Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning
Abstract
:1. Introduction
1.1. Urban Form and CEs
1.2. Knowledge Gap
1.3. Hypothesis and Research Design
2. Literature Review
2.1. Conventional Urban Energy Models
2.2. SVIs for Urban Form Modeling
3. Data and Method
3.1. Analytical Framework
3.1.1. Study Area
3.1.2. Conceptual Framework
3.2. Variables
3.2.1. Residential Carbon Emissions
3.2.2. Independent Variables
SVI Data Collection
Semantic Segmentation
3.3. Model Architecture
3.3.1. Machine Learning Models
3.3.2. Training Algorithm
4. Results and Discussions
4.1. Analysis of Results
4.1.1. Model Performance
4.1.2. Co-linearity Issues
4.1.3. The Roles of Micro-Level Built Environment Visual Features
4.2. Discussion
4.2.1. Spatial and Temporal Distribution of Residential CEs
4.2.2. Model Visualization and Model Application Scenarios
4.2.3. Model Comparison
5. Conclusions and Limitations
5.1. Effects of Micro-Level Streetscape Attributes
5.2. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, K.; Li, J. Towards a Green World: How Do Green Technology Innovations Affect Total-Factor Carbon Productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Qian, L.; Xu, X.; Sun, Y.; Zhou, Y. Carbon Emission Reduction Effects of Eco-Industrial Park Policy in China. Energy 2022, 261, 125315. [Google Scholar] [CrossRef]
- Shi, C.; Guo, N.; Gao, X.; Wu, F. How Carbon Emission Reduction Is Going to Affect Urban Resilience. J. Clean. Prod. 2022, 372, 133737. [Google Scholar] [CrossRef]
- Huang, C.; Tao, J. Chapter 4—Water-Related Problems with Special Reference to Global Climate Change in China. In Water Conservation and Wastewater Treatment in BRICS Nations; Singh, P., Milshina, Y., Tian, K., Gusain, D., Bassin, J.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 61–82. ISBN 978-0-12-818339-7. [Google Scholar]
- Ryu, H.; Dorjragchaa, S.; Kim, Y.; Kim, K. Electricity-Generation Mix Considering Energy Security and Carbon Emission Mitigation: Case of Korea and Mongolia. Energy 2014, 64, 1071–1079. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ji, Q. Regional Differences and Driving Factors Analysis of Carbon Emission Intensity from Transport Sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Joint Research Centre (European Commission); Crippa, M.; Guizzardi, D.; Schaaf, E.; Monforti-Ferrario, F.; Quadrelli, R.; Risquez Martin, A.; Rossi, S.; Vignati, E.; Muntean, M.; et al. GHG Emissions of All World Countries: 2023; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-07550-0. [Google Scholar]
- CSC. The Fourteenth Five-Year Plan; China’s State Council: Beijing, China, 2021.
- He, W.; Liu, D.; Wang, C. Are Chinese Provincial Carbon Emissions Allowances Misallocated over 2000–2017? Evidence from an Extended Gini-Coefficient Approach. Sustain. Prod. Consum. 2022, 29, 564–573. [Google Scholar] [CrossRef]
- Fan, J.-L.; Liao, H.; Liang, Q.-M.; Tatano, H.; Liu, C.-F.; Wei, Y.-M. Residential Carbon Emission Evolutions in Urban–Rural Divided China: An End-Use and Behavior Analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, X.; Zuo, J. Renewable Energy in Buildings in China—A Review. Renew. Sustain. Energy Rev. 2013, 24, 1–8. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Tao, X. Evolution and Assessment on China’s Urbanization 1960–2010: Under-Urbanization or over-Urbanization? Habitat Int. 2013, 38, 25–33. [Google Scholar] [CrossRef]
- Park, H.-C.; Heo, E. The Direct and Indirect Household Energy Requirements in the Republic of Korea from 1980 to 2000—An Input–Output Analysis. Energy Policy 2007, 35, 2839–2851. [Google Scholar] [CrossRef]
- Baiocchi, G.; Minx, J.; Hubacek, K. The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom. J. Ind. Ecol. 2010, 14, 50–72. [Google Scholar] [CrossRef]
- Cao, M.; Kang, W.; Cao, Q.; Sajid, M.J. Estimating Chinese Rural and Urban Residents’ Carbon Consumption and Its Drivers: Considering Capital Formation as a Productive Input. Environ. Dev. Sustain. 2020, 22, 5443–5464. [Google Scholar] [CrossRef]
- Cheng, J.; Mao, C.; Huang, Z.; Hong, J.; Liu, G. Implementation Strategies for Sustainable Renewal at the Neighborhood Level with the Goal of Reducing Carbon Emission. Sustain. Cities Soc. 2022, 85, 104047. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.; Yang, J. Relationships between Urbanization and CO2 Emissions in China: An Empirical Analysis of Population Migration. PLoS ONE 2021, 16, e0256335. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Fang, C.; Li, S. Estimating the Impacts of Urban Form on CO2 Emission Efficiency in the Pearl River Delta, China. Cities 2019, 85, 117–129. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, L.; Wang, Y.; Wang, J. Exploring the Impact of Explicit and Implicit Urban Form on Carbon Emissions: Evidence from Beijing, China. Ecol. Indic. 