Synergistic Integration of Time Series Optical and SAR Satellite Data for Mariculture Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Remote Sensing Data
- Sentinel-2 satellite data
- Sentinel-1 satellite data
2.2.2. Sample Data
2.2.3. Reference Data
2.3. Method
2.3.1. Construction of the Marine Aquaculture Index (MAI)
- Comparison with neighbor seawater
- Comparison with seawater at a distance
- Comparison with seawater surrounding island
2.3.2. Multi-Scale Segmentation
2.3.3. Feature Extraction
- Spectral and backscattering neighbor difference feature
- Texture feature
- Geometric feature
2.3.4. Random Forest Classification
2.3.5. Accuracy Assessment
2.3.6. Experiment Design
3. Results
3.1. Experiment Results
3.1.1. Experiment 1: Sentinel-2 Based Classification Results
- Test region I
- Test region II
3.1.2. Experiment 2: Synergistic Use of Sentinel-1 and Sentinel-2 Classification Results
3.2. Accuracy Assessment
3.3. Spatial Distribution of Mariculture around Bohai Sea
4. Discussion
4.1. Advantages of Optical Remote Sensing Spectral Index Features
4.2. The Function of Sentinel-1 and Sentinel-2
4.3. Comparison with Other Aquaculture Data
4.4. Limitations
5. Conclusions
- A new optical spectral index of MAI was proposed for extracting the mariculture area. Compared to the traditional NDVI and NDWI, it was concluded that MAI can increase the difference between raft aquaculture and seawater. The extraction of raft aquaculture can be improved to some extent by constructing combinations of the features of MAI, SNDMAI, MAI texture, and compactness.
- By combining optical and SAR features, the random forest algorithm was applied to achieve the extraction of mariculture. In general, the classification of raft aquaculture can be improved by incorporating Sentinel-1 images to reduce the misclassification area of offshore mariculture to some extent.
- Based on the optical and SAR data of Sentinel satellites, the mariculture area in the Bohai Sea Rim was extracted by combining the proposed mariculture method. The overall accuracy of mariculture extraction in the Bohai Rim is 94.10%, and the kappa coefficient is 0.91. The mariculture area of the Bohai Sea Rim is 1224.6 km2. In total, 16.89 km2 of the cage aquaculture is mainly distributed near the Wafangdian and Changxing islands in Liaodong Bay, and 1206.71 km2 of the raft aquaculture is mainly distributed in the North Yellow Sea region, specifically the eastern part of Liaoning Province, northern Hebei, and the eastern Shandong region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Gong, A.; Chen, Z.; Pan, X.; Li, L.; Li, J.; Bao, W. An Object-Oriented Method for Extracting Single-Object Aquaculture Ponds from 10 m Resolution Sentinel-2 Images on Google Earth Engine. Remote Sens. 2023, 15, 856. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Wang, Z.; Zhang, J.; Yang, X.; Huang, C.; Su, F.; Liu, X.; Liu, Y.; Zhang, Y. Global mapping of the landside clustering of aquaculture ponds from dense time-series 10 m Sentinel-2 images on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103100. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Zhang, D.; Liu, Z. Extraction of Aquaculture Pond Region in Coastal Waters of Southeast China Based on Spectral Features and Spatial Convolution. Water 2022, 14, 2089. [Google Scholar] [CrossRef]
- Bureau of Fisheries, Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook 2021; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- Bureau of Fisheries, Ministry of Agriculture and Rural Affairs. China Fisheries Statistical Yearbook 2012; China Agriculture Press: Beijing, China, 2012. [Google Scholar]
- Nguyen, T.T.; Némery, J.; Gratiot, N.; Strady, E.; Tran, V.Q.; Nguyen, A.T.; Aimé, J.; Peyne, A. Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon–Dongnai (southern Vietnam). Sci. Total Environ. 2019, 653, 370–383. [Google Scholar] [CrossRef]
- Racine, P.; Marley, A.; Froehlich, H.E.; Gaines, S.D.; Ladner, I.; MacAdam-Somer, I.; Bradley, D. A case for seaweed aquaculture inclusion in US nutrient pollution management. Mar. Policy 2021, 129, 104506. [Google Scholar] [CrossRef]
