Attention-Enhanced Urban Fugitive Dust Source Segmentation in High-Resolution Remote Sensing Images
Abstract
:1. Introduction
- (1)
- Taking Yichang City, Jingmen City, and Jingzhou City in Hubei Province, China, as the experimental area, two high-resolution remote sensing datasets of fugitive dust sources are constructed, including dataset HDSD-A for dust source segmentation and dataset HDSD-B for distinguishing dust control measures.
- (2)
- Based on the U-Net network, the feature extraction module is replaced by VGG16, and the shuffle attention module is introduced to suppress unnecessary features and noise for better extracting the feature information of dust sources.
- (3)
- Introducing Active Boundary Loss, while combining Dice Loss and Focal Loss to improve the segmentation accuracy at the boundary.
2. Datasets
2.1. Overview of the Study Area
2.2. Data Source
3. Methods
3.1. Improved U-Net Network Architecture
3.2. Attention Module
3.3. Loss Function
4. Experiment
4.1. Experimental Setup
4.2. Evaluation Indicators and Comparison Methods
4.3. Experimental Results on Dust Source Dataset HDSD-A
4.4. Experimental Results on Dust Source Dataset HDSD-B
4.5. Ablation Experiment
4.5.1. Analysis of the Loss Function
4.5.2. Analysis of Model Efficiency
4.5.3. Analysis of the Attention Module
4.6. Application Analysis in Different Cities
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.X.; Zhu, K.Y.; Wu, T.; Shen, H.Q. Study on spatial and temporal characteristics of construction dust and soil dust pollution sources in urban areas of Changsha. Environ. Monit. China 2020, 36, 69–79. [Google Scholar]
- Song, L.L.; Li, T.K.; Bi, X.H.; Wang, X.H.; Zhang, W.H.; Zhang, Y.F.; Wu, J.; Feng, Y.C. Construction and dynamic method of soil fugitive dust emission inventory with high spatial resolution in Beijing-Tianjin-Hebei Region. Res. Environ. Sci. 2021, 34, 1771–1781. [Google Scholar]
- Ministry of Environmental Protection. Technical Guide for the Compilation of Emission Inventory for Particulate Matter from Dust Sources (Trial Implementation) [FP/OL]. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201501/W020-150107594588131490.pdf (accessed on 31 December 2014).
- Jiang, S.; Ji, X.; Li, X.; Wang, T.; Tao, J. Method Study and Result Analysis on Remote Sensing Monitoring of Fugitive Dust from Construction Sites and Bare Area in Jiangsu Province. Environ. Monit. Forewarn. 2022, 14, 12–18. [Google Scholar]
- Kahraman, M.M.; Erkayaoglu, M. A Data-Driven Approach to Control Fugitive Dust in Mine Operations. Min. Metall. Explor. 2021, 38, 549–558. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Shen, Y.; Zhan, L.; Xu, Z. Characteristics of unorganized emissions of microplastics from road fugitive dust in urban mining bases. Sci. Total Environ. 2022, 827, 154355. [Google Scholar] [CrossRef]
- Kolesar, K.R.; Schaaf, M.D.; Bannister, J.W.; Schreuder, M.D.; Heilmann, M.H. Characterization of potential fugitive dust emissions within the Keeler Dunes, an inland dune field in the Owens Valley, California, United States. Aeolian Res. 2022, 54, 100765. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Qiu, F. Prediction method of dust pollutant diffusion range in building demolition based on Euclidean distance transformation. Int. J. Environ. Technol. Manag. 2023, 26, 250–262. [Google Scholar] [CrossRef]
- Rayegani, B.; Barati, S.; Goshtasb, H.; Gachpaz, S.; Ramezani, J.; Sarkheil, H. Sand and dust storm sources identification: A remote sensing approach. Ecol. Indic. 2020, 112, 106099. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: An overview. Sci. Total Environ. 2023, 864, 161135. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Ren, D. Coupling Phenomenon Between Fugitive Dust and High-Temperature Tail Gas: A Thermal Infrared Signature Study. J. Therm. Sci. Eng. Appl. 2023, 15, 031011. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Weng, L.; Lin, H. Local Feature Search Network for Building and Water Segmentation of Remote Sensing Image. Sustainability 2023, 15, 3034. [Google Scholar] [CrossRef]