2023, 154, 110558. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Chaturvedi, A.K.; Joshi, N.; Mondal, R.; Malyan, S.K. Greenhouse Gas Emissions from Hydroelectric Reservoirs: Mechanistic Understanding of Influencing Factors and Future Prospect. Environ. Sci. Pollut. Res. 2023. [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The Need for Urban Form Data in Spatial Modeling of Urban Carbon Emissions in China: A Critical Review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Du, R.; Liu, C.-H.; Li, X.-X. A New Method for Detecting Urban Morphology Effects on Urban-Scale Air Temperature and Building Energy Consumption under Mesoscale Meteorological Conditions. Urban Clim. 2024, 53, 101775. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating Carbon Emissions in Urban Functional Zones Using Multi-Source Data: A Case Study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Remeseiro, B. Feature Selection in Image Analysis: A Survey. Artif. Intell. Rev. 2020, 53, 2905–2931. [Google Scholar] [CrossRef]
- Kabir, H.; Garg, N. Machine Learning Enabled Orthogonal Camera Goniometry for Accurate and Robust Contact Angle Measurements. Sci. Rep. 2023, 13, 1497. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the Relationship between Urban Forms and Carbon Emissions Using Panel Data Analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Wang, S.; Xie, R.; Li, X. Investigating the Differentiated Impacts of Socioeconomic Factors and Urban Forms on CO2 Emissions: Empirical Evidence from Chinese Cities of Different Developmental Levels. J. Clean. Prod. 2019, 226, 601–614. [Google Scholar] [CrossRef]
- Fang, C.; Wang, S.; Li, G. Changing Urban Forms and Carbon Dioxide Emissions in China: A Case Study of 30 Provincial Capital Cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Shu, X.; Xia, C.; Li, Y.; Tong, J.; Shi, Z. Relationships between carbon emission, urban growth, and urban forms of urban agglomeration in the Yangtze River Delta. Ecol. Indic. 2018, 38, 6302–6313. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of Urban Forms on CO2 Emissions in China from a Multi-Perspective Analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- Qiu, W.; Li, W.; Liu, X.; Zhang, Z.; Li, X.; Huang, X. Subjective and Objective Measures of Streetscape Perceptions: Relationships with Property Value in Shanghai. Cities 2023, 132, 104037. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or Objective Measures of Street Environment, Which Are More Effective in Explaining Housing Prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Dong, L.; Jiang, H.; Li, W.; Qiu, B.; Wang, H.; Qiu, W. Assessing Impacts of Objective Features and Subjective Perceptions of Street Environment on Running Amount: A Case Study of Boston. Landsc. Urban Plan. 2023, 235, 104756. [Google Scholar] [CrossRef]
- Su, N.; Li, W.; Qiu, W. Measuring the Associations between Eye-Level Urban Design Quality and on-Street Crime Density around New York Subway Entrances. Habitat Int. 2023, 131, 102728. [Google Scholar] [CrossRef]
- Xia, C.; Xiang, M.; Fang, K.; Li, Y.; Ye, Y.; Shi, Z.; Liu, J. Spatial-Temporal Distribution of Carbon Emissions by Daily Travel and Its Response to Urban Form: A Case Study of Hangzhou, China. J. Clean. Prod. 2020, 257, 120797. [Google Scholar] [CrossRef]
- Shen, Y.-S.; Lin, Y.-C.; Cui, S.; Li, Y.; Zhai, X. Crucial Factors of the Built Environment for Mitigating Carbon Emissions. Sci. Total Environ. 2022, 806, 150864. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, F.P.; Gioli, B.; Toscano, P.; Perrone, C. Carbon Dioxide Balance Assessment of the City of Florence (Italy), and Implications for Urban Planning. Landsc. Urban Plan. 2013, 120, 138–146. [Google Scholar] [CrossRef]
- Liu, X.; Ou, J.; Chen, Y.; Wang, S.; Li, X.; Jiao, L.; Liu, Y. Scenario Simulation of Urban Energy-Related CO2 Emissions by Coupling the Socioeconomic Factors and Spatial Structures. Appl. Energy 2019, 238, 1163–1178. [Google Scholar] [CrossRef]
- Tranchard, S. Measuring the Carbon Footprint of Buildings in a Simple Way. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/news/2017/07/Ref2205.html (accessed on 26 January 2024).
- Zhang, J.; Zhang, L.; Qin, Y.; Wang, X.; Zheng, Z. Influence of the Built Environment on Urban Residential Low-Carbon Cognition in Zhengzhou, China. J. Clean. Prod. 2020, 271, 122429. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing Urban Greenery by Harvesting Street View Data: A Review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Dwyer, J.F.; Nowak, D.J.; Noble, M.H.; Sisinni, S.M. Connecting People with Ecosystems in the 21st Century: An Assessment of Our Nation’s Urban Forests.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2000; p. PNW-GTR-490.
