The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Earth Observation Biodiversity Products
2.3. EL-BIOS EODC
2.3.1. Architecture (Database, Indexing, Storage)
2.3.2. Visualization with Web GIS and OWS
2.4. Satellite Earth Observation Data Pre-Processing
3. Results
3.1. EL-BIOS Data Cube Spatiotemporal Coverage
3.2. Satellite Earth Observation Biodiversity Products in the EL-BIOS EODC
3.3. Case-Study—Protected Areas Monitoring Following Wildifre and Drought Events
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring Connections among Nature, Biodiversity, Ecosystem Services, and Human Health and Well-Being: Opportunities to Enhance Health and Biodiversity Conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Bongaarts, J. IPBES, 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef]
- Román-Palacios, C.; Wiens, J.J. Recent Responses to Climate Change Reveal the Drivers of Species Extinction and Survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef] [PubMed]
- Bazzaz, F.A.; Catovsky, S. Resource Partitioning. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2001; pp. 429–437. ISBN 978-0-12-384720-1. [Google Scholar]
- Tittensor, D.P.; Walpole, M.; Hill, S.L.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, S.H.M.; Leadley, P.W.; Regan, E.C.; Alkemade, R.; et al. A Mid-Term Analysis of Progress toward International Biodiversity Targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, B.; Secades, C.; Penner, J.; Sonnenschein, R.; Skidmore, A.; Burgess, N.D.; Hutton, J.M. Earth Observation as a Tool for Tracking Progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 2015, 1, 19–28. [Google Scholar] [CrossRef]
- Timmermans, J.; Daniel Kissling, W. Advancing Terrestrial Biodiversity Monitoring with Satellite Remote Sensing in the Context of the Kunming-Montreal Global Biodiversity Framework. Ecol. Indic. 2023, 154, 110773. [Google Scholar] [CrossRef]
- Reddy, C.S. Remote Sensing of Biodiversity: What to Measure and Monitor from Space to Species? Biodivers. Conserv. 2021, 30, 2617–2631. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential Biodiversity Variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef]
- Skidmore, A.K.; Pettorelli, N.; Coops, N.C.; Geller, G.N.; Hansen, M.; Lucas, R.; Mücher, C.A.; O’Connor, B.; Paganini, M.; Pereira, H.M.; et al. Environmental Science: Agree on Biodiversity Metrics to Track from Space. Nature 2015, 523, 403–405. [Google Scholar] [CrossRef]
- Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.; Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the Concept of Satellite Remote Sensing Essential Biodiversity Variables: Challenges and Future Directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131. [Google Scholar] [CrossRef]
- Kacic, P.; Kuenzer, C. Forest Biodiversity Monitoring Based on Remotely Sensed Spectral Diversity—A Review. Remote Sens. 2022, 14, 5363. [Google Scholar] [CrossRef]
- Attorre, F.; Abeli, T.; Bacchetta, G.; Farcomeni, A.; Fenu, G.; De Sanctis, M.; Gargano, D.; Peruzzi, L.; Montagnani, C.; Rossi, G.; et al. How to Include the Impact of Climate Change in the Extinction Risk Assessment of Policy Plant Species? J. Nat. Conserv. 2018, 44, 43–49. [Google Scholar] [CrossRef]
- Habibullah, M.S.; Din, B.H.; Tan, S.-H.; Zahid, H. Impact of Climate Change on Biodiversity Loss: Global Evidence. Environ. Sci. Pollut. Res. 2022, 29, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S. Impact of climate change on aquatic ecosystem and its biodiversity: An overview. Int. J. Biol. Innov. 2021, 3, 312–317. [Google Scholar] [CrossRef]
- Soille, P.; Burger, A.; De Marchi, D.; Kempeneers, P.; Rodriguez, D.; Syrris, V.; Vasilev, V. A Versatile Data-Intensive Computing Platform for Information Retrieval from Big Geospatial Data. Future Gener. Comput. Syst. 2018, 81, 30–40. [Google Scholar] [CrossRef]
