Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment
Abstract
:1. Introduction
2. Material and Methods
2.1. Data
2.1.1. Study Area
2.1.2. Satellite Images
2.2. Models
2.2.1. Semi-Analytical Radiative Transfer Model
2.2.2. Environmental Noise
2.2.3. Water Column Parameters and Mixing Coefficients Variability
2.3. Methods
2.3.1. Water Column Bio-Optical Parameters and Seabed Composition
2.3.2. Covariance Estimation of the Environmental Noise
2.3.3. Development of the Cramér–Rao Bayesian Bounds Approach
3. Results
3.1. CRB and BCRB for the PRISMA Image
3.1.1. Results for PRISMA Data Using the Inversion Domain
3.1.2. Results for PRISMA Data Using the Inversion Domain
3.2. CRB and BCRB for DESIS Image
3.2.1. Results for DESIS Data Using the Inversion Domain
3.2.2. Results for DESIS Data Using the Inversion Domain
4. Discussion
4.1. Interpretation of the Variation of with the Depth
4.1.1. Lower Depths
4.1.2. Higher Depths
4.2. Comparison between and
4.3. Difference between PRISMA and DESIS Sensors
5. Conclusions and Perspectives
- -
- A method for deriving Bayesian Cramér–Rao bounds () of water column parameters and seabed composition is proposed
- -
- The obtained are consistent with empirical measures of errors for the retrieved bathymetry
- -
- The standard are not always consistent with the empirical measures of errors for the retrieved bathymetry
- -
- The spatial resolution of the satellite sensor is crucial for having reliable parameters estimation in shallow and steep areas
- -
- The PRISMA and DESIS sensors have comparable minimum bounds performances
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahtmäe, E.; Paavel, B.; Kutser, T. How much benthic information can be retrieved with hyperspectral sensor from the optically complex coastal waters? J. Appl. Remote Sens. 2020, 14, 016504. [Google Scholar] [CrossRef]
- Alevizos, E. A Combined Machine Learning and Residual Analysis Approach for Improved Retrieval of Shallow Bathymetry from Hyperspectral Imagery and Sparse Ground Truth Data. Remote Sens. 2020, 12, 3489. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. Phys. Chem. Earth Parts A/B/C 2011, 36, 160–166. [Google Scholar] [CrossRef]
- Le Fur, I.; De Wit, R.; Plus, M.; Oheix, J.; Simier, M.; Ouisse, V. Submerged benthic macrophytes in Mediterranean lagoons: Distribution patterns in relation to water chemistry and depth. Hydrobiologia 2017, 808, 175–200. [Google Scholar] [CrossRef]
- Zaldívar, J.-M.; Viaroli, P.; Newton, A.; De Wit, R.; Ibañez, C.; Reizopoulou, S.; Somma, F.; Razinkovas, A.; Basset, A.; Holmer, M.; et al. Eutrophication in Transitional Waters: An Overview. Transit. Waters Monogr. 2008, 2, 1–78. [Google Scholar]
- Hochberg, E.J. Coral Reefs: An Ecosystem in Transition. Remote Sensing of Coral Reef Processes. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 25–35. [Google Scholar]
- Hedley, J.D.; Roelfsema, C.M.; Chollett, I.I.; Harborne, A.R.; Heron, S.F.; Weeks, S.J.; Skirving, W.J.; Strong, A.E.; Eakin, C.M.; Christensen, T.R.; et al. Remote sensing of coral reefs for monitoring and management: A review. Remote Sens. 2016, 8, 118. [Google Scholar] [CrossRef]
- Chauvaud, S.; Bouchon, C.; Maniere, R. Remote sensing techniques adapted to high resolution mapping of tropical coastal marine ecosystems (coral reefs, seagrass beds and mangrove). Int. J. Remote Sens. 1998, 19, 3625–3639. [Google Scholar] [CrossRef]
- Jaubert, J.; Chisholm, J.; Minghelli-Roman, A.; Marchioretti, M.; Morrow, J.; Ripley, H. Re-evaluation of the extent of caulerpa taxifolia development in the northern mediterranean using airborne spectrographic sensing. Mar. Ecol. Prog. Ser. 2003, 263, 75–82. [Google Scholar] [CrossRef]
- Garcia, R.A.; Fearns, P.R.; McKinna, L.I. Detecting trend and seasonal changes in bathymetry derived from HICO imagery: A case study of Shark Bay, Western Australia. Remote Sens. Environ. 2014, 147, 186–205. [Google Scholar] [CrossRef]