- Nowak, D.J.; Crane, D.E. Carbon Storage and Sequestration by Urban Trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Birge, D.; Mandhan, S.; Qiu, W.; Berger, A.M. Potential for Sustainable Use of Trees in Hot Arid Regions: A Case Study of Emirati Neighborhoods in Abu Dhabi. Landsc. Urban Plan. 2019, 190, 103577. [Google Scholar] [CrossRef]
- Carrasco-Hernandez, R.; Smedley, A.R.D.; Webb, A.R. Using Urban Canyon Geometries Obtained from Google Street View for Atmospheric Studies: Potential Applications in the Calculation of Street Level Total Shortwave Irradiances. Energy Build. 2015, 86, 340–348. [Google Scholar] [CrossRef]
- Gong, F.-Y.; Zeng, Z.-C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping Sky, Tree, and Building View Factors of Street Canyons in a High-Density Urban Environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Resch, E.; Bohne, R.A.; Kvamsdal, T.; Lohne, J. Impact of Urban Density and Building Height on Energy Use in Cities. Energy Procedia 2016, 96, 800–814. [Google Scholar] [CrossRef]
- Li, W.; Joh, K. Exploring the Synergistic Economic Benefit of Enhancing Neighbourhood Bikeability and Public Transit Accessibility Based on Real Estate Sale Transactions. Urban Stud. 2017, 54, 3480–3499. [Google Scholar] [CrossRef]
- Quan, S.J.; Wu, J.; Wang, Y.; Shi, Z.; Yang, T.; Yang, P.P.-J. Urban Form and Building Energy Performance in Shanghai Neighborhoods. Energy Procedia 2016, 88, 126–132. [Google Scholar] [CrossRef]
- Wu, F.; Li, W.; Qiu, W. Examining Non-Linear Relationship between Streetscape Features and Propensity of Walking to School in Hong Kong Using Machine Learning Techniques. J. Transp. Geogr. 2023, 113, 103698. [Google Scholar] [CrossRef]
- Ha, J.; Ki, D.; Lee, S.; Ko, J. Mode Choice and the First-/Last-Mile Burden: The Moderating Effect of Street-Level Walkability. Transp. Res. Part Transp. Environ. 2023, 116, 103646. [Google Scholar] [CrossRef]
- Ito, K.; Biljecki, F. Assessing Bikeability with Street View Imagery and Computer Vision. Transp. Res. Part C Emerg. Technol. 2021, 132, 103371. [Google Scholar] [CrossRef]
- Qiu, W.; Chang, H. The Interplay between Dockless Bikeshare and Bus for Small-Size Cities in the US: A Case Study of Ithaca. J. Transp. Geogr. 2021, 96, 103175. [Google Scholar] [CrossRef]
- Song, Q.; Li, W.; Li, J.; Wei, X.; Qiu, W. Disclosing the Impact of Micro-Level Environmental Characteristics on Dockless Bikeshare Trip Volume: A Case Study of Ithaca. In Proceedings of the Intelligence for Future Cities; Goodspeed, R., Sengupta, R., Kyttä, M., Pettit, C., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 125–147. [Google Scholar]
- Su, S.; Wang, Z.; Li, B.; Kang, M. Deciphering the Influence of TOD on Metro Ridership: An Integrated Approach of Extended Node-Place Model and Interpretable Machine Learning with Planning Implications. J. Transp. Geogr. 2022, 104, 103455. [Google Scholar] [CrossRef]
- Koo, B.W.; Guhathakurta, S.; Botchwey, N.; Hipp, A. Can Good Microscale Pedestrian Streetscapes Enhance the Benefits of Macroscale Accessible Urban Form? An Automated Audit Approach Using Google Street View Images. Landsc. Urban Plan. 2023, 237, 104816. [Google Scholar] [CrossRef]
- Wu, W.; Yao, Y.; Wang, R. Green Space Exposure at Subway Stations, Transportation Mode Choice and Travel Satisfaction. Transp. Res. Part Transp. Environ. 2023, 122, 103862. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An Ecological Approach to Creating Active Living Communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef]
- Steinmetz-Wood, M.; Velauthapillai, K.; O’Brien, G.; Ross, N.A. Assessing the Micro-Scale Environment Using Google Street View: The Virtual Systematic Tool for Evaluating Pedestrian Streetscapes (Virtual-STEPS). BMC Public Health 2019, 19, 1246. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Li, W.; Chen, D.; Qiu, W. Identifying Urban Park Events through Computer Vision-Assisted Categorization of Publicly-Available Imagery. ISPRS Int. J. Geo-Inf. 2023, 12, 419. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban Form and Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Qiu, W.; Li, W.; Liu, X.; Huang, X. Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 493. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, L.; He, Y.; Zhang, Y.; Chen, Y.; Yao, S.; Yang, W.; Sun, Q. Effects and Contributions of Meteorological Drought on Agricultural Drought under Different Climatic Zones and Vegetation Types in Northwest China. Sci. Total Environ. 2022, 821, 153270. [Google Scholar] [CrossRef] [PubMed]