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a Strong Future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s Sentinel Missions in Support of Earth System Science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Giuliani, G.; Camara, G.; Killough, B.; Minchin, S. Earth Observation Open Science: Enhancing Reproducible Science Using Data Cubes. Data 2019, 4, 147. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Cao, Q.; Li, J.; Huang, R.; Woodcock, R.; Paget, M.; Wang, J.; Li, G. China Data Cube (CDC) for Big Earth Observation Data: Lessons Learned from the Design and Implementation. In Proceedings of the BGDDS 2018—2018 International Workshop on Big Geospatial Data and Data Science, Wuhan, China, 22–23 September 2018. [Google Scholar] [CrossRef]
- Schade, S. Big Data Breaking Barriers—First Steps on a Long Trail. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7-W3, 691–697. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth Data: Disruptive Changes in Earth Observation Data Management and Analysis? Int. J. Digit. Earth 2020, 13, 832–850. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Z.; Peng, D.; Benediktsson, J.A.; Liu, B.; Zou, L.; Li, J.; Plaza, A. Remotely Sensed Big Data: Evolution in Model Development for Information Extraction [Point of View]. Proc. IEEE 2019, 107, 2294–2301. [Google Scholar] [CrossRef]
- Camara, G.; Assis, L.F.; Ribeiro, G.; Ferreira, K.R.; Llapa, E.; Vinhas, L. Big Earth Observation Data Analytics: Matching Requirements to System Architectures. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Burlingame, CA, USA, 31 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Xu, C.; Du, X.; Fan, X.; Giuliani, G.; Hu, Z.; Wang, W.; Liu, J.; Wang, T.; Yan, Z.; Zhu, J.; et al. Cloud-Based Storage and Computing for Remote Sensing Big Data: A Technical Review. Int. J. Digit. Earth 2022, 15, 1417–1445. [Google Scholar] [CrossRef]
- Appel, M.; Pebesma, E. On-Demand Processing of Data Cubes from Satellite Image Collections with the Gdalcubes Library. Data 2019, 4, 92. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and Lessons Learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Killough, B. The Impact of Analysis Ready Data in the Africa Regional Data Cube. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5646–5649. [Google Scholar]
- Giuliani, G.; Chatenoux, B.; Bono, A.D.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons Learned from the Swiss Data Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef]
- Ferreira, K.R.; Queiroz, G.R.; Vinhas, L.; Marujo, R.F.B.; Simoes, R.E.O.; Picoli, M.C.A.; Camara, G.; Cartaxo, R.; Gomes, V.C.F.; Santos, L.A.; et al. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sens. 2020, 12, 4033. [Google Scholar] [CrossRef]
- Sudmanns, M.; Augustin, H.; van der Meer, L.; Baraldi, A.; Tiede, D. The Austrian Semantic EO Data Cube Infrastructure. Remote Sens. 2021, 13, 4807. [Google Scholar] [CrossRef]
- Ariza-Porras, C.; Bravo, G.; Villamizar, M.; Moreno, A.; Castro, H.; Galindo, G.; Cabera, E.; Valbuena, S.; Lozano, P. CDCol: A Geoscience Data Cube That Meets Colombian Needs. In Advances in Computing; Solano, A., Ordoñez, H., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2017; Volume 735, pp. 87–99. ISBN 978-3-319-66561-0. [Google Scholar]
- Wagner, W.; Bauer-Marschallinger, B.; Navacchi, C.; Reuß, F.; Cao, S.; Reimer, C.; Schramm, M.; Briese, C. A Sentinel-1 Backscatter Datacube for Global Land Monitoring Applications. Remote Sens. 2021, 13, 4622. [Google Scholar] [CrossRef]
- Baumann, P.; Misev, D.; Merticariu, V.; Huu, B.P. Datacubes: Towards Space/Time Analysis-Ready Data. In Service-Oriented Mapping: Changing Paradigm in Map Production and Geoinformation Management; Döllner, J., Jobst, M., Schmitz, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 269–299. ISBN 978-3-319-72434-8. [Google Scholar]
- Giuliani, G.; Masó, J.; Mazzetti, P.; Nativi, S.; Zabala, A. Paving the Way to Increased Interoperability of Earth Observations Data Cubes. Data 2019, 4, 113. [Google Scholar] [CrossRef]
