Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Data Processing
2.4. Statistical Analysis
3. Results
3.1. Hurricane Michael Impact on Mexico Beach and Surrounding Areas
3.2. Electric Service-Restoration Curves across Urban/Rural Counties
3.3. Estimating Power Outages from Nighttime Light Data
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davis, J.; Mitsova, D.; Briggs, T.C.; Roberts-Briggs, T. Post-Hurricane Michael damage assessment using ADCIRC Storm Surge Hindcast, Image Classification, and LiDAR. Shore Beach 2019, 87, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Mitsova, D.; Esnard, A.-M.; Sapat, A.; Lai, B.S. Socioeconomic vulnerability and electric power restoration timelines in Florida: The case of Hurricane Irma. Nat. Hazards 2018, 94, 689–709. [Google Scholar] [CrossRef]
- Hauptman, L.; Mitsova, D.; Briggs, T.R. Hurricane Ian Damage Assessment Using Aerial Imagery and LiDAR: A Case Study of Estero Island, Florida. J. Mar. Sci. Eng. 2024, 12, 668. [Google Scholar] [CrossRef]
- Byrne, M.J., Sr. Monitoring Storm Tide from Hurricane Michael along the Northwest Coast of Florida, October 2018; U.S. Geological Survey Open-File Report; US Geological Survey: Reston, VA, USA, 2019; Volume 1059, p. 10. [Google Scholar] [CrossRef]
- Mitsova, D.; Sapat, A.; Esnard, A.-M.; Lamadrid, A. Evaluating the Impact of Infrastructure Interdependencies on the Emergency Services Sector and Critical Support Functions Using an Expert Opinion Survey. J. Infrastruct. Syst. 2020, 26, 04020015. [Google Scholar] [CrossRef]
- NHC (National Hurricane Center). National Hurricane Center Tropical Cyclone Report Hurricane Michael (AL142018). 7–11 October 2018; Beven, J.L., II, Berg, R., Hagen, A., Eds.; National Hurricane Center: Miami, FL, USA, 2019; Updated 17 May 2019. [Google Scholar]
- FEMA (Federal Emergency Management Agency). Hurricane Michael in Florida: Building Performance Observations, Recommendations, and Technical Guidance. FEMA P-2077; Mitigation Assessment Team Report; FEMA (Federal Emergency Management Agency): Washington, DC, USA, 2020. Available online: https://www.fema.gov/sites/default/files/2020-07/mat-report_hurricane-michael_florida.pdf (accessed on 5 March 2023).
- Bilskie, M.V.; Asher, T.G.; Miller, P.W.; Fleming, J.G.; Hagen, S.C.; Luettich, R.A., Jr. Real-time simulated storm surge predictions during Hurricane Michael (2018). Weather. Forecast. 2022, 37, 1085–1102. [Google Scholar] [CrossRef]
- Altmaier, D. One year later: Hurricane Michael′s impact on Florida. Florida Office of Insurance Regulation. Insur. J. 2019, 10, 1–17. Available online: https://www.floir.com/siteDocuments/HurricaneMichaelAnalysis.pdf (accessed on 9 November 2023).
- USEIA (U.S. Energy Information Administration). Hurricane Michael Caused 1.7 Million Electricity Outages in the Southeast United States. 2018. Available online: https://www.eia.gov/todayinenergy/detail.php?id=37332 (accessed on 15 April 2024).
- FPSC (Florida Public Service Commission). Hurricane Season Power Outage Reports. 2018. Available online: https://www.psc.state.fl.us/hurricane-report (accessed on 10 November 2018).
- van Oldenborgh, G.J.; van der Wiel, K.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 2017, 12, 124009. [Google Scholar] [CrossRef]
- Climate Central. Surging Power Outages and Climate Change. 2022. Available online: https://www.climatecentral.org/report/surging-power-outages-and-climate-change (accessed on 16 April 2024).