- Ignatius, M.; Xu, R.; Hou, Y.; Liang, X.; Zhao, T.; Chen, S.; Wong, N.H.; Biljecki, F. Local Climate Zones: Lessons from Singapore and Potential Improvement with Street View Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, X-4-W2-2022, 121–128. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, W.; Li, W.; Huang, D.; Li, X.; Yang, S. Comparing Satellite Image and GIS Data Classified Local Climate Zones to Assess Urban Heat Island: A Case Study of Guangzhou. Front. Environ. Sci. 2022, 10, 1029445. [Google Scholar] [CrossRef]
- Stewart, I.; Oke, T. Classifying Urban Climate Field Sites by “Local Climate Zones”: The Case of Nagano, Japan. In Proceedings of the The seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Xu, C.; Chen, G.; Huang, Q.; Su, M.; Rong, Q.; Yue, W.; Haase, D. Can Improving the Spatial Equity of Urban Green Space Mitigate the Effect of Urban Heat Islands? An Empirical Study. Sci. Total Environ. 2022, 841, 156687. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to Audit Neighborhood Environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Griew, P.; Hillsdon, M.; Foster, C.; Coombes, E.; Jones, A.; Wilkinson, P. Developing and Testing a Street Audit Tool Using Google Street View to Measure Environmental Supportiveness for Physical Activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.M.; Wilson, J.S.; Baker, E.A.; Miller, D.K.; Schootman, M. Using Google Street View to Audit the Built Environment: Inter-Rater Reliability Results. Ann. Behav. Med. 2013, 45, S108–S112. [Google Scholar] [CrossRef] [PubMed]
- Queralt, A.; Molina-García, J.; Terrón-Pérez, M.; Cerin, E.; Barnett, A.; Timperio, A.; Veitch, J.; Reis, R.; Silva, A.A.P.; Ghekiere, A.; et al. Reliability of Streetscape Audits Comparing On-street and Online Observations: MAPS-Global in 5 Countries. Int. J. Health Geogr. 2021, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Salesses, P.; Schechtner, K.; Hidalgo, C.A. The Collaborative Image of The City: Mapping the Inequality of Urban Perception. PLoS ONE 2013, 8, e68400. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at a Global Scale. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 196–212. [Google Scholar]
- Hong, X.; Zhang, P.; Bi, Y.; Liu, C.; Sun, Y.; Wang, W.; Chen, Z.; Yin, H.; Zhang, C.; Tian, Y.; et al. Retrieval of Global Carbon Dioxide From TanSat Satellite and Comprehensive Validation With TCCON Measurements and Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Gregg, J.S.; Andres, R.J. A Method for Estimating the Temporal and Spatial Patterns of Carbon Dioxide Emissions from National Fossil-Fuel Consumption. Tellus B Chem. Phys. Meteorol. 2008, 60, 1–10. [Google Scholar] [CrossRef]
- Huang, W.; Cui, L.; Chen, M.; Zhang, D.; Yao, Y. Estimating Urban Functional Distributions with Semantics Preserved POI Embedding. Int. J. Geogr. Inf. Sci. 2022, 36, 1905–1930. [Google Scholar] [CrossRef]
- Crisp, D. Measuring CO2 from Space: The NASA Orbiting Carbon Observatory-2. In Proceedings of the 61st International Astronautical Congress (IAC 2010), Prague, Czech Republic, 27 September–1 October 2010. [Google Scholar]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval Algorithm for CO2 and CH4 Column Abundances from Short-Wavelength Infrared Spectral Observations by the Greenhouse Gases Observing Satellite. Atmospheric Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Ialongo, I.; Tamminen, J. Direct Space-Based Observations of Anthropogenic CO2 Emission Areas from OCO-2. Geophys. Res. Lett. 2016, 43, 11,400–11,406. [Google Scholar] [CrossRef]
- Thompson, D.R.; Thorpe, A.K.; Frankenberg, C.; Green, R.O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S. Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter. Geophys. Res. Lett. 2016, 43, 6571–6578. [Google Scholar] [CrossRef]
- Frankenberg, C.; Berry, J. 3.10—Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; pp. 143–162. ISBN 978-0-12-803221-3. [Google Scholar]
- Christen, A. Atmospheric Measurement Techniques to Quantify Greenhouse Gas Emissions from Cities. Urban Clim. 2014, 10, 241–260. [Google Scholar] [CrossRef]
- Feng, L.; Palmer, P.I.; Parker, R.J.; Deutscher, N.M.; Feist, D.G.; Kivi, R.; Morino, I.; Sussmann, R. Estimates of European Uptake of CO2 Inferred from GOSAT XCO2 Retrievals: Sensitivity to Measurement Bias inside and Outside Europe. Atmospheric Chem. Phys. 2016, 16, 1289–1302. [Google Scholar] [CrossRef]