- Killough, B. Overview of the Open Data Cube Initiative. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8629–8632. [Google Scholar]
- Dhu, T.; Giuliani, G.; Juárez, J.; Kavvada, A.; Killough, B.; Merodio, P.; Minchin, S.; Ramage, S. National Open Data Cubes and Their Contribution to Country-Level Development Policies and Practices. Data 2019, 4, 144. [Google Scholar] [CrossRef]
- Wang, P.; Woodcock, R.; Taib, R.; Paget, M.; Held, A. A Data Cube Architecture for Cloud-Based Earth Observation Analytics. In Big Data Analytics in Earth, Atmospheric, and Ocean Sciences; American Geophysical Union (AGU): Washington, DC, USA, 2022; pp. 95–113. ISBN 978-1-119-46755-7. [Google Scholar]
- Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.; Phillips, C. Digital Earth Australia—Unlocking New Value from Earth Observation Data. Big Earth Data 2017, 1, 64–74. [Google Scholar] [CrossRef]
- Sudmanns, M.; Augustin, H.; Killough, B.; Giuliani, G.; Tiede, D.; Leith, A.; Yuan, F.; Lewis, A. Think Global, Cube Local: An Earth Observation Data Cube’s Contribution to the Digital Earth Vision. Big Earth Data 2023, 7, 831–859. [Google Scholar] [CrossRef]
- Maso, J.; Zabala, A.; Serral, I.; Pons, X. A Portal Offering Standard Visualization and Analysis on Top of an Open Data Cube for Sub-National Regions: The Catalan Data Cube Example. Data 2019, 4, 96. [Google Scholar] [CrossRef]
- VMASC Virginia Data Cube. Available online: https://datacube.vmasc.org/ (accessed on 10 April 2024).
- Fotakidis, V.; Panayiotou, K.; Fitoka, E.; Roustanis, T.; Chrysafis, I.; Patias, P.; Georgiadis, H.; Botzorlos, V.; Mallinis, G. EL-BIOS Data Cube: National-Scale Biodiversity Monitoring in Greece Through EO Indicators. In Proceedings of the IGARSS 2024–2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 6904–6909. [Google Scholar]
- Craglia, M.; de Bie, K.; Jackson, D.; Pesaresi, M.; Remetey-Fülöpp, G.; Wang, C.; Annoni, A.; Bian, L.; Campbell, F.; Ehlers, M.; et al. Digital Earth 2020: Towards the Vision for the next Decade. Int. J. Digit. Earth 2012, 5, 4–21. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Jiang, H.; Wang, C.; Liu, J.; Liang, D. Big Earth Data: A New Challenge and Opportunity for Digital Earth’s Development. Int. J. Digit. Earth 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Mallinis, G.; Fitoka, E.; Chrysafis, I.; Fotakidis, V.; Chatziiordanou, L.; Chatzicharalabous, E. EO-Based Indicators for Biodiversity Monitoring at National Scale in Greece: Framework Development for the Hellenic Biodiversity Information System (EL-BIOS). In Proceedings of the Tenth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2024), Paphos, Cyprus, 8–9 April 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13212, pp. 500–513. [Google Scholar]
- Legakis, A.; Maragos, P. The Red Book of Endangered Animals of Greece; Greek Zoological Society: Athens, Greece, 2009; ISBN 978-960-85298-8-5. [Google Scholar]
- De Jong, Y.; Verbeek, M.; Michelsen, V.; Bjørn, P.d.P.; Los, W.; Steeman, F.; Bailly, N.; Basire, C.; Chylarecki, P.; Stloukal, E.; et al. Fauna Europaea—All European Animal Species on the Web. Biodivers. Data J. 2014, 2, e4034. [Google Scholar] [CrossRef]
- Legakis, A.; Constantinidis, T.; Petrakis, P.V. Biodiversity in Greece. In Global Biodiversity; Apple Academic Press: Palm Bay, FL, USA, 2018; ISBN 978-0-429-48775-0. [Google Scholar]
- Lee, W.; McGlone, M.; Wright, E. Biodiversity Inventory and Monitoring: A Review of National and International Systems and a Proposed Framework for Future Biodiversity Monitoring by the Department of Conservation; Landcare Research Contract Report LC0405/122; Landcare Research New Zealand Ltd.: Lincoln, New Zealand, 2005. [Google Scholar]
