere-2025-364/ (accessed on 12 April 2025).
- Dietrich, J.T.; Rackley, R.A.; Gibbons, A. Analysis of ICESat-2 data acquisition algorithm parameter enhancements to improve worldwide bathymetric coverage. Earth Space Sci. 2024, 11, e2023EA003270. [Google Scholar] [CrossRef]
- Jung, J.; Parrish, C.E.; Magruder, L.A.; Herrmann, J.; Yoo, S.; Perry, J.S. ICESat-2 bathymetry algorithms: A review of the current state-of-the-art and future outlook. ISPRS J. Photogramm. Remote Sens. 2025, 223, 413–439. [Google Scholar] [CrossRef]
- Petit, T.; Bajjouk, T.; Mouquet, P.; Rochette, S.; Vozel, B.; Delacourt, C. Hyperspectral remote sensing of coral reefs by semi-analytical model inversion Comparison of different inversion setups. Remote Sens. Environ. 2017, 190, 348–365. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.; Capo, S.; et al. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: A review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef]
- Ye, L.; Chu, S.; Chen, H.; Cheng, J.; Xu, R.; Qu, Z. Hyperspectral Satellite-Derived Bathymetry Considering Substrate Characteristics. Mar. Geod. 2025, 1–25. [Google Scholar] [CrossRef]
- Wu, Z.; Mao, Z.; Shen, W. Integrating multiple datasets and machine learning algorithms for satellite-based bathymetry in seaports. Remote Sens. 2021, 13, 4328. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Magruder, L.; Neumann, T.; Kurtz, N. ICESat-2 early mission synopsis and observatory performance. Earth Space Sci. 2021, 8, e2020EA001555. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, E.J.; Atkinson, M.J.; Andréfouët, S. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens. Environ. 2003, 85, 159–173. [Google Scholar] [CrossRef]
- Mazel, C.H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 1995, 120, 185–191. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 4 October 2017. [Google Scholar] [CrossRef]
- Gu, A.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Zhang, L.; Wang, Z.; Du, B. MambaHSI: Spatial-spectral mamba for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression, Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996. [Google Scholar]
- Tonion, F.; Pirotti, F.; Faina, G.; Paltrinieri, D. A machine learning approach to multispectral satellite derived bathymetry. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 3, 565–570. [Google Scholar] [CrossRef]
Study Area | Date | Track Number | Study Area | Date | Track Number |
---|---|---|---|---|---|
Yuya Shoal | 20190109 | #0179 (gt1l) | Nihau Island | 20190119 | #0343 (gt3l) |
20190202 | #0552 (gt1l/gt2l/gt3l) | 20190127 | #0457 (gt1l/gt2l/gt3l) | ||
20190312 | #1124 (gt1l/gt2l/gt3l) | 20190527 | #0889 (gt2l) | ||
20190504 | #0552 (gt1l/gt2l/gt3l) | 20190818 | #0785 (gt1l/gt2l) | ||
20191008 | #0179 (gt1r/gt3r) | 20191117 | #0785 (gt3r) | ||
20200309 | #1124 (gt1r/gt3r) | 20200227 | #0960 (gt1r/gt2r) | ||
20200906 | #1124 (gt3l) | 20200425 | #0457 (gt1r) | ||
20201206 | #1124 (gt3l) | 20200823 | #0899 (gt2l) | ||
20210307 | #1124 (gt1r) | 20200917 | #1288 (gt2l) | ||
20230402 | #0179 (gt2l/gt3l) | 20210213 | #0785 (gt2r) | ||
20231025 | #0552 (gt1l) | 20210723 | #0457 (gt1r) | ||
20240330 | #0179 (gt2r) | 20211022 | #0457 (gt1l) | ||
20240423 | #0552 (gt1l) | 20220113 | #0343 (gt1l) | ||
20220812 | #0785 (gt3r) |
Class | Accuracy Per Class (%) | |
---|---|---|
Area | Yuya Shoal | Nihau Island |
deepwater | 97.56 | 96.67 |
lagoon | 80 | / |
coral sand | 100 | 96.45 |
coral detritus | 100 | / |
coral | 98.1 | 96.69 |
cloud/wave | 100 | 100 |
Overall Accuracy (%) | 97.55 | 96.69 |
Average Accuracy (%) | 95.94 | 97.45 |
Kappa (%) | 96.82 | 94.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Ma, Y.; Zhang, F.; Li, Z.; Zhang, J. Multi-Model Synergistic Satellite-Derived Bathymetry Fusion Approach Based on Mamba Coral Reef Habitat Classification. Remote Sens. 2025, 17, 2134. https://doi.org/10.3390/rs17132134
Zhang X, Ma Y, Zhang F, Li Z, Zhang J. Multi-Model Synergistic Satellite-Derived Bathymetry Fusion Approach Based on Mamba Coral Reef Habitat Classification. Remote Sensing. 2025; 17(13):2134. https://doi.org/10.3390/rs17132134
Chicago/Turabian StyleZhang, Xuechun, Yi Ma, Feifei Zhang, Zhongwei Li, and Jingyu Zhang. 2025. "Multi-Model Synergistic Satellite-Derived Bathymetry Fusion Approach Based on Mamba Coral Reef Habitat Classification" Remote Sensing 17, no. 13: 2134. https://doi.org/10.3390/rs17132134
APA StyleZhang, X., Ma, Y., Zhang, F., Li, Z., & Zhang, J. (2025). Multi-Model Synergistic Satellite-Derived Bathymetry Fusion Approach Based on Mamba Coral Reef Habitat Classification. Remote Sensing, 17(13), 2134. https://doi.org/10.3390/rs17132134