- Jaba Deva Krupa, A.; Samiappan, D.; Hemalatha, V. Techniques for seabed mapping using underwater hyperspectral imaging: A survey. Int. J. Pure and Appl. Math. 2018, 118, 11–30. [Google Scholar]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef]
- Mobley, C. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Chami, M.; Lafrance, B.; Fougnie, B.; Chowdhary, J.; Harmel, T.; Waquet, F. Osoaa: A vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean. Opt. Express 2015, 23, 27829. [Google Scholar]
- Lee, Z.; Carder, K.; Mobley, C.; Steward, R.; Patch, J. Hyperspectral remote sensing for shallow waters. i. a semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [Google Scholar] [CrossRef]
- Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters—Influence of water depth and bottom albedo. Limnol. Oceanogr. 1994, 39, 1689–1703. [Google Scholar] [CrossRef]
- Dekker, A.G.; Phinn, S.R.; Anstee, J.; Bissett, P.; Brando, V.E.; Casey, B. Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnol. Oceanol. Methods 2011, 9, 396–425. [Google Scholar] [CrossRef]
- Hedley, J.; Roelfsema, C.; Phinn, S. Efficient radiative transfer model inversion for remote sensing applications. Remote Sens. Environ. 2009, 113, 2527–2532. [Google Scholar] [CrossRef]
- Goodman, J.A. Hyperspectral Remote Sensing of Coral Reefs: Deriving Bathymetry, Aquatic Optical Properties and a Benthic Spectral Unmixing Classification Using Aviris Data in the Hawaiian Islands. Ph.D. Dissertation, Hydrologic Sciences, Department of Land, Air and Water Resources, University of California, Davis, CA, USA, 2004. [Google Scholar]
- Goodman, J.; Ustin, S. Classification of benthic composition in a coral reef environment using spectral unmixing. J. Appl. Remote Sens. 2007, 1, 1. [Google Scholar]
- Torres-Madronero, M.; Velez-Reyes, M.; Goodman, A. Underwater unmixing and water optical properties retrieval using hyciat. In Proceedings of SPIE: Imaging Spectrometry XIV; SPIE Optical Engineering + Applications: San Diego, CA, USA, 2009; Volume 7457. [Google Scholar]
- Marcello, J.; Eugenio, F.; Martín, J.; Marqués, F. Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral and Hyperspectral Imagery. Remote Sens. 2018, 10, 1208. [Google Scholar] [CrossRef]
- Hochberg, E.; Atkinson, M. Capabilities of remote sensors to classify coral, algae, and sand as pure and mixed spectra. Remote Sens. Environ. 2003, 85, 174–189. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K. Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data. Appl. Opt. 2002, 41, 2191–2201. [Google Scholar] [CrossRef]
- Minghelli-Roman, A.; Chisholm, J.; Marchioretti, M.; Jaubert, J. Discrimination of coral reflectance spectra in the red sea. Coral Reef 2002, 21, 307–314. [Google Scholar] [CrossRef]
- Lee, Z.; Weidemann, A.; Arnone, R. Combined effect of reduced band number and increased bandwidth on shallow water remote sensing: The case of worldview 2. IEEE Trans. Geosc. Remote Sens. 2013, 51, 2577–2586. [Google Scholar] [CrossRef]
- Hochberg, E.; Atkinson, M.; Andréfouët, S. Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sens. Environ. 2003, 85, 159–173. [Google Scholar] [CrossRef]
- Botha, E.; Brando, V.; Anstee, J.; Dekker, A.; Sagar, S. Increased spectral resolution enhances coral detection under varying water conditions. Remote Sens. Environ. 2013, 131, 247–261. [Google Scholar] [CrossRef]
- Emberton, S.; Chittka, L.; Cavallaro, A.; Wang, M. Sensor capability and atmospheric correction in ocean colour remote sensing. Remote Sens. 2016, 8, 1. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Hestir, E.L. Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sens. Environ. 2015, 735, 181–195. [Google Scholar] [CrossRef]
- Hedley, J.; Roelfsema, C.; Phinn, S.; Mumby, P. Environmental and sensor limitations in optical remote sensing of coral reefs: Implications for monitoring and sensor design. Remote Sens. 2012, 4, 271–302. [Google Scholar] [CrossRef]
- NASA/CASEI. Available online: https://impact.earthdata.nasa.gov/casei/instrument/CASI/ (accessed on 16 March 2023).