- Bellingham, P.J.; Richardson, S.J.; Gormley, A.M.; Allen, R.B.; Cook, A.; Crisp, P.N.; Forsyth, D.M.; McGlone, M.S.; McKay, M.; MacLeod, C.J.; et al. Implementing Integrated Measurements of Essential Biodiversity Variables at a National Scale. Ecol. Solut. Evid. 2020, 1, e12025. [Google Scholar] [CrossRef]
- Hunt, M.L.; Blackburn, G.A.; Rowland, C.S. Monitoring the Sustainable Intensification of Arable Agriculture: The Potential Role of Earth Observation. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 125–136. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An Indicator Framework for Assessing Ecosystem Services in Support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef]
- Hatziiordanou, L.; Fitoka, E.; Hadjicharalampous, E.; Votsi, N.; Palaskas, D.; Malak, D. Indicators for Mapping and Assessment of Ecosystem Condition and of the Ecosystem Service Habitat Maintenance in Support of the EU Biodiversity Strategy to 2020. One Ecosyst. 2019, 4, e32704. [Google Scholar] [CrossRef]
- Open Data Cube Core. Available online: https://github.com/opendatacube/datacube-core (accessed on 10 October 2024).
- Sentinel-2 Cloud-Optimized GeoTIFFs—Registry of Open Data on AWS. Available online: https://registry.opendata.aws/sentinel-2-l2a-cogs/ (accessed on 13 April 2024).
- Datacube Open Web Services. Available online: https://github.com/opendatacube/datacube-ows (accessed on 10 October 2024).
- Hoyer, S.; Hamman, J. Xarray: N-D Labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 10. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing XXIII; SPIE: Bellingham, WA, USA, 2017; Volume 10427, pp. 37–48. [Google Scholar]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Krause, C.; Dunn, B.; Bishop-Taylor, R. Digital Earth Australia Notebooks and Tools Repository; Geoscience Australia: Canberra, Australia, 2021. [Google Scholar]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 Burned Area Algorithm: Generation of a Small Fire Database for Sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Rodrigues, A.; Marcal, A.R.S.; Cunha, M. Monitoring Vegetation Dynamics Inferred by Satellite Data Using the PhenoSat Tool. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2096–2104. [Google Scholar] [CrossRef]
- Kosczor, E.; Forkel, M.; Hernández, J.; Kinalczyk, D.; Pirotti, F.; Kutchartt, E. Assessing Land Surface Phenology in Araucaria-Nothofagus Forests in Chile with Landsat 8/Sentinel-2 Time Series. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102862. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A Simple Method for Reconstructing a High-Quality NDVI Time-Series Data Set Based on the Savitzky–Golay Filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhao, A.-X.; Tang, X.-J.; Zhang, Z.-H.; Liu, J.-H. The Parameters Optimization Selection of Savitzky-Golay Filter and Its Application in Smoothing Pretreatment for FTIR Spectra. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 516–521. [Google Scholar]
- Rocklin, M. Dask: Parallel Computation with Blocked Algorithms and Task Scheduling. In Proceedings of the SciPy 2015, Austin, TX, USA, 6–12 July 2015; pp. 126–132. [Google Scholar]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne Multispectral Data for Quantifying Leaf Area Index, Nitrogen Concentration, and Photosynthetic Efficiency in Agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Jin, H.; Eklundh, L. A Physically Based Vegetation Index for Improved Monitoring of Plant Phenology. Remote Sens. Environ. 2014, 152, 512–525. [Google Scholar] [CrossRef]
- Smets, B.; Cai, Z.; Eklundh, L.; Tian, F.; Bonte, K.; Van Hoost, R.; Van De Kerchove, R.; Adriaensen, S.; De Roo, B.; Jacobs, T.; et al. Copernicus Land Monitoring Service High Resolution Vegetation Phenology and Productivity (HR-VPP), User Manual; European Environment Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Copernicus Emergency Management Service (© 2023 European Union). EMSR686. Available online: https://rapidmapping.emergency.copernicus.eu/EMSR686 (accessed on 3 September 2024).