- Dai, X.; Xia, M.; Weng, L.; Hu, K.; Lin, H.; Qian, M. Multiscale Location Attention Network for Building and Water Segmentation of Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5609519. [Google Scholar] [CrossRef]
- Yuan, G.; Li, J.; Liu, X.; Yang, Z. Weakly supervised road network extraction for remote sensing image based scribble annotation and adversarial learning. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 7184–7199. [Google Scholar] [CrossRef]
- Li, L.; Lu, N.; Jiang, H.; Qin, J. Impact of Deep Convolutional Neural Network Structure on Photovoltaic Array Extraction from High Spatial Resolution Remote Sensing Images. Remote Sens. 2023, 15, 4554. [Google Scholar] [CrossRef]
- Shi, K.; Bai, L.; Wang, Z.; Tong, X.; Mulvenna, M.D.; Bond, R.R. Photovoltaic Installations Change Detection from Remote Sensing Images Using Deep Learning. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 3231–3234. [Google Scholar]
- Xu, S.; Zhang, H.; He, X.; Cao, X.; Hu, J. Oil Tank Detection with Improved EfficientDet Model. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Z.; Bai, L.; Zhang, J.; Tao, J.; Chen, L. Detection of industrial storage tanks at the city-level from optical satellite remote sensing images. In Proceedings of the Image and Signal Processing for Remote Sensing XXVII, Online, 13–17 September 2021; SPIE: Bellingham, WA, USA, 2021; pp. 266–272. [Google Scholar]
- Zhang, Y.; Bai, L.; Wang, Z.; Fan, M.; Jurek-Loughrey, A.; Zhang, Y.; Zhang, Y.; Zhao, M.; Chen, L. Oil Well Detection under Occlusion in Remote Sensing Images Using the Improved YOLOv5 Model. Remote Sens. 2023, 15, 5788. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, L.; Song, G.; Zhang, Y.; Zhu, M.; Zhao, M.; Chen, L.; Wang, M. Optimized faster R-CNN for oil wells detection from high-resolution remote sensing images. Int. J. Remote Sens. 2023, 44, 6897–6928. [Google Scholar] [CrossRef]
- Chang, H.; Bai, L.; Wang, Z.; Wang, M.; Zhang, Y.; Tao, J.; Chen, L. Detection of over-ground petroleum and gas pipelines from optical remote sensing images. In Proceedings of the Image and Signal Processing for Remote Sensing XXIX, Amsterdam, The Netherlands, 4–5 September 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12733, pp. 315–321. [Google Scholar]
- Wu, H.; Dong, H.; Wang, Z.; Bai, L.; Huo, F.; Tao, J.; Chen, L. Semantic segmentation of oil well sites using Sentinel-2 imagery. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: New York, NY, USA, 2023; pp. 6901–6904. [Google Scholar]
- Yu, C.; Hu, Z.; Li, R.; Xia, X.; Zhao, Y.; Fan, X.; Bai, Y. Segmentation and density statistics of mariculture cages from remote sensing images using mask R-CNN. Inf. Process. Agric. 2022, 9, 417–430. [Google Scholar] [CrossRef]
- Wang, J.; Fan, J.; Wang, J. MDOAU-Net: A Lightweight and Robust Deep Learning Model for SAR Image Segmentation in Aquaculture Raft Monitoring. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, W.; Ding, C.; Xia, M. Multi-Resolution Transformer Network for Building and Road Segmentation of Remote Sensing Image. ISPRS Int. J. Geo-Inf. 2022, 11, 165. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, Y.; Li, J. Recognition and extraction of high-resolution satellite remote sensing image buildings based on deep learning. Neural Comput. Appl. 2022, 34, 2691–2706. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Wang, B.; Li, S.; Liu, H.; Xu, D.; Ma, C. BOMSC-Net: Boundary Optimization and Multi-Scale Context Awareness Based Building Extraction from High-Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Fan, X.; Yan, C.; Fan, J.; Wang, N. Improved U-Net Remote Sensing Classification Algorithm Fusing Attention and Multiscale Features. Remote Sens. 2022, 14, 3591. [Google Scholar] [CrossRef]