- Román, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS ONE. 2019, 14, e0218883. [Google Scholar] [CrossRef]
- Kwasinski, A.; Andrade, F.; Castro-Sitiriche, M.J.; O’Neill-Carrillo, E. Hurricane Maria Effects on Puerto Rico Electric Power Infrastructure. IEEE Power Energy Technol. Syst. J. 2019, 6, 85–94. [Google Scholar] [CrossRef]
- Hazeleger, W.; Severijns, C.; Semmler, T.; Sţefanescu, S.; Yang, S.; Wang, X.; Wyser, K.; Dutra, E.; Baldasano, J.M.; Bintanja, R.; et al. EC-Earth: A seamless earth-system prediction approach in action. Bull. Am. Meteorol. Soc. 2010, 91, 1357–1363. [Google Scholar] [CrossRef]
- Blake, E.; Zelinsky, D. National Hurricane Center Tropical Cyclone Report: Hurricane Harvey; National Hurricane Center: Miami, FL, USA; National Oceanographic and Atmospheric Association: Washington, DC, USA, 2018. [Google Scholar]
- Melaku, N.D.; Fares, A.; Awal, R. Exploring the impact of winter storm Uri on power outage, air quality, and water systems in Texas, USA. Sustainability 2023, 15, 4173. [Google Scholar] [CrossRef]
- Burton, I.; Kates, R.W.; White, G.F. The Environment as Hazard, 2nd ed.; Guildford: New York, NY, USA, 1993. [Google Scholar]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People′s Vulnerability, and Disasters; Routledge: London, UK, 1994. [Google Scholar]
- Anderson, M.B. Vulnerability to disaster and sustainable development: A general framework for assessing vulnerability. In Storms; Pielke, R., Jr., Pielke, R., Sr., Eds.; Routledge: London, UK, 2000; Volume 1, pp. 11–25. [Google Scholar]
- Burton, C. Social vulnerability and hurricane impact modeling. Nat. Hazards Rev. 2010, 11, 58–68. [Google Scholar] [CrossRef]
- Berke, P.; Campanella, T. Planning for post-disaster resiliency. Ann. Am. Acad. Political Soc. Sci. 2006, 604, 192–207. Available online: http://www.jstor.org/stable/25097788 (accessed on 2 November 2020). [CrossRef]
- Schwab, J. Planning for Post-Disaster Recovery: Next Generation; American Planning Association: Chicago, IL, USA, 2014. [Google Scholar]
- Downton, M.W.; Pielke, R.A. Discretion without accountability: Politics, flood damage, and climate. Nat. Hazards Rev. 2001, 2, 157–166. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Rowan, S.; Kwiatkowski, K. Assessing the relationship between social vulnerability, social capital, and housing resilience. Sustainability 2020, 12, 7718. [Google Scholar] [CrossRef]
- Li, X.; Elvidge, C.; Zhou, Y.; Cao, C.; Warner, T. Remote sensing of night-time light. Int. J. Remote Sens. 2017, 38, 5855–5859. [Google Scholar] [CrossRef]
- Cole, T.A.; Wanik, D.W.; Molthan, A.L.; Román, M.O.; Griffin, R.E. Synergistic use of nighttime satellite data, electric utility infrastructure, and ambient population to improve power outage detections in urban areas. Remote Sens. 2017, 9, 286. [Google Scholar] [CrossRef]
- Shermeyer, J. Assessment of electrical and infrastructure recovery in Puerto Rico following hurricane Maria using a multisource time series of satellite imagery. In Proceedings of the SPIE 10790, Earth Resources and Environmental Remote Sensing/GIS Applications IX, Bellingham, WA, USA, 9 October 2018; p. 1079010. [Google Scholar] [CrossRef]
- U.S. Census Bureau. Profile of General Population and Housing Characteristics; U.S. Census Bureau: Suitland, MD, USA, 2016. [Google Scholar]
- Florida Department of Agriculture and Consumer Services (FDACS). Electric Utilities. 2024. Available online: https://www.fdacs.gov/Business-Services/Energy/Florida-Energy-Clearinghouse/Electric-Utilities (accessed on 16 April 2024).
- Roman, M.; Wang, Z.; Shrestha, R.; Yao, T.; Kalb, V. Black Marble User Guide 1.2; NASA: Washington, DC, USA, 2021. Available online: https://viirsland.gsfc.nasa.gov/PDF/VIIRS_BlackMarble_UserGuide.pdf (accessed on 16 April 2024).
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA′s Black Marble Nighttime Lights Product Suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A harmonized global nighttime light dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- NOAA National Geodetic Survey (NGS). 2018 NOAA NGS Emergency Response Imagery: Hurricane Michael. 2024. Available online: https://www.fisheries.noaa.gov/inport/item/57759 (accessed on 23 March 2024).
- Khatami, R.; Mountrakis, G. Implications of Classification of Methodological Decisions in Flooding Analysis from Hurricane Katrina. Remote Sens. 2012, 4, 3877–3891. [Google Scholar] [CrossRef]
- NASA. Accuracy Assessment of a Land Cover Classification. Applied Remote Sensing Training Program (ARSET). 2018. Available online: https://appliedsciences.nasa.gov/sites/default/files/e1-final.pdf (accessed on 7 July 2024).