- Rajitha, K.; Mukherjee, C.; Chandran, R.V. Applications of remote sensing and GIS for sustainable management of shrimp culture in India. Aquac. Eng. 2007, 36, 1–17. [Google Scholar] [CrossRef]
- Ayisi, C.L.; Apraku, A. The Use of Remote Sensing and GIS in Aquaculture: Recent Advances and Future Opportunities. Int. J. Aquac. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean. Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Xue, M.; Chen, Y.; Tian, X.; Yan, M.; Zhang, Z. Detection the expansion of marine aquaculture in Sansha Bay by remote sensing. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7866–7869. [Google Scholar]
- Geng, J.; Fan, J.; Wang, H. Weighted fusion-based representation classifiers for marine floating raft detection of SAR images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 444–448. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, J.; An, W.; Hu, Y. Marine floating raft aquaculture detection of GF-3 PolSAR images based on collective multikernel fuzzy clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2741–2754. [Google Scholar] [CrossRef]
- Kang, J.; Sui, L.; Yang, X.; Liu, Y.; Wang, Z.; Wang, J.; Yang, F.; Liu, B.; Ma, Y. Sea surface-visible aquaculture spatial-temporal distribution remote sensing: A case study in Liaoning province, China from 2000 to 2018. Sustainability 2019, 11, 7186. [Google Scholar] [CrossRef]
- Wang, J.; Sui, L.; Yang, X.; Wang, Z.; Liu, Y.; Kang, J.; Lu, C.; Yang, F.; Liu, B. Extracting coastal raft aquaculture data from landsat 8 OLI imagery. Sensors 2019, 19, 1221. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xia, L.; Chen, Z.; Cui, W.; Liu, Z.; Pan, C. Remote sensing identification of coastal zone mariculture modes based on association-rules object-oriented method. Trans. Chin. Soc. Agric. Eng. 2018, 34, 210–217. [Google Scholar]
- Wang, Y.; Zhang, Y.; Chen, Y.; Wang, J.; Bai, H.; Wu, B.; Li, W.; Li, S.; Zheng, T. The Assessment of More Suitable Image Spatial Resolutions for Offshore Aquaculture Areas Automatic Monitoring Based on Coupled NDWI and Mask R-CNN. Remote Sens. 2022, 14, 3079. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Liu, Y.; Lu, C. Extraction of coastal raft cultivation area with heterogeneous water background by thresholding object-based visually salient NDVI from high spatial resolution imagery. Remote Sens. Lett. 2018, 9, 839–846. [Google Scholar] [CrossRef]
- Cheng, B.; Liu, Y.; Liu, X. Research on Extraction method of high resolution Remote Sensing image offshore aquaculture Area based on multi-source feature fusion. Remote Sens. Technol. Appl. 2018, 33, 296–304. [Google Scholar]
- Lu, Y.; Li, Q.; Du, X.; Wang, H.; Liu, J. An automatic extraction method for offshore aquaculture areas based on high resolution images. Remote Sens. Technol. Appl. 2015, 30, 486–494. (In Chinese). [Google Scholar]
- Fu, Y.; Deng, J.; Ye, Z.; Gan, M.; Wang, K.; Wu, J.; Yang, W.; Xiao, G. Coastal aquaculture mapping from very high spatial resolution imagery by combining object-based neighbor features. Sustainability 2019, 11, 637. [Google Scholar] [CrossRef]
- Peng, Y.; Sengupta, D.; Duan, Y.; Chen, C.; Tian, B. Accurate mapping of Chinese coastal aquaculture ponds using biophysical parameters based on Sentinel-2 time series images. Mar. Pollut. Bull. 2022, 181, 113901. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Shen, Z.; Liao, J.; Chen, J.; Sun, S. Long Time-Series Mapping and Change Detection of Coastal Zone Land Use Based on Google Earth Engine and Multi-Source Data Fusion. Remote Sens. 2022, 14, 1. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Yang, J.; Yu, G.; Wang, Y. Dual memory scale network for multi-step time series forecasting in thermal environment of aquaculture facility: A case study of recirculating aquaculture water temperature. Expert Syst. Appl. 2022, 208, 118218. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Yang, X.; Liu, Y.; Liu, B.; Zhang, J.; Gao, K.; Meng, D.; Ding, Y. Mapping China’s offshore mariculture based on dense time-series optical and radar data. Int. J. Digit. Earth 2022, 15, 1326–1349. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Large-scale assessment of coastal aquaculture ponds with Sentinel-1 time series data. Remote Sens. 2017, 9, 440. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, J.; Yang, J.; Yu, Q.; Zhang, L.; Xue, K.; Lu, L. Nation-scale mapping of coastal aquaculture ponds with sentinel-1 SAR data using google earth engine. Remote Sens. 2020, 12, 3086. [Google Scholar] [CrossRef]