- Martínez, B.; Sánchez-Ruiz, S.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sens. 2022, 14, 1310. [Google Scholar] [CrossRef]
- Matas-Granados, L.; Pizarro, M.; Cayuela, L.; Domingo, D.; Gómez, D.; García, M.B. Long-Term Monitoring of NDVI Changes by Remote Sensing to Assess the Vulnerability of Threatened Plants. Biol. Conserv. 2022, 265, 109428. [Google Scholar] [CrossRef]
- Chatenoux, B.; Richard, J.-P.; Small, D.; Roeoesli, C.; Wingate, V.; Poussin, C.; Rodila, D.; Peduzzi, P.; Steinmeier, C.; Ginzler, C.; et al. The Swiss Data Cube, Analysis Ready Data Archive Using Earth Observations of Switzerland. Sci. Data 2021, 8, 295. [Google Scholar] [CrossRef] [PubMed]
- Mallinis, G.; Domakinis, C.; Kokkoris, I.P.; Stefanidis, S.; Dimopoulos, P.; Mitsopoulos, I. MAES Implementation in Greece: Geodiversity. J. Environ. Manag. 2023, 342, 118324. [Google Scholar] [CrossRef]
SEO Product | Alias | EBV Proxy | Temporal Resolution |
---|---|---|---|
Green Fractional Vegetation Cover | FVC | Live cover fraction | Quarter |
Annual net primary productivity | NDVI-I | Physiology | Year |
Leaf Area Index | LAI | Physiology | Month |
Intra-annual relative range | IARR | Primary productivity | Year |
Plant Phenology Index | PPI | Phenology | Quarter |
Date of Annual maximum NDVI | DAM | Phenology | Year |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotakidis, V.; Roustanis, T.; Panayiotou, K.; Chrysafis, I.; Fitoka, E.; Mallinis, G. The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece. Remote Sens. 2024, 16, 3771. https://doi.org/10.3390/rs16203771
Fotakidis V, Roustanis T, Panayiotou K, Chrysafis I, Fitoka E, Mallinis G. The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece. Remote Sensing. 2024; 16(20):3771. https://doi.org/10.3390/rs16203771
Chicago/Turabian StyleFotakidis, Vangelis, Themistoklis Roustanis, Konstantinos Panayiotou, Irene Chrysafis, Eleni Fitoka, and Giorgos Mallinis. 2024. "The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece" Remote Sensing 16, no. 20: 3771. https://doi.org/10.3390/rs16203771
APA StyleFotakidis, V., Roustanis, T., Panayiotou, K., Chrysafis, I., Fitoka, E., & Mallinis, G. (2024). The EL-BIOS Earth Observation Data Cube for Supporting Biodiversity Monitoring in Greece. Remote Sensing, 16(20), 3771. https://doi.org/10.3390/rs16203771