- Li, S.; Liao, C.; Ding, Y.; Hu, H.; Jia, Y.; Chen, M.; Xu, B.; Ge, X.; Liu, T.; Wu, D. Cascaded Residual Attention Enhanced Road Extraction from Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2022, 11, 9. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Zhang, C.; Duan, C.; Zheng, S. A2-FPN for semantic segmentation of fine-resolution remotely sensed images. Int. J. Remote Sens. 2022, 43, 1131–1155. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Sun, Y.; Bi, F.; Gao, Y.; Chen, L.; Feng, S. A Multi-Attention UNet for Semantic Segmentation in Remote Sensing Images. Symmetry 2022, 14, 906. [Google Scholar] [CrossRef]
- Yuan, M.; Ren, D.; Feng, Q.; Wang, Z.; Dong, Y.; Lu, F.; Wu, X. MCAFNet: A Multiscale Channel Attention Fusion Network for Semantic Segmentation of Remote Sensing Images. Remote Sens. 2023, 15, 361. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Yang, K.; Wang, L.; Su, F.; Chen, X. Semantic segmentation of high-resolution remote sensing images based on a class feature attention mechanism fused with Deeplabv3+. Comput. Geosci. 2022, 158, 104969. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Liu, S.; Wang, D.; Yu, L.; Ren, Y. Change detection enhanced by spatial-temporal association for bare soil land using remote sensing images. In IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing; IEEE: New York, NY, USA, 2023. [Google Scholar]
- He, X.; Wang, Z.; Bai, L.; Wang, M.; Fan, M. Detection of urban fugitive dust emission sources from optical satellite remote sensing images. In Remote Sensing Technologies and Applications in Urban Environments VIII; SPIE: Bellingham, WA, USA, 2023; pp. 73–79. [Google Scholar]
- de Silva, A.; Ranasinghe, R.; Sounthararajah, A.; Haghighi, H.; Kodikara, J. Beyond Conventional Monitoring: A Semantic Segmentation Approach to Quantifying Traffic-Induced Dust on Unsealed Roads. Sensors 2024, 24, 510. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Feng, Q.; Wang, Y.; Batsaikhan, B.; Gong, J.; Li, Y.; Liu, C.; Ma, Y. Urban green plastic cover mapping based on VHR remote sensing images and a deep semi-supervised learning framework. ISPRS Int. J. Geo-Inf. 2020, 9, 527. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, X. A coarse-to-fine weakly supervised learning method for green plastic cover segmentation using high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2022, 188, 157–176. [Google Scholar] [CrossRef]
- Guo, W.; Yang, G.; Li, G.; Ruan, L.; Liu, K.; Li, Q. Remote sensing identification of green plastic cover in urban built-up areas. Environ. Sci. Pollut. Res. 2023, 30, 37055–37075. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Yang, Y.-B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 2235–2239. [Google Scholar]
- Wang, C.; Zhang, Y.; Cui, M.; Ren, P.; Yang, Y.; Xie, X.; Hua, X.S.; Bao, H.; Xu, W. Active boundary loss for semantic segmentation. Proc. AAAI Conf. Artif. Intell. 2022, 36, 2397–2405. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wu, Y.; He, K. Group Normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Li, X.; Sun, X.; Meng, Y.; Liang, J.; Wu, F.; Li, J. Dice loss for data-imbalanced NLP tasks. arXiv 2019, arXiv:1911.02855. [Google Scholar]
- Yeung, M.; Sala, E.; Schönlieb, C.-B.; Rundo, L. Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation. Comput. Med. Imaging Graph. 2022, 95, 102026. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Zhang, R.; Zhang, Q.; Zhang, G. SDSC-UNet: Dual skip connection ViT-based U-shaped model for building extraction. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6005005. [Google Scholar] [CrossRef]
- Ma, X.; Wu, Q.; Zhao, X.; Zhang, X.; Pun, M.O.; Huang, B. Sam-assisted remote sensing imagery semantic segmentation with object and boundary constraints. In IEEE Transactions on Geoscience and Remote Sensing; IEEE: New York, NY, USA, 2024. [Google Scholar]