- Pao, H.-T.; Tsai, C.-M. Modeling and Forecasting the CO2 Emissions, Energy Consumption, and Economic Growth in Brazil. Energy 2011, 36, 2450–2458. [Google Scholar] [CrossRef]
- Shao, L.; Guan, D.; Zhang, N.; Shan, Y.; Chen, G.Q. Carbon Emissions from Fossil Fuel Consumption of Beijing in 2012. Environ. Res. Lett. 2016, 11, 114028. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; O’Keeffe, D.; Patarasuk, R.; Hutchins, M.; Huang, J.; Rao, P.; Song, Y. Comparison of Global Downscaled Versus Bottom-Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas. J. Geophys. Res. Atmospheres 2019, 124, 2823–2840. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Land Use Induced Changes of Organic Carbon Storage in Soils of China. Glob. Change Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Zhang, R.; Pu, L.; Zhu, M. Impacts of Transportation Arteries on Land Use Patterns in Urban-Rural Fringe: A Comparative Gradient Analysis of Qixia District, Nanjing City, China. Chin. Geogr. Sci. 2013, 23, 378–388. [Google Scholar] [CrossRef]
- Schuh, A.E.; Lauvaux, T.; West, T.O.; Denning, A.S.; Davis, K.J.; Miles, N.; Richardson, S.; Uliasz, M.; Lokupitiya, E.; Cooley, D.; et al. Evaluating Atmospheric CO2 Inversions at Multiple Scales over a Highly Inventoried Agricultural Landscape. Glob. Change Biol. 2013, 19, 1424–1439. [Google Scholar] [CrossRef]
- Ogle, S.M.; Davis, K.; Lauvaux, T.; Schuh, A.; Cooley, D.; West, T.O.; Heath, L.S.; Miles, N.L.; Richardson, S.; Breidt, F.J.; et al. An Approach for Verifying Biogenic Greenhouse Gas Emissions Inventories with Atmospheric CO2 Concentration Data. Environ. Res. Lett. 2015, 10, 034012. [Google Scholar] [CrossRef]
- Jain, A.K.; Meiyappan, P.; Richardson, T. Carbon Emissions from Land-Use Change: Model Estimates Using Three Different Data Sets. In Land Use and the Carbon Cycle: Advances in Integrated Science, Management, and Policy; Reed, B.C., Brown, D.G., Robinson, D.T., French, N.H.F., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 241–258. ISBN 978-1-107-64835-7. [Google Scholar]
- Chuai, X.; Feng, J. High Resolution Carbon Emissions Simulation and Spatial Heterogeneity Analysis Based on Big Data in Nanjing City, China. Sci. Total Environ. 2019, 686, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, P.; Hampson, K.; Anumba, C. Assessing Block-Level Sustainable Transport Infrastructure Development Using a Spatial Trade-off Relation Model. Int. J. Appl. Earth Obs. Geoinformation 2021, 105, 102585. [Google Scholar] [CrossRef]
- Ehsani, M.; Ahmadi, A.; Fadai, D. Modeling of Vehicle Fuel Consumption and Carbon Dioxide Emission in Road Transport. Renew. Sustain. Energy Rev. 2016, 53, 1638–1648. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Xue, R.; Zhang, Y. Modeling Carbon Emissions from Urban Traffic System Using Mobile Monitoring. Sci. Total Environ. 2017, 599–600, 944–951. [Google Scholar] [CrossRef]
- Boehme, P.; Berger, M.; Massier, T. Estimating the Building Based Energy Consumption as an Anthropogenic Contribution to Urban Heat Islands. Sustain. Cities Soc. 2015, 19, 373–384. [Google Scholar] [CrossRef]
- Peng, C. Calculation of a Building’s Life Cycle Carbon Emissions Based on Ecotect and Building Information Modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A Comprehensive Overview on the Data Driven and Large Scale Based Approaches for Forecasting of Building Energy Demand: A Review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Pachauri, S. An Analysis of Cross-Sectional Variations in Total Household Energy Requirements in India Using Micro Survey Data. Energy Policy 2004, 32, 1723–1735. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. Household Energy Consumption in the UK: A Highly Geographically and Socio-Economically Disaggregated Model. Energy Policy 2008, 36, 3177–3192. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. In Intergovernamental Panel on Climate Change Strategies Working Group; IPCC Energy and Industry: Paris, France, 1989. [Google Scholar]
- Ribeiro, H.V.; Rybski, D.; Kropp, J.P. Effects of Changing Population or Density on Urban Carbon Dioxide Emissions. Nat. Commun. 2019, 10, 3204. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R. Large Uncertainties in Urban-Scale Carbon Emissions. J. Geophys. Res. Atmospheres 2017, 122, 11242–11260. [Google Scholar] [CrossRef]