- Blanton, B.; Mc Gee, J.; Fleming, J.; Kaiser, C.; Kaiser, H.; Lander, H.; Luettich, R.; Dresback, K.; Kolar, R. Urgent computing of storm surge for North Carolina′s coast. Procedia Comput. Sci. 2012, 9, 1677–1686. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Anselin, L. An Introduction to Spatial Data Science with GeoDa. Volume 1: Exploring Spatial Data; CRC/Chapman & Hall: Boca Raton, FL, USA, 2024; Online version. [Google Scholar]
- Anselin, L. An Introduction to Spatial Data Science with GeoDa. Volume 2: Clustering Spatial Data; CRC/Chapman & Hall: Boca Raton, FL, USA, 2024; Online version. [Google Scholar]
- Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice, a Guide to Geoda, Geodaspace and Pysal; GeoDa Press: Chicago, IL, USA, 2014. [Google Scholar]
- NCHS (National Center for Health Statistics). 2013 Urban-Rural Classification for Counties. Centers for Disease Control and Prevention. 2013. Available online: https://cdc.gov/nchs/data_access/urban_rural.htm (accessed on 22 March 2020).
- Thorson, A. Mexico Beach City Council Votes on New Building Requirements. 6 February 2019. Available online: https://www.mypanhandle.com/news/mexico-beach-city-council-votes-on-new-building-requirements/ (accessed on 22 March 2020).
- Byrne, S. Mexico Beach Building Moratorium Lifted, Code Changes in Place. 18 February 2019. Available online: https://www.wjhg.com/content/news/Mexico-Beach-building-moratorium-lifted-code-changes-in-place-506012851.html (accessed on 22 March 2020).
- NASA (National Aeronautics and Space Administration). Night Lights Show Slow Recovery from Maria. 13 December 2018. Available online: https://earthobservatory.nasa.gov/images/144371/night-lights-show-slow-recovery-from-maria (accessed on 22 March 2020).
- NASA Earth Observatory. Lights Out in Michael′s Wake. 3 August 2018. Available online: https://earthobservatory.nasa.gov/images/92887/lights-out-in-michaels-wake (accessed on 2 November 2020).
- Sun, C.; Thomas, T.; Geng, X.; Chiang, K.; Chen, H.; Xiong, X. VIIRS DNB time-dependent stray light correction. In Earth Observing Systems XXIV; SPIE: San Diego, CA, USA, 2019; Volume 111271W. [Google Scholar]
- Parece, T.E.; Campbell, J.B. Land use/land cover monitoring and geospatial technologies: An overview. In Advances in Watershed Science and Assessment: The Handbook of Environmental Chemistry; Younos, T., Parece, T.E., Eds.; Springer: New York, NY, USA, 2015; Volume 33, pp. 1–32. [Google Scholar]
Reference | Classified | Total Reference Points | User’s Accuracy | |||||
---|---|---|---|---|---|---|---|---|
Roof | Vegetation | Water | Barren | Debris | Sand | |||
Roof | 82 | 2 | 3 | 20 | 3 | 0 | 110 | 82.0 |
Vegetation | 12 | 62 | 14 | 4 | 0 | 0 | 92 | 67.4 |
Water | 1 | 21 | 58 | 1 | 1 | 0 | 82 | 70.7 |
Barren | 0 | 1 | 1 | 66 | 3 | 4 | 75 | 88.0 |
Debris | 7 | 0 | 0 | 10 | 50 | 13 | 80 | 62.5 |
Sand | 1 | 0 | 0 | 3 | 8 | 109 | 121 | 90.1 |
Total classified points | 103 | 86 | 76 | 104 | 65 | 126 | 560 | |
Producer’s accuracy | 79.6 | 72.1 | 76.3 | 63.5 | 76.9 | 86.5 | ||
Total correct reference points | 427 | |||||||
Percent accuracy | 76.25 |
County | Urban/Rural 1 | Total Number of Accounts | Percent Accounts Investor-Owned Electric Utilities 2 | Percent Accounts Rural Cooperative | Percent Accounts Municipal Providers |
---|---|---|---|---|---|
BAY | 1 | 115,624 | 89.9% | 10.1% | 0.0% |
CALHOUN | 0 | 3936 | 23.5% | 43.1% | 33.4% |
FRANKLIN | 0 | 10,199 | 100.0% | 0.0% | 0.0% |
GADSDEN | 1 | 22,294 | 0.0% | 67.2% | 32.8% |
GULF | 1 | 10,916 | 59.3% | 40.7% | 0.0% |