- Tian, P.; Liu, Y.; Li, J.; Pu, R.; Cao, L.; Zhang, H.; Ai, S.; Yang, Y. Mapping Coastal Aquaculture Ponds of China Using Sentinel SAR Images in 2020 and Google Earth Engine. Remote Sens. 2022, 14, 5372. [Google Scholar] [CrossRef]
- Wang, M.; Mao, D.; Xiao, X.; Song, K.; Jia, M.; Ren, C.; Wang, Z. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 2023, 284, 113347. [Google Scholar] [CrossRef]
- Purnamasayangsukasih, P.R.; Norizah, K.; Ismail, A.A.; Shamsudin, I. A review of uses of satellite imagery in monitoring mangrove forests. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur, Malaysia, 13–14 April 2016; p. 012034. [Google Scholar]
- Liu, Y.; Han, M.; Wang, M.; Fan, C.; Zhao, H. Habitat Quality Assessment in the Yellow River Delta Based on Remote Sensing and Scenario Analysis for Land Use/Land Cover. Sustainability 2022, 14, 15904. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Wang, A.; Chen, J. Object-and pixel-based classifications of macroalgae farming area with high spatial resolution imagery. Geocarto Int. 2018, 33, 1048–1063. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, Y.; Peng, L.; He, Y.; Zha, M. An Improved Retrieval Method for Porphyra Cultivation Area Based on Suspended Sediment Concentration. Remote Sens. 2022, 14, 4338. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, L. Spatiotemporal distribution of cage and raft aquaculture in China’s offshore waters using object-oriented random forest classifier. In Proceedings of the 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), Quebec City, QC, Canada, 11–14 July 2022; pp. 1–6. [Google Scholar]
- Xu, Y.; Wu, W.; Lu, L. Remote Sensing Mapping of Cage and Floating-raft Aquaculture in China’s Offshore Waters Using Machine Learning Methods and Google Earth Engine. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Russell, A.G.; Castillo, D.U.; Elgueta, S.A.; Sierralta, C.J. Automated fish cages inventoryng and monitoring using H/A/α unsupervised wishart classification in sentinel 1 dual polarization data. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 471–476. [Google Scholar]
- Hou, T.; Sun, W.; Chen, C.; Yang, G.; Meng, X.; Peng, J. Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102846. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; Avillanosa, A.L.; Sumeldan, J.D. Monitoring of Coastal Aquaculture Sites in the Philippines through Automated Time Series Analysis of Sentinel-1 SAR Images. Remote Sens. 2022, 14, 2862. [Google Scholar] [CrossRef]
- Gao, L.; Li, Y.; Zhong, S.; Luo, D. Remote sensing detected mariculture changes in Dongshan Bay. J. Mar. Sci 2014, 32, 35–42. (In Chinese). [Google Scholar]
- Wang, P.; Wang, J.; Liu, X.; Huang, J. A Google Earth Engine-Based Framework to Identify Patterns and Drivers of Mariculture Dynamics in an Intensive Aquaculture Bay in China. Remote Sens. 2023, 15, 763. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, S.; Moreno-Martinez, A.; Izquierdo-Verdiguier, E.; Chiesi, M.; Maselli, F.; Gilabert, M.A. Growing stock volume from multi-temporal landsat imagery through google earth engine. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101913. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Yang, X.; Zhang, Y.; Yang, F.; Liu, B.; Cai, P. Satellite-based monitoring and statistics for raft and cage aquaculture in China’s offshore waters. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102118. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, L.; Yuan, X.; Chen, B.; Yan, M. Spatio-temporal patterns and sustainable development of coastal aquaculture in Hainan Island, China: 30 Years of evidence from remote sensing. Ocean. Coast. Manag. 2021, 214, 105897. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Lanaras, C.; Bioucas-Dias, J.; Galliani, S.; Baltsavias, E.; Schindler, K. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J. Photogramm. Remote Sens. 2018, 146, 305–319. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Patel, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal settlement and population mapping from Landsat using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 199–208. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley Jr, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Ottinger, M.; Bachofer, F.; Huth, J.; Kuenzer, C. Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series. Remote Sens. 2022, 14, 153. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef]