- Berkhout, F.; Hertin, J.; Jordan, A. Socio-Economic Futures in Climate Change Impact Assessment: Using Scenarios as ‘Learning Machines’. Glob. Environ. Change 2002, 12, 83–95. [Google Scholar] [CrossRef]
- Li, Z.; Wang, F.; Kang, T.; Wang, C.; Chen, X.; Miao, Z.; Zhang, L.; Ye, Y.; Zhang, H. Exploring Differentiated Impacts of Socioeconomic Factors and Urban Forms on City-Level CO2 Emissions in China: Spatial Heterogeneity and Varying Importance Levels. Sustain. Cities Soc. 2022, 84, 104028. [Google Scholar] [CrossRef]
- Du, L.; Li, X.; Zhao, H.; Ma, W.; Jiang, P. System Dynamic Modeling of Urban Carbon Emissions Based on the Regional National Economy and Social Development Plan: A Case Study of Shanghai City. J. Clean. Prod. 2018, 172, 1501–1513. [Google Scholar] [CrossRef]
- Wen, L.; Shao, H. Influencing Factors of the Carbon Dioxide Emissions in China’s Commercial Department: A Non-Parametric Additive Regression Model. Sci. Total Environ. 2019, 668, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zeng, B.; Wang, J.; Luo, X.; Liu, X. Forecasting Chinese Carbon Emissions Using a Novel Grey Rolling Prediction Model. Chaos Solitons Fractals 2021, 147, 110968. [Google Scholar] [CrossRef]
- Wilson, C.; Dowlatabadi, H. Models of Decision Making and Residential Energy Use. Annu. Rev. Environ. Resour. 2007, 32, 169–203. [Google Scholar] [CrossRef]
- Jiang, Y.; Gu, P.; Chen, Y.; He, D.; Mao, Q. Modelling Household Travel Energy Consumption and CO2 Emissions Based on the Spatial Form of Neighborhoods and Streets: A Case Study of Jinan, China. Comput. Environ. Urban Syst. 2019, 77, 101134. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green Streets—Quantifying and Mapping Urban Trees with Street-Level Imagery and Computer Vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Gurney, K.R.; Razlivanov, I.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City. Environ. Sci. Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Huang, B. Estimation of Building Height Using a Single Street View Image via Deep Neural Networks. ISPRS J. Photogramm. Remote Sens. 2022, 192, 83–98. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Gou, A. Numerical Characteristics and Spatial Distribution of Panoramic Street Green View Index Based on SegNet Semantic Segmentation in Savannah. Urban For. Urban Green. 2022, 69, 127488. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, S.; Shi, T. Comparative Study on the Cooling Effects of Green Space Patterns in Waterfront Build-Up Blocks: An Experience from Shanghai. Int. J. Environ. Res. Public. Health 2020, 17, 8684. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Han, Z.; Xu, W. Evolution of Historical Urban Landscape with Computer Vision and Machine Learning: A Case Study of Berlin; Wichmann Verlag: Heidelberg, Germany, 2021. [Google Scholar]
- Fang, F.; Zeng, L.; Li, S.; Zheng, D.; Zhang, J.; Liu, Y.; Wan, B. Spatial Context-Aware Method for Urban Land Use Classification Using Street View Images. ISPRS J. Photogramm. Remote Sens. 2022, 192, 1–12. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Sky View Factor Estimation from Street View Images Based on Semantic Segmentation. Urban Clim. 2021, 40, 100999. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, H.; Li, S.; Liu, Y. How Road Network Transformation May Be Associated with Reduced Carbon Emissions: An Exploratory Analysis of 19 Major Chinese Cities. Sustain. Cities Soc. 2023, 95, 104575. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, W.; Jiang, Q.; Li, W.; Ji, T.; Dong, L. Drivers or Pedestrians, Whose Dynamic Perceptions Are More Effective to Explain Street Vitality? A Case Study in Guangzhou. Remote Sens. 2023, 15, 568. [Google Scholar] [CrossRef]
- Yang, S.; Krenz, K.; Qiu, W.; Li, W. The Role of Subjective Perceptions and Objective Measurements of the Urban Environment in Explaining House Prices in Greater London: A Multi-Scale Urban Morphology Analysis. ISPRS Int. J. Geo-Inf. 2023, 12, 249. [Google Scholar] [CrossRef]
- Li, X.; Cai, B.Y.; Qiu, W.; Zhao, J.; Ratti, C. A Novel Method for Predicting and Mapping the Occurrence of Sun Glare Using Google Street View. Transp. Res. Part C Emerg. Technol. 2019, 106, 132–144. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting Urban Functional Regions from Points of Interest and Human Activities on Location-Based Social Networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Song, Q.; Liu, Y.; Qiu, W.; Liu, R.; Li, M. Investigating the Impact of Perceived Micro-Level Neighborhood Characteristics on Housing Prices in Shanghai. Land 2022, 11, 2002. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, W.; Li, W.; Liu, X.; Zhang, Z.; Li, X.; Luo, D. Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques. Remote Sens. 2022, 14, 891. [Google Scholar] [CrossRef]