- Jet Propulsion Laboratory, California Institute of Technology. Available online: https://aviris.jpl.nasa.gov/ (accessed on 16 March 2023).
- HYSPEX. Available online: https://www.hyspex.com/ (accessed on 16 March 2023).
- TELECOM PARIS. Available online: https://www.telecom-paris-alumni.fr/fr/revue/article/the-iss-has-a-new-colorful-eye/3450 (accessed on 16 March 2023).
- Loizzo, R. Prisma: The Italian hyperspectral mission. In Proceedings of the Procedure of IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Symposium, Valencia, Spain, 22–27 July 2018; pp. 175–178. [Google Scholar]
- Rast, M.; Painter, T.H. Earth observation imaging spectroscopy for terrestrial systems: An overview of its history, techniques, and applications of its missions. Surv. Geophys. 2019, 40, 303–331. [Google Scholar] [CrossRef]
- Minghelli, A.; Vadakke-Chanat, S.; Chami, M.; Guillaume, M.; Migne, E.; Grillas, P.; Boutron, O. Estimation of Bathymetry and Benthic Habitat Composition from Hyperspectral Remote Sensing Data (BIODIVERSITY) Using a Semi-Analytical Approach. Remote Sens. 2021, 13, 1999. [Google Scholar] [CrossRef]
- Remer, L.A.; Davis, A.; Mattoo, B.; Levy, R.S.; Kalashnikova, O.; Coddington, O.; Chowdhary, J.; Knobelspiesse, K.; Xu, X.; Ahmad, Z.; et al. Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument. Front. Earth Sci. 2019, 7, 2296–6463. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Braga, F.; Fabbretto, A.; Ghirardi, N.; Pepe, M.; Gianinetto, M.; Colombo, R.; Cogliati, S.; Ghebrehiwot, S.; et al. First Evaluation of PRISMA Level 1 Data for Water Applications. Sensors 2020, 20, 4553. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Fabbretto, A.; Pellegrino, A.; Mangano, S.; Free, G.; Pinardi, M. Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes. Resources 2022, 11, 8. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [Google Scholar] [CrossRef]
- Gauto, V.; Ferral, A.; Bonansea, M.; Farías, A.; Scavuzzo, M.; Cardozo, O.; Giardino, C. First results of PRISMA satellite data applied to water quality monitoring in Argentina. In Proceedings of the 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan, Argentina, 7–9 September 2022; pp. 1–8. [Google Scholar]
- Salama, M.S.; Stein, A. Error decomposition and estimation of inherent optical properties. Appl. Opt. 2009, 48, 4947–4962. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Dowell, M.D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Environ. 2009, 113, 2424–2430. [Google Scholar] [CrossRef]
- Gregg, W.W. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst. 2008, 69, 205–225. [Google Scholar] [CrossRef]
- Lee, Z.; Arnone, R.; Hu, C.; Werdell, P.J.; Lubac, B. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm. Appl. Opt. 2010, 49, 369–381. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A. Uncertainties in coastal ocean color products: Impacts of spatial sampling. Remote Sens. Environ. 2016, 181, 14–26. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef]
- Brando, V.; Anstee, J.; Wettle, M.; Dekker, A.; Phinn, S.; Roelfsema, C. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sens. Environ. 2009, 113, 755–770. [Google Scholar] [CrossRef]
- Jay, S.; Guillaume, M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data. Remote Sens. Environ. 2014, 147, 121–132. [Google Scholar] [CrossRef]