- Ma, X.; Zhang, X.; Pun, M.O.; Liu, M. A multilevel multimodal fusion transformer for remote sensing semantic segmentation. In IEEE Transactions on Geoscience and Remote Sensing; IEEE: New York, NY, USA, 2024. [Google Scholar]
City | Total Number | Dust Source Type | |||||
---|---|---|---|---|---|---|---|
Road Construction | Bare Ground | Construction Site | |||||
Number | Area/km2 | Number | Area/km2 | Number | Area/km2 | ||
Jingmen | 303 | 22 | 0.64 | 146 | 2.38 | 135 | 5.38 |
Jingzhou | 309 | 26 | 0.89 | 148 | 2.73 | 135 | 6.20 |
Yichang | 348 | 49 | 1.17 | 101 | 1.27 | 198 | 7.28 |
Method | mIoU | mprecision | mrecall |
---|---|---|---|
VGG16+U-Net | 0.915 | 0.965 | 0.954 |
ResNet50+U-Net | 0.885 | 0.938 | 0.918 |
MobilenNetV3+U-Net | 0.829 | 0.914 | 0.894 |
SDSC-UNet | 0.907 | 0.939 | 0.922 |
FTUNetformer | 0.922 | 0.952 | 0.941 |
FTransUNet | 0.932 | 0.969 | 0.958 |
DSU-Net (Ours) | 0.937 | 0.972 | 0.962 |
Type | Metric | Method | ||||||
---|---|---|---|---|---|---|---|---|
VGG16 +U-Net | ResNet50 +U-Net | Segformer | SDSC-UNet | FTUNet Former | FTransUNet | DSU-Net (Ours) | ||
With dust control measures | mIoU | 0.871 | 0.804 | 0.665 | 0.870 | 0.876 | 0.881 | 0.883 |
mprecision | 0.937 | 0.908 | 0.802 | 0.927 | 0.932 | 0.941 | 0.944 | |
mrecall | 0.936 | 0.875 | 0.796 | 0.902 | 0.917 | 0.923 | 0.932 | |
Without dust control measures | mIoU | 0.875 | 0.784 | 0.632 | 0.868 | 0.879 | 0.886 | 0.890 |
mprecision | 0.934 | 0.900 | 0.826 | 0.912 | 0.930 | 0.935 | 0.938 | |
mrecall | 0.931 | 0.859 | 0.729 | 0.894 | 0.929 | 0.942 | 0.946 | |
The whole dataset HDSD-B | mIoU | 0.915 | 0.857 | 0.757 | 0.891 | 0.906 | 0.917 | 0.922 |
mprecision | 0.956 | 0.935 | 0.873 | 0.946 | 0.953 | 0.966 | 0.972 | |
mrecall | 0.944 | 0.909 | 0.838 | 0.927 | 0.948 | 0.952 | 0.958 |
Loss Type | Dust Source Dataset HDSD-A | Dust Source Dataset HDSD-B | ||||
---|---|---|---|---|---|---|
mIoU | mprecision | mrecall | mIoU | mprecision | mrecall | |
LD+LF | 0.902 | 0.956 | 0.913 | 0.887 | 0.923 | 0.893 |
LD+LF+LAB | 0.937 | 0.972 | 0.962 | 0.922 | 0.972 | 0.958 |
Method | FLOPs (G) | Params (M) |
---|---|---|
VGG16+U-Net | 46.45 | 24.89 |
ResNet50+U-Net | 23.01 | 43.93 |
MobilenetV3+U-Net | 0.83 | 3.45 |
Segformer | 1.71 | 3.72 |
SDSC-UNet | 29.74 | 21.32 |
FTUNetformer | 50.84 | 96.14 |
FTransUNet | 45.21 | 160.88 |
DSU-Net (Ours) | 46.47 | 24.89 |
Base | CBAM | SA-E | SA-D | SA-C | HDSD-A Dataset | ||
---|---|---|---|---|---|---|---|
mIoU | mprecision | mrecall | |||||
√ | √ | 0.920 | 0.952 | 0.947 | |||
√ | √ | 0.916 | 0.946 | 0.937 | |||
√ | √ | 0.907 | 0.932 | 0.921 | |||
√ | √ | 0.937 | 0.972 | 0.962 |
Town/Street | Total Number | Total Area/m2 | Area Proportion |
---|---|---|---|
Xiaohe Town | 58 | 2,130,639.7 | 25% |
Leihe Town | 56 | 1,776,621.7 | 21% |
Banqiao Town | 39 | 1,665,538.7 | 20% |
Yancheng Street | 71 | 1,342,464.7 | 16% |
Nanying Street | 14 | 606,735.79 | 7% |
Dayan Industrial Park | 27 | 867,961.14 | 10% |
Yicheng Economic Development Zone | 0 | 0 | 0% |
Total | 265 | 8,389,961.7 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Wang, Z.; Bai, L.; Fan, M.; Chen, Y.; Chen, L. Attention-Enhanced Urban Fugitive Dust Source Segmentation in High-Resolution Remote Sensing Images. Remote Sens. 2024, 16, 3772. https://doi.org/10.3390/rs16203772
He X, Wang Z, Bai L, Fan M, Chen Y, Chen L. Attention-Enhanced Urban Fugitive Dust Source Segmentation in High-Resolution Remote Sensing Images. Remote Sensing. 2024; 16(20):3772. https://doi.org/10.3390/rs16203772
Chicago/Turabian StyleHe, Xiaoqing, Zhibao Wang, Lu Bai, Meng Fan, Yuanlin Chen, and Liangfu Chen. 2024. "Attention-Enhanced Urban Fugitive Dust Source Segmentation in High-Resolution Remote Sensing Images" Remote Sensing 16, no. 20: 3772. https://doi.org/10.3390/rs16203772
APA StyleHe, X., Wang, Z., Bai, L., Fan, M., Chen, Y., & Chen, L. (2024). Attention-Enhanced Urban Fugitive Dust Source Segmentation in High-Resolution Remote Sensing Images. Remote Sensing, 16(20), 3772. https://doi.org/10.3390/rs16203772