- He, Y.; Zhao, Q.; Sun, S.; Li, W.; Qiu, W. Measuring the Spatial-Temporal Heterogeneity of Helplessness Sentiment and Its Built Environment Determinants during the COVID-19 Quarantines: A Case Study in Shanghai. ISPRS Int. J. Geo-Inf. 2024, 13, 112. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, Y.; Qiu, N.; Guo, H.; Han, X.; Guo, Y. Exploring Built Environment Factors on E-Bike Travel Behavior in Urban China: A Case Study of Jinan. Front. Public Health 2022, 10, 1013421. [Google Scholar] [CrossRef]
- Liang, X.; Zhao, T.; Biljecki, F. Revealing Spatio-Temporal Evolution of Urban Visual Environments with Street View Imagery. Landsc. Urban Plan. 2023, 237, 104802. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A Review of Semantic Segmentation Using Deep Neural Networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2017, arXiv:1612.01105. [Google Scholar]
- Yuan, W.; Wang, J.; Xu, W. Shift Pooling PSPNet: Rethinking PSPNet for Building Extraction in Remote Sensing Images from Entire Local Feature Pooling. Remote Sens. 2022, 14, 4889. [Google Scholar] [CrossRef]
- Sun, H.; Xu, H.; He, H.; Wei, Q.; Yan, Y.; Chen, Z.; Li, X.; Zheng, J.; Li, T. A Spatial Analysis of Urban Streets under Deep Learning Based on Street View Imagery: Quantifying Perceptual and Elemental Perceptual Relationships. Sustainability 2023, 15, 14798. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K Dataset. Int. J. Comput. Vis. 2019, 127, 302–321. [Google Scholar] [CrossRef]
- Malakouti, S.M. Babysitting Hyperparameter Optimization and 10-Fold-Cross-Validation to Enhance the Performance of ML Methods in Predicting Wind Speed and Energy Generation. Intell. Syst. Appl. 2023, 19, 200248. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Y.; Wang, X.; Tian, G.; Zhang, S. Measuring the Correlation between Human Activity Density and Streetscape Perceptions: An Analysis Based on Baidu Street View Images in Zhengzhou, China. Land 2022, 11, 400. [Google Scholar] [CrossRef]
- Choi, W.; Ranasinghe, D.; Bunavage, K.; DeShazo, J.R.; Wu, L.; Seguel, R.; Winer, A.M.; Paulson, S.E. The Effects of the Built Environment, Traffic Patterns, and Micrometeorology on Street Level Ultrafine Particle Concentrations at a Block Scale: Results from Multiple Urban Sites. Sci. Total Environ. 2016, 553, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ding, B.; Shi, X.; Li, C.; Chen, Y. Household Energy Consumption Patterns and Carbon Emissions for the Megacities—Evidence from Guangzhou, China. Energies 2022, 15, 2731. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, J.; Song, J. Forecast of China’s Annual Carbon Emissions Based on Two-Stage Model. Front. Environ. Sci. 2022, 10, 895648. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, J.; Hu, S. Regression Analysis and Driving Force Model Building of CO2 Emissions in China. Sci. Rep. 2021, 11, 6715. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Hu, X.; Ren, Q.; Lin, T.; Li, X.; Zhang, G.; Shi, L. Effect of Urban Micro-Climatic Regulation Ability on Public Building Energy Usage Carbon Emission. Energy Build. 2017, 154, 553–559. [Google Scholar] [CrossRef]
- Wei, X. Research on Reducing Carbon Consumption in Residential Community Spaces as Influenced by Microclimate Environments. J. Urban Plan. Dev. 2021, 147, 04021037. [Google Scholar] [CrossRef]
Variables | Mean | Min | Max | Std Dev. | Source | |
---|---|---|---|---|---|---|
Y | CE | 461.41369 | 166.85400 | 748.09564 | 131.13719 | BSV API |
X1 | wall | 0.0080 | 0.00000 | 0.47448 | 0.02126 | extracting from 25,046 panorama SVIs in Beijing |
X2 | building | 0.1092 | 0.00000 | 0.68636 | 0.08460 | |
X3 | sky | 0.5223 | 0.00000 | 0.74635 | 0.13137 | |
X4 | tree | 0.0595 | 0.00000 | 0.65801 | 0.07291 | |
X5 | road | 0.1545 | 0.00000 | 0.78654 | 0.09889 | |
X6 | grass | 0.0343 | 0.00000 | 0.24804 | 0.06358 | |
X7 | sidewalk | 0.0075 | 0.00000 | 0.19549 | 0.01319 | |
X8 | person | 0.0046 | 0.00000 | 0.23174 | 0.01323 | |
X9 | earth (soil) | 0.0287 | 0.00000 | 0.37849 | 0.05352 | |
X10 | car | 0.0163 | 0.00000 | 0.29916 | 0.03156 | |
X11 | fence | 0.0107 | 0.00000 | 0.23245 | 0.01559 | |