- McKinna, L.I.; Fearns, P.R.; Weeks, S.J.; Werdell, P.J.; Reichstetter, M.; Franz, B.A.; Shea, D.M.; Feldman, G.C. A semi-analytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization. J. Geophys. Res. Oceans 2015, 120, 1741–1770. [Google Scholar] [CrossRef]
- Jay, S.; Guillaume, M. Regularized estimation of bathymetry and water quality using hyperspectral remote sensing. Int. J. Remote Sens. 2016, 37, 263–289. [Google Scholar] [CrossRef]
- Jay, S.; Guillaume, M.; Minghelli, A.; Deville, Y.; Chami, M.; Lafrance, B.; Serfaty, V. Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance. Remote Sen. Environ. 2017, 200, 352–367. [Google Scholar] [CrossRef]
- Thompson, D.; Hochberg, E.; Asner, G.; Green, R.; Knapp, D.E.; Cay Gao, B.; Garcia, R.; Gierach, M.; Lee, Z.; Maritorena, S.; et al. Airborne mapping of benthic reflectance spectra with bayesian linear mixtures. Remote Sens. Environ. 2017, 200, 18–30. [Google Scholar] [CrossRef]
- Minghelli, A.; Vaddake-Chanat, S.; Chami, M.; Guillaume, M.; Peirache, M. Benefit of the potential future hyperspectral satellite sensor (BIODIVERSITY) for improving the determination of water column and seabed features in coastal zones. IEEE J. Sel. Top. Appl. Earth Ob. Remote Sens. 2021, 14, 1222–1232. [Google Scholar] [CrossRef]
- Wang, P.; Boss, E.S.; Roesler, C. Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color. Appl. Opt. 2005, 44, 4074–4085. [Google Scholar] [CrossRef]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef] [PubMed]
- Jay, S.; Guillaume, M. Estimation of water column parameters with a maximum likelihood approach. In Proceedings of the 3rd IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, IEEE, Lisbon, Portugal, 6–9 June 2011; pp. 1–4. [Google Scholar]
- Jay, S. Estimation et déTection en Imagerie Hyperspectrale: Application aux Environnements Côtiers. Ph.D. Thesis, Ecole Centrale de Marseille, Marseille, France, 2012. Available online: http://www.theses.fr/2012ECDM0004 (accessed on 16 March 2023).
- Jay, S.; Guillaume, M.; Chami, M.; Minghelli, A.; Deville, Y.; Lafrance, B.; Serfaty, V. Predicting minimum uncertainties in the inversion of ocean color geophysical parameters based on Cramer-Rao bounds. Opt. Express 2018, 26, A1–A18. [Google Scholar] [CrossRef]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Rao, C. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–89. [Google Scholar]
- Fréchet, M. Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Rev. Inst. Int. Statist. 1943, 11, 182–205. [Google Scholar] [CrossRef]
- Darmois, G. Sur les limites de la dispersion de certaines estimations. Rev. Int. Inst. Statist. 1945, 13, 9–15. [Google Scholar] [CrossRef]
- Van Trees, H.L. Detection, Estimation, and Modulation Theory—Part I; John Wiley and Sons: New York, NY, USA, 1968. [Google Scholar]
- Garthwaite, P.H.; Jolliffe, I.T.; Jones, B. Statistical Inference; Oxford University: Oxford, UK, 2002. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; p. 47. [Google Scholar]
- Louvart, L.; Grateau, C. The Litto3D Project. In Proceedings of the IEEE Oceans 2005—Europe International Conference, Brest, France, 20–23 June 2005; Volume 2, pp. 1244–1251. [Google Scholar]
- ®LITTO3D, IGNF_SHOM_LITTO3Dr_1-0. 2008. Available online: https://www.geoportail.gouv.fr/donnees/litto3d (accessed on 16 March 2023).
