Airborne Multi-Channel Forward-Looking Radar Super-Resolution Imaging Using Improved Fast Iterative Interpolated Beamforming Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Channel Radar Echo Signal Modeling
2.2. Classic FIIB Algorithm
2.3. FIIB with Improved Initialization
Algorithm 1: Improved FIIB algorithm |
Input: |
, , |
Repeat |
Until ( or convergence) |
: Set of the index of peaks obtained from |
, , , |
Repeat |
if |
else |
Until () |
, |
, |
Repeat |
for |
End |
Until ( or convergence) |
Output: |
3. Simulation Results
3.1. Point Target Simulation
3.2. Scene Reconstruction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, D.Q.; Zhang, Y.C.; Pei, J.F.; Huo, W.B.; Zhang, Y.; Huang, Y.L.; Yang, J.Y. Forward-looking geometric configuration optimization design for spaceborne-airborne multistatic synthetic aperture radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8033–8047. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Mao, D.Q.; Zhang, Q.; Zhang, Y.; Huang, Y.L.; Yang, J.Y. Airborne forward-looking radar super-resolution imaging using iterative adaptive approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2044–2054. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A Tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Song, S.Q.; Dai, Y.P.; Jin, T.; Wang, X.R.; Hua, Y.S.; Zhou, X.L. An effective image reconstruction enhancement method with convolutional reweighting for near-field SAR. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2486–2490. [Google Scholar] [CrossRef]
- Lu, Z.; Ding, Z.; Liu, L.; Long, T. A DBS Doppler centroid estimation algorithm based on entropy minimization. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3703–3712. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, M.; Wang, Z.Y.; Lu, Y.L.; Cao, R.Q.; Zhang, P.; Zuo, L.; Wu, Y. Cross-range resolution enhancement for DBS imaging in a scan mode using aperture-extrapolated sparse representation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1459–1463. [Google Scholar] [CrossRef]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar Systems and Signal Processing; John Wiley & Sons: New York, NY, USA, 1991; p. 19. [Google Scholar]
- Li, W.C.; Wang, Z.W.; Chen, R.; Li, Z.Y.; Wu, J.J.; Yang, J.Y. Traditional synthetic aperture processing assisted GAN-Like network for multichannel radar forward-looking superresolution imaging. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5201813. [Google Scholar] [CrossRef]
- Tang, J.K.; Liu, Z.; Ran, L.; Xie, R.; Qin, J.K. Radar Forward-looking Super-resolution imaging method based on sparse and low-rank priors. J. Radars 2023, 12, 332–342. [Google Scholar] [CrossRef]
- Wang, R.; Loffeld, O.; Nies, H.; Peters, V. Image formation algorithm for bistatic forward-looking SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Walterscheid, I.; Espeter, T.; Klare, J.; Brenner, A.R.; Ender, J.H.G. Potential and limitations of forward-looking bistatic SAR. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Li, Y.C.; Zhang, T.H.; Mei, H.W.; Quan, Y.H.; Xing, M.D. Focusing translational-variant bistatic forward-looking SAR data using the modified Omega-K algorithm. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5203916. [Google Scholar] [CrossRef]
- Bao, M.; Jia, Z.H.; Yin, X.N.; Xing, M.D. Radar forward-looking super-resolution imaging algorithm of ITR-DTV based on Renyi entropy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 6148–6157. [Google Scholar] [CrossRef]
- Mao, D.Q.; Yang, J.Y.; Zhang, Y.C.; Huo, W.B.; Xu, F.Y.; Pei, J.F.; Zhang, Y.; Huang, Y.L. Angular superresolution of real aperture radar with high-dimensional data: Normalized projection array model and adaptive reconstruction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5117216. [Google Scholar] [CrossRef]
- Tuo, X.Y.; Mao, D.Q.; Zhang, Y.; Feng, M.X.; Zhang, Y.C.; Huang, Y.L.; Yang, J.Y. Two-step dimension reduction strategy for real-aperture radar fast super-resolution imaging. IEEE Trans. Geosci. Remote Sens. Lett. 2022, 19, 4025505. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Zhang, Y.; Huang, Y.L.; Zhang, Y.C.; Pei, J.F.; Yi, Q.Y.; Li, W.C.; Yang, J.Y. TV-sparse super-resolution method for radar forward-looking imaging. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6534–6549. [Google Scholar] [CrossRef]
- Gambardella, A.; Miglioaccio, M. On the superresolution of microwave scanning radiometer measurements. IEEE Geosci. Remote Sens. Lett. 2008, 5, 796–800. [Google Scholar] [CrossRef]