X12 | railing | 0.0066 | 0.00000 | 0.23574 | 0.01462 | |
X13 | column | 0.0041 | 0.00000 | 0.35881 | 0.01108 | |
X14 | bridge | 0.0010 | 0.00000 | 0.11614 | 0.00415 | |
X15 | streetlight | 0.0024 | 0.00000 | 0.24859 | 0.00917 | |
X16 | plant | 0.0023 | 0.00000 | 0.60550 | 0.01524 | |
X17 | signboard | 0.0007 | 0.00000 | 0.26453 | 0.00420 | |
X18 | minibike | 0.0016 | 0.00000 | 0.74652 | 0.01795 | |
X19 | chair | 0.0007 | 0.00000 | 0.00059 | 0.00010 | |
X20 | bicycle | 0.0017 | 0.00000 | 0.63037 | 0.01554 | |
X21 | lamp | 0.0000 | 0.00000 | 0.00000 | 0.00000 | |
X22 | van | 0.0011 | 0.00000 | 0.39913 | 0.00738 | |
X23 | ashcan | 0.0009 | 0.00000 | 0.21978 | 0.00588 | |
X24 | skyscraper | 0.0012 | 0.00000 | 0.69262 | 0.01369 | |
X25 | ceiling | 0.0000 | 0.00000 | 0.00000 | 0.00000 | |
X26 | mountain | 0.0014 | 0.00000 | 0.84518 | 0.02129 | |
X27 | awning | 0.0017 | 0.00000 | 0.94899 | 0.02578 | |
X28 | windowpane | 0.0001 | 0.00000 | 0.14033 | 0.00131 | |
X29 | sculpture | 0.0002 | 0.00000 | 0.27530 | 0.00415 | |
X30 | fountain | 0.0001 | 0.00000 | 0.08715 | 0.00193 | |
X31 | water | 0.0002 | 0.00000 | 0.17654 | 0.00287 | |
X32 | pier | 0.0000 | 0.00000 | 0.01570 | 0.00035 | |
X33 | sofa | 0.0000 | 0.00000 | 0.00000 | 0.00000 | |
X34 | bulletin board | 0.0000 | 0.00000 | 0.00781 | 0.00008 | |
X35 | booth | 0.0000 | 0.00000 | 0.01002 | 0.00009 | |
X36 | glass | 0.0000 | 0.00000 | 0.00128 | 0.00002 | |
X37 | desk | 0.0000 | 0.00000 | 0.00000 | 0.00000 |
Index | Model | R2 | RMSE (t/km2/Month) | MAE (t/km2/Month) |
---|---|---|---|---|
1 | KNN | 0.35 | 105.17 | 83.21 |
2 | SVM | 0.1 | 123.31 | 100.61 |
3 | Random Forest * | 0.80 | 58.11 | 40.90 |
4 | Decision Tree | 0.74 | 66.79 | 21.69 |
5 | OLS | 0.1 | 123.04 | 100.22 |
6 | Gaussian | 0.0 | 130.72 | 106.64 |
7 | Voting Selection | 0.47 | 95 | 77.11 |
8 | Gradient Boosting | 0.23 | 113.97 | 93 |
No | Feature | VIF |
---|---|---|
1 | wall | 1.302509 |
2 | building | 2.372834 |
3 | sky | 8.148338 |
4 | tree | 1.86316 |
5 | road | 5.77073 |
6 | grass | 2.282957 |
7 | sidewalk | 1.648845 |
8 | person | 1.248487 |
9 | earth | 1.742131 |
10 | car | 1.416357 |
11 | fence | 1.547135 |
12 | railing | 1.365433 |
13 | column | 1.224163 |
14 | bridge | 1.069011 |
15 | streetlight | 1.124353 |
16 | plant | 1.058969 |
17 | signboard | 1.04199 |
18 | minibike | 1.023058 |
19 | bicycle | 1.050033 |
20 | van | 1.05049 |
21 | ashcan | 1.067147 |
22 | skyscraper | 1.030406 |
23 | mountain | 1.032571 |
24 | awning | 1.084868 |
25 | windowpane | 1.034308 |
26 | sculpture | 1.028813 |
27 | fountain | 1.012001 |
28 | water | 1.023882 |
29 | pier | 1.01266 |
30 | bulletin board | 1.001936 |
31 | booth | 1.002064 |
Literature | Dep. Variable | Independent Var. | Model Performance | ||||
---|---|---|---|---|---|---|---|
No. of Data Sources | Type of Variables | S.D. | MAE | RMSE | R2 | ||
[140] | Household travel CEs in Guangzhou (kg/week) | 5 | Socioeconomic, household, land use, street forms, and location | 5.7 | 12.7 | N/A | 0.418 (pseudo R2) |
[141] | China’s annual CEs (mt/year) | 6 | Forest coverage, total energy consumption, energy consumption intensity, GDP, industrial structure, and employment structure | 2850.1 | 405.5 | 525.2 | N/A |
[142] | CEs in China | 6 | Renewable energy development, market demand changes, energy industry regulations, industrial structure reforms, industrial technology innovation, and accidental events | N/A | N/A | N/A | 0.74–0.77 |
This paper | Residential CEs (t/km2/month) | 1 | SVIs | 131.12 | 40.9 | 58.11 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Xiang, Y.; Ying, Y.; Jiao, Y.; Zhao, R.; Qiu, W. Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning. Remote Sens. 2024, 16, 1312. https://doi.org/10.3390/rs16081312
Shi W, Xiang Y, Ying Y, Jiao Y, Zhao R, Qiu W. Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning. Remote Sensing. 2024; 16(8):1312. https://doi.org/10.3390/rs16081312
Chicago/Turabian StyleShi, Wanqi, Yeyu Xiang, Yuxuan Ying, Yuqin Jiao, Rui Zhao, and Waishan Qiu. 2024. "Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning" Remote Sensing 16, no. 8: 1312. https://doi.org/10.3390/rs16081312
APA StyleShi, W., Xiang, Y., Ying, Y., Jiao, Y., Zhao, R., & Qiu, W. (2024). Predicting Neighborhood-Level Residential Carbon Emissions from Street View Images Using Computer Vision and Machine Learning. Remote Sensing, 16(8), 1312. https://doi.org/10.3390/rs16081312