- Di, Y. Research progress of wetland cover identification and classification with different SAR parameters. J. Chifeng Univ. Nat. Sci. 2018, 34, 3. [Google Scholar]
- Liu, C.; Shi, R. Boundary Data of Asia Tropical Humid & Semi-Humid Eco-Region (ATHSBND). Digit. J. Glob. Chang. Data Repos. 2014. [Google Scholar] [CrossRef]
- Liu, C.; Shi, R. Boundary Data of East Asia Summer Monsoon Geo_Eco_Region (EASMBND). Digit. J. Glob. Chang. Data Repos. 2015. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Montesano, P.; Haag, S. A multi-scale segmentation approach to mapping seagrass habitats using airborne digital camera imagery. Photogramm. Eng. Remote Sens. 2006, 72, 665–675. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Tan, W.; Yu, G.; You, J.; Lv, B.; Wu, Z. RCSANet: A Full Convolutional Network for Extracting Inland Aquaculture Ponds from High-Spatial-Resolution Images. Remote Sens. 2020, 13, 92. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Z.; Zhang, Y.; Wang, J.; Yin, Y.; Wu, G. Mapping Aquaculture Areas with Multi-Source Spectral and Texture Features: A Case Study in the Pearl River Basin (Guangdong), China. Remote Sens. 2021, 13, 4320. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Chen, J.; Wang, F. Shape-constrained method of remote sensing monitoring of marine raft aquaculture areas on multitemporal synthetic sentinel-1 imagery. Remote Sens. 2022, 14, 1249. [Google Scholar] [CrossRef]
- Cheng, J.; Jia, N.; Chen, R.; Guo, X.; Ge, J.; Zhou, F. High-Resolution Mapping of Seaweed Aquaculture along the Jiangsu Coast of China Using Google Earth Engine (2016–2022). Remote Sens. 2022, 14, 6202. [Google Scholar] [CrossRef]
- Nan, C.; Yang, X.; Hai, Y. Exploring the measurement method of large seaweed culture area in China. Ocean. Dev. Manag. 2015, 32, 4. [Google Scholar]
Cage Aquaculture | Raft Aquaculture | Culture Area Seawater | Non-Culture Area Seawater | User’s Accuracy | |
---|---|---|---|---|---|
Cage aquaculture | 84 | 4 | 0 | 0 | 95.45% |
Raft aquaculture | 4 | 117 | 3 | 0 | 94.35% |
Culture area seawater | 1 | 7 | 70 | 5 | 93.17% |
Non-culture area Seawater | 1 | 2 | 7 | 68 | |
Producer’s accuracy | 93.33% | 90.00% | 98.04% | ||
Overall accuracy | 94.10% | Kappa coefficient | 0.91 |
Province | Cage Aquaculture | Raft Aquaculture | ||||
---|---|---|---|---|---|---|
Our Results | Yearbook Statistic | Data in 2018 from Liu [45] | Our Results | Yearbook Statistic | Data in 2018 from Liu [45] | |
Liaoning | 13.74 | 0.41 | 3.25 | 473.82 | 485.52 | 199.53 |
Hebei | 0 | 0 | 0 | 240.26 | 484.17 | 239.04 |
Tianjin | 0 | 0 | 0 | 0 | 0 | 0 |
Shandong | 3.15 | 2.24 | 2.61 | 492.63 | 989.57 | 254.57 |
Total | 16.89 | 2.65 | 5.86 | 1206.71 | 1959.26 | 639.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, C.; Li, H.; Liu, Q. Synergistic Integration of Time Series Optical and SAR Satellite Data for Mariculture Extraction. Remote Sens. 2023, 15, 2243. https://doi.org/10.3390/rs15092243
Wang S, Huang C, Li H, Liu Q. Synergistic Integration of Time Series Optical and SAR Satellite Data for Mariculture Extraction. Remote Sensing. 2023; 15(9):2243. https://doi.org/10.3390/rs15092243
Chicago/Turabian StyleWang, Shuxuan, Chong Huang, He Li, and Qingsheng Liu. 2023. "Synergistic Integration of Time Series Optical and SAR Satellite Data for Mariculture Extraction" Remote Sensing 15, no. 9: 2243. https://doi.org/10.3390/rs15092243
APA StyleWang, S., Huang, C., Li, H., & Liu, Q. (2023). Synergistic Integration of Time Series Optical and SAR Satellite Data for Mariculture Extraction. Remote Sensing, 15(9), 2243. https://doi.org/10.3390/rs15092243