- Tuo, X.Y.; Zhang, Y.; Huang, Y.L.; Yang, J.Y. Fast sparse-TSVD super-resolution method of real aperture radar forward-looking imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6609–6620. [Google Scholar] [CrossRef]
- Huo, W.B.; Tuo, X.Y.; Zhang, Y.; Zhang, Y.C.; Huang, Y.L. Balanced Tikhonov and total variation deconvolution approach for radar forward-looking super-resolution imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3505805. [Google Scholar] [CrossRef]
- Chen, H.M.; Li, Y.C.; Gao, W.Q.; Zhang, W.J.; Sun, H.W.; Guo, L.; Yu, J.Z. Bayesian forward-looking superresolution imaging using Doppler deconvolution in expanded beam space for high-speed platform. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5105113. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, J.H.; Tuo, X.Y.; Yang, H.G.; Zhang, Y.C.; Huang, Y.L.; Yang, J.Y. Scanning radar forward-looking superresolution imaging based on the Weibull distribution for a sea-surface target. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5116111. [Google Scholar] [CrossRef]
- Wu, D.; Yang, C.J.; Zhu, D.Y.; Shen, M.W. Autofocusing algorithm for monopulse imaging. Acta Electron. Sin. 2016, 44, 1962–1968. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, D.Y.; Tian, B.; Zhu, Z.D. Performance evaluation for monopulse imaging algorithm. Acta Aeronaut. Astronaut. Sin. 2012, 33, 1905–1914. [Google Scholar]
- Li, Y.L.; Liu, J.G.; Jiang, X.Q.; Huang, X.T. Angular superresolution for signal model in coherent scanning radars. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3103–3116. [Google Scholar] [CrossRef]
- Chen, H.M.; Lu, Y.B.; Mu, H.Q.; Yi, X.L.; Liu, J.; Wang, Z.Y.; Li, M. Knowledge-aided mono-pulse forward-looking imaging for airborne radar by exploiting the antenna pattern information. Electron. Lett. 2017, 53, 566–568. [Google Scholar] [CrossRef]
- Sheng, W.X.; Fang, D.G. Angular superresolution for phased antenna array by phase weighting. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 1450–1458. [Google Scholar] [CrossRef]
- Sutor, T.; Buckreuss, S.; Krieger, G.; Wendler, M.; Witte, F. Sector Imaging Radar for Enhanced Vision (SIREV): Theory and Applications. In Proceedings of the Enhanced and Synthetic Vision, Orlando, FL, USA, 24–25 April 2000. [Google Scholar]
- Dai, S.L.; Wiesbeck, W. The imaging mode of forward looking SAR with two receiving antennas. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999. [Google Scholar]
- Dai, S.L.; Wiesbeck, W. High resolution imaging for forward looking SAR with multiple receiving antennas. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Yang, C.J.; Shen, J.; Jiang, Z.T.; She, C.Y.; Zou, X.D. A Multi-Channel Radar Forward-Looking Imaging Algorithm Based on Super-Resolution Technique. In Proceedings of the China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018. [Google Scholar]
- Cho, B.L.; Sun, S.G. Cross-Range Resolution Improvement in Forward-Looking Imaging Radar Using Autoregressive Model-Based Data extrapolation. IET Radar Sonar Navig. 2015, 9, 933–941. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, D.; Zhu, D.Y. An airborne/missile-borne array radar forward-looking imaging algorithm based on super-resolution method. In Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017. [Google Scholar]
- Xi, R.Y.; Zheng, C.D.; Huang, T.Y.; Wang, L.; Liu, Y.M. Joint range and angle estimation for wideband forward-looking imaging radar. IEEE Sens. J. 2022, 22, 446–460. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Zhang, Y.; Li, W.C.; Huang, Y.L.; Yang, J.Y. Super-resolution surface mapping for scanning radar: Inverse filtering based on the fast iterative adaptive approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 127–144. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramér-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Shah, S.M.; Samar, R.; Khan, N.M.; Raja, M.A.Z. Fractional-order adaptive signal processing strategies for active noise control systems. Nonlinear Dyn. 2016, 85, 1363–1376. [Google Scholar] [CrossRef]
- Roy, R. ESPRIT estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef]
- Yardibi, T.; Li, J.; Stoica, P.; Xue, M.; Baggeroer, A.B. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 425–443. [Google Scholar] [CrossRef]
- Ye, S.L.; Aboutanios, E. An algorithm for the parameter estimation of multiple superimposed exponentials in noise. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, South Brisbane, QLD, Australia, 19–23 April 2015. [Google Scholar]