HOLMES | 0 | 10,423 | 24.8% | 75.2% | 0.0% |
JACKSON | 0 | 26,161 | 46.9% | 53.1% | 0.0% |
JEFFERSON | 1 | 8152 | 57.4% | 42.6% | 0.0% |
LEON | 1 | 143,799 | 0.0% | 18.4% | 82.7% |
LIBERTY | 0 | 4058 | 19.0% | 81.0% | 0.0% |
MADISON | 0 | 10,718 | 35.7% | 64.3% | 0.0% |
TAYLOR | 0 | 12,936 | 46.7% | 53.3% | 0.0% |
WAKULLA | 1 | 15,477 | 44.1% | 55.9% | 0.0% |
WALTON | 0 | 59,476 | 38.9% | 61.1% | 0.0% |
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Population density (inhabitants/square mile) | 1463 | 581 | 46 | 5947 |
Number of households on public assistance | 154 | 117 | 11 | 231 |
Percent minority population | 24.20% | 15.10% | 0 | 44.50% |
Percent multi-family housing units | 8.80% | 13.40% | 0 | 34.30% |
Maximum NTL radiance lost | 82.43 | 18.86 | 3.18 | 100.00 |
Percent of the NTL radiance recovered relative to the baseline | 33.42 | 20.65 | 0.00 | 97.23 |
Urban vs. rural setting | 232 BGs as urban, 237 BGs as rural |
Variable | Coefficient | Std. Error | t-Statistic | p-Value |
---|---|---|---|---|
CONSTANT | 57.43021 | 10.00654 | 5.73926 | 0.000 |
HH on Public Assistance | −0.07253 | 0.04079 | −1.77823 | 0.075 |
PCT Multifamily housing units | −0.95275 | 0.13166 | −7.23632 | 0.000 |
Maximum NTL radiance lost | −0.00962 | 0.00205 | −4.66863 | 0.000 |
ROC (21 days) | 0.06734 | 0.03018 | 2.23096 | 0.025 |
Urban/Rural | 5.97345 | 1.43903 | 4.15100 | 0.000 |
Spatial autoregressive coefficient | 0.36719 | 0.11566 | 3.17484 | 0.001 |
Model parameters | ||||
S.D. of dependent variable | 14.814 | Log likelihood | −1884.692 | |
Sigma-square ML | 180.071 | Akaike info criterion | 3785.384 | |
S.E of regression ML | 13.419 | Schwarz criterion | 3818.588 | |
Multicollinearity condition number | 4.404 |
Variable | Coefficient | Std. Error | t-Statistic | p-Value |
---|---|---|---|---|
CONSTANT | 5.50393 | 1.16913 | 4.70771 | 0.000 |
Population density | 0.22096 | 0.15793 | 1.39911 | 0.062 |
Pre-storm NTL radiance | −0.00350 | 0.00121 | −2.89099 | 0.004 |
Median property values | 0.00008 | 0.00004 | 1.84375 | 0.065 |
NTL radiance recovered in the first 7 days post-landfall | −0.07340 | 0.02049 | −3.58316 | 0.000 |
Urban/Rural | 2.44564 | 0.93973 | 2.60247 | 0.009 |
Spatial autoregressive coefficient | 0.27447 | 0.11954 | 2.29612 | 0.021 |
Model parameters | ||||
S.D. of dependent variable | 8.207 | Log likelihood | −1619.744 | |
Sigma-square ML | 58.337 | Akaike info criterion | 3253.487 | |
S.E of regression ML | 7.638 | Schwarz criterion | 3282.542 | |
Multicollinearity condition number | 7.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitsova, D.; Li, Y.; Einsteder, R.; Roberts Briggs, T.; Sapat, A.; Esnard, A.-M. Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael. Remote Sens. 2024, 16, 2588. https://doi.org/10.3390/rs16142588
Mitsova D, Li Y, Einsteder R, Roberts Briggs T, Sapat A, Esnard A-M. Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael. Remote Sensing. 2024; 16(14):2588. https://doi.org/10.3390/rs16142588
Chicago/Turabian StyleMitsova, Diana, Yanmei Li, Ross Einsteder, Tiffany Roberts Briggs, Alka Sapat, and Ann-Margaret Esnard. 2024. "Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael" Remote Sensing 16, no. 14: 2588. https://doi.org/10.3390/rs16142588
APA StyleMitsova, D., Li, Y., Einsteder, R., Roberts Briggs, T., Sapat, A., & Esnard, A. -M. (2024). Using Nighttime Light Data to Explore the Extent of Power Outages in the Florida Panhandle after 2018 Hurricane Michael. Remote Sensing, 16(14), 2588. https://doi.org/10.3390/rs16142588