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J., Jr. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path Radiance. Appl. Opt. 2006, 45, 6726–6774. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 3, 443–452. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef]
- Wettle, M.; Brando, V.E.; Dekker, A.G. A methodology for retrieval of environmental noise equivalent spectra applied to four hyperion scenes of the same tropical coral reef. Remote Sens. Environ. 2004, 93, 188–197. [Google Scholar] [CrossRef]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 452. [Google Scholar]
- Gill, R.D.; Levit, B.Y. Applications of the van Trees inequality: A Bayesian Cramér-Rao bound. Bernoulli 1995, 1, 59–79. [Google Scholar] [CrossRef]
- Tichavsky, P.; Muravchik, C.; Nehorai, A. Posterior Cramer Rao Bounds for Discrete-Time Nonlinear Filtering. IEEE Trans. Signal Process. 1998, 46, 5. [Google Scholar] [CrossRef]
- Manry, M.T.; Hsieh, C.-H.; Dawson, M.S.; Fung, A.K.; Apollo, S.J. Cramer Rao Maximum A-Posteriori Bounds on Neural Network Training Error for Non-Gaussian Signals and Parameters. Int. J. Intell. Control Syst. 1996, 1, 381–391. [Google Scholar] [CrossRef]
- Yu, Q.; Apollo, S.J.; Manry, M.T. MAP Estimation and the Multilayer Perceptron. In Proceedings of the 1993 IEEE Workshop on Neural Networks for Signal Processing, Linthicum Heights, MD, USA, 6–9 September 1993; pp. 30–39. [Google Scholar]
- Clarkson, E. Relation between Bayesian Fisher information and Shannon information for detecting a change in a parameter. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2019, 36, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.T.; Nguyen, T.T.; Mentré, F. Individual Bayesian information matrix for predicting estimation error and shrinkage of individual parameters accounting for data below the limit of quantification: Bayesian information matrix accounting for data below LOQ. Pharm. Res. 2017, 17, inserm-01549693. [Google Scholar]
- Combes, F.P.; Retout, S.; Frey, N.; Mentré, F. Prediction of shrinkage of individual parameters using the bayesian information matrix in non-linear mixed effect models with evaluation in pharmacokinetics. Pharm. Res. 2013, 30, 2355–2367. [Google Scholar] [CrossRef]
Retrieved Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | |||
---|---|---|---|---|---|---|---|
Mean value | 13.23 | 0.004 | 0.03 | 0.21 | 0.65 | 0.30 | 0.04 |
Bounds for inversion | [0–30] | [0–5] | [0–5] | [0–5] | [0–1] | [0–1] | [0–1] |
Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | ||
---|---|---|---|---|---|---|
std | 8.66 | 1.44 | 1.44 | 1.44 | 0.29 | 0.29 |
0.55 | 0.02 | 0.001 | 0.07 | 0.02 | 0.28 | |
2.20 | – | – | – | 0.11 | 2.25 | |
5.92 | 0.19 | 0.006 | 0.15 | 0.23 | 2.62 | |
0.49 | 0.02 | 0.001 | 0.07 | 0.02 | 0.11 | |
0.73 | – | – | – | 0.03 | 0.24 | |
1.37 | 0.14 | 0.005 | 0.14 | 0.08 | 0.27 |
Depth Range | [3 m–30 m] | [3 m–6 m] | [6 m–12 m] | [12 m–30 m] |
---|---|---|---|---|
RMSE (m) and relative error RE (%) | 8.67 (32%) | 2.06 (35%) | 1.23 ( 9%) | 9.28 (34%) |
Retrieved Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | |||
---|---|---|---|---|---|---|---|
Mean value | 11.57 | 0.002 | 0.03 | 0.16 | 0.72 | 0.25 | 0.03 |
Bounds for inversion | [0–20] | [0–5] | [0–5] | [0–5] | [0–1] | [0–1] | [0–1] |
Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | ||
---|---|---|---|---|---|---|
std | 5.77 | 1.44 | 1.44 | 1.44 | 0.29 | 0.29 |
0.11 | 0.02 | 0.001 | 0.08 | 0.007 | 0.11 | |
0.45 | – | – | – | 0.03 | 0.61 | |
0.81 | 0.19 | 0.006 | 0.16 | 0.10 | 0.85 | |
0.11 | 0.02 | 0.001 | 0.08 | 0.007 | 0.09 | |
0.27 | – | – | – | 0.02 | 0.23 | |
0.62 | 0.14 | 0.005 | 0.15 | 0.07 | 0.26 |
Depth Range | [3 m–20 m] | [3 m–6 m] | [6 m–12 m] | [12 m–20 m] |
---|---|---|---|---|
RMSE (m) and relative error RE (%) | 4.09 (20%) | 2.06 (35%) | 1.23 ( 9%) | 4.72 (23%) |
Retrieved Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | |||
---|---|---|---|---|---|---|---|
Mean value | 13.90 | 5.36 | 0.05 | 0.70 | 0.57 | 0.42 | 0.01 |
Bounds for inversion | [0–30] | [0–5] | [0–5] | [0–5] | [0–1] | [0–1] | [0–1] |
Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | ||
---|---|---|---|---|---|---|
std | 8.66 | 1.44 | 1.44 | 1.44 | 0.28 | 0.28 |
0.31 | 0.03 | 0.001 | 0.08 | 0.02 | 0.04 | |
1.28 | – | – | – | 0.26 | 0.51 | |
2.15 | 0.12 | 0.009 | 0.17 | 0.67 | 1.34 | |
0.29 | 0.03 | 0.001 | 0.08 | 0.02 | 0.04 | |
0.57 | – | – | – | 0.12 | 0.18 | |
1.04 | 0.11 | 0.006 | 0.17 | 0.14 | 0.25 |
Depth Range | [3 m–30 m] | [3 m–6 m] | [6 m–12 m] | [12 m–30 m] |
---|---|---|---|---|
RMSE (m) and relative error RE (%) | 6.96 (25%) | 1.35 (25%) | 1.20 ( 9.6%) | 7.50 (27%) |
Retrieved Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | |||
---|---|---|---|---|---|---|---|
Mean value | 12.35 | 4.11 | 0.06 | 0.79 | 0.62 | 0.37 | 0.008 |
Bounds for inversion | [0–20] | [0–5] | [0–5] | [0–5] | [0–1] | [0–1] | [0–1] |
Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | ||
---|---|---|---|---|---|---|
std | 5.77 | 1.44 | 1.44 | 1.44 | 0.28 | 0.28 |
0.24 | 0.03 | 0.002 | 0.09 | 0.02 | 0.04 | |
0.85 | – | – | – | 0.21 | 0.38 | |
1.61 | 0.11 | 0.009 | 0.20 | 0.52 | 1.04 | |
0.23 | 0.03 | 0.002 | 0.09 | 0.02 | 0.04 | |
0.47 | – | – | – | 0.11 | 0.17 | |
0.82 | 0.10 | 0.006 | 0.19 | 0.14 | 0.24 |
Depth Range | [3 m–20 m] | [3 m–6 m] | [6 m–12 m] | [12 m–20 m] |
---|---|---|---|---|
RMSE (m) and relative error RE (%) | 2.71 (15%) | 1.35 (25%) | 1.20 (9%) | 3.09 (16%) |
Retrieved Parameter | H (m) | Cchl (mg.m) | Ccdom (m) | Cspm (g.m) | |||
---|---|---|---|---|---|---|---|
Mean value | [1–20] | 0.001 | 0.05 | 0.5 | 0.65 | 0.30 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillaume, M.; Minghelli, A.; Chami, M.; Lei, M. Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment. Remote Sens. 2023, 15, 2242. https://doi.org/10.3390/rs15092242
Guillaume M, Minghelli A, Chami M, Lei M. Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment. Remote Sensing. 2023; 15(9):2242. https://doi.org/10.3390/rs15092242
Chicago/Turabian StyleGuillaume, Mireille, Audrey Minghelli, Malik Chami, and Manchun Lei. 2023. "Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment" Remote Sensing 15, no. 9: 2242. https://doi.org/10.3390/rs15092242
APA StyleGuillaume, M., Minghelli, A., Chami, M., & Lei, M. (2023). Determination of Bayesian Cramér–Rao Bounds for Estimating Uncertainties in the Bio-Optical Properties of the Water Column, the Seabed Depth and Composition in a Coastal Environment. Remote Sensing, 15(9), 2242. https://doi.org/10.3390/rs15092242