- Aboutanios, E. On the convergence of the fast iterative interpolated beamformer. In Proceedings of the 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019. [Google Scholar]
- Hassanien, A.; Aboutanios, E. Single-snapshot beamforming using fast iterative adaptive techniques. In Proceedings of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Mills, K.R.; Ahmad, F.; Aboutanios, E. Coarray-domain iterative direction-of-arrival estimation with coprime arrays. Digit. Signal Process. 2022, 122, 103332. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.L.; Dai, Y.P.; Jin, T. Monopulse forward-looking imaging based on Doppler estimation using fast iterative interpolated beamforming algorithm. J. Radars 2023, 12, 1138–1154. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, M.E.; Zhao, C.H.; Zhou, Z.M. Forward-looking Imaging via Doppler estimates of sum-difference measurements in scanning monopulse radar. J. Radars 2021, 10, 131–142. [Google Scholar] [CrossRef]
- Aboutanios, E.; Mulgrew, B. Iterative frequency estimation by interpolation on Fourier coefficients. IEEE Trans. Signal Process. 2005, 53, 1237–1242. [Google Scholar] [CrossRef]
- Aboutanios, E.; Hassanien, A.; Amin, M.G.; Zoubir, A.M. Fast iterative interpolated beamforming for accurate single-snapshot DOA estimation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 574–578. [Google Scholar] [CrossRef]
- Aboutanios, E.; Hassanien, A. Low-cost beamforming-based DOA estimation with model order determination. In Proceedings of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 8–11 June 2020. [Google Scholar]
- Roberts, W.; Stoica, P.; Li, J.; Yardibi, T.; Sadjadi, F.A. Iterative adaptive approaches to MIMO radar imaging. IEEE J. Sel. Top. Signal Process. 2010, 4, 5–20. [Google Scholar] [CrossRef]
- Song, S.Q.; Dai, Y.P.; Sun, S.L.; Jin, T. Efficient Image reconstruction methods based on structured sparsity for short-range radar. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5212615. [Google Scholar] [CrossRef]
- Stoica, P.; Selen, Y. Model-order selection: A re.view of information criterion rules. IEEE Signal Process. Mag. 2004, 21, 36–47. [Google Scholar] [CrossRef]
- Zhang, S.H.; Liu, Y.X.; Li, X. Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 2015, 63, 3425–3434. [Google Scholar] [CrossRef]
- Bai, L.; Yao, S.L.; Gao, K.; Huang, Y.J.; Tang, R.J.; Yan, H.; Meng, M.Q.-H.; Ren, H.L. Joint sparse representations and coupled dictionary learning in multi-source heterogeneous image pseudo-color fusion. IEEE Sens. J. 2023, 23, 30620–30632. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Channel number | 8 | Channel spacing/wavelength | 3.5 |
Velocity | 100 m/s | Range of scene center | 1700 m |
Carrier frequency | 18 GHz | Resolution cell | 3 m × 3 m |
Bandwidth | 50 MHz | 3db beamwidth | 2.18° |
Pulse width | 1 μs | Scanning range | −15°~15° |
PRF | 2000 Hz | Angular scanning rate | 30°/s |
Methods | ENT | MSE | SSIM | Runtime/s |
---|---|---|---|---|
Real aperture imaging | 4.1966 | 0.1713 | 0.9780 | 1.5981 |
Monopulse imaging | 3.7350 | 0.0445 | 0.9976 | 3.0836 |
FIIB-based monopulse imaging | 3.2020 | 0.0772 | 0.9922 | 22.8336 |
FIIB-based multi-channel imaging | 3.8783 | 0.0373 | 0.9973 | 1039.8112 |
Improved FIIB-based multi-channel imaging | 3.6102 | 0.0344 | 0.9978 | 219.2591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Li, Y.; Xu, Z.; Zhou, Z.; Jin, T. Airborne Multi-Channel Forward-Looking Radar Super-Resolution Imaging Using Improved Fast Iterative Interpolated Beamforming Algorithm. Remote Sens. 2024, 16, 4121. https://doi.org/10.3390/rs16224121
Liu K, Li Y, Xu Z, Zhou Z, Jin T. Airborne Multi-Channel Forward-Looking Radar Super-Resolution Imaging Using Improved Fast Iterative Interpolated Beamforming Algorithm. Remote Sensing. 2024; 16(22):4121. https://doi.org/10.3390/rs16224121
Chicago/Turabian StyleLiu, Ke, Yueli Li, Zhou Xu, Zhuojie Zhou, and Tian Jin. 2024. "Airborne Multi-Channel Forward-Looking Radar Super-Resolution Imaging Using Improved Fast Iterative Interpolated Beamforming Algorithm" Remote Sensing 16, no. 22: 4121. https://doi.org/10.3390/rs16224121
APA StyleLiu, K., Li, Y., Xu, Z., Zhou, Z., & Jin, T. (2024). Airborne Multi-Channel Forward-Looking Radar Super-Resolution Imaging Using Improved Fast Iterative Interpolated Beamforming Algorithm. Remote Sensing, 16(22), 4121. https://doi.org/10.3390/rs16224121