Unraveling Segmentation Quality of Remotely Sensed Images on Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from Supervised Evaluation Metrics
Abstract
:1. Introduction
2. Study Areas
3. Datasets and Pre-Processing
3.1. WorldView-3
3.2. SPOT-7
3.3. Sentinel-2
4. Methods
4.1. First Phase: Supervised Metrics Assessment
4.1.1. Segmentation Quality Assessment Metrics
- -
- is the set of all yj objects that intersect reference object xi
- -
- -
- -
- -
- -
- -
Metric | Formula | Range | Optimal Value | Reference |
---|---|---|---|---|
| , | [−∞, ∞] | 0 | [25,36] |
| , | [0, 1] | 0 | [25,37] |
| , where , , | [0, 1] | 0 | [25,38] |
| [0, 1] | 1 | [39] | |
| [0, ∞] | 0 | [22] | |
| , where , , , | [0, 1] | 1 | [40] |
| [0, ∞] | 0 | [18] | |
| , where , , | [0, 1] | 0 | [42] |
4.1.2. Image Segmentation—MRS
4.1.3. Reference Polygons
4.1.4. Visual Inspection and Metrics Assessment
4.1.5. Statistical Analysis
4.2. Second Phase: Experimental Design
5. Results
5.1. First phase: Supervised Metrics Assessment
5.2. Second Phase: Evaluating Factors Affecting Segmentation Accuracy
6. Discussion
6.1. Evaluation of Supervised Segmentation Metrics
6.2. Factors Affecting the PCG Segmentation
6.2.1. Reflectance Storage Scale
6.2.2. Shape Parameter
6.2.3. Image Spatial Resolution
6.2.4. Study Area
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Chen, J.; Zhou, Y.; Chen, X.; Chen, X.; Cao, X. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS J. Photogramm. Remote Sens. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Zhang, P.; Du, P.; Guo, S.; Zhang, W.; Tang, P.; Chen, J.; Zheng, H. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images. Remote Sens. Environ. 2022, 276, 113042. [Google Scholar] [CrossRef]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Agüera, F.; Aguilar, M.A.; Aguilar, F.J. Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast. Int. J. Remote Sens. 2006, 27, 4751–4767. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Lao, R.; Aguilar, F.; Nemmaoui, A.; Aguilar, M. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sens. 2020, 12, 2649. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Vallario, A.; Aguilar, F.J.; García Lorca, A.; Parente, C. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain. Remote Sens. 2015, 7, 7378–7401. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Bianconi, F.; Aguilar, F.J.; Fernández, I. Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, E.; Figorito, B. Mapping Rural Areas with Widespread Plastic Covered Vineyards Using True Color Aerial Data. Remote Sens. 2012, 4, 1913–1928. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, S. Evaluating the Effects of Image Texture Analysis on Plastic Greenhouse Segments via Recognition of the OSI-USI-ETA-CEI Pattern. Remote Sens. 2019, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Kotaridis, I.; Lazaridou, M. Remote sensing image segmentation advances: A meta-analysis. ISPRS J. Photogramm. Remote Sens. 2021, 173, 309–322. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Aguilar, F.J.; García-Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C. Assessment of Multiresolution Segmentation for Extracting Greenhouses from Worldview-2 Imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Jiménez-Lao, R.; Ladisa, C.; Aguilar, F.J.; Tarantino, E. Comparison of spectral indices extracted from Sentinel-2 images to map plastic covered greenhouses through an object-based approach. GISci. Remote Sens. 2022, 59, 822–842. [Google Scholar] [CrossRef]
- Bektas Balcik, F.; Senel, G.; Goksel, C. Object-Based Classification of Greenhouses Using Sentinel-2 MSI and SPOT-7 Images: A Case Study from Anamur (Mersin), Turkey. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 2769–2777. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm. Remote Sens. 2003, 57, 327–345. [Google Scholar] [CrossRef]
- Jozdani, S.; Chen, D. On the versatility of popular and recently proposed supervised evaluation metrics for segmentation quality of remotely sensed images: An experimental case study of building extraction. ISPRS J. Photogramm. Remote Sens. 2020, 160, 275–290. [Google Scholar] [CrossRef]
- Tian, J.; Chen, D.M. Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. Int. J. Remote Sens. 2007, 28, 4625–4644. [Google Scholar] [CrossRef]
- Costa, H.; Foody, G.M.; Boyd, D.S. Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sens. Environ. 2018, 205, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J. A survey on evaluation methods for image segmentation. Pattern Recognit. 1996, 29, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 2008, 110, 260–280. [Google Scholar] [CrossRef] [Green Version]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy assessment measures for object-based image segmentation goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. GISci. Remote Sens. 2022, 55, 159–182. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 2014, 96, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Maxwell, T.; Zhang, Y.; Dey, V. A Supervised and Fuzzy-based Approach to Determine Optimal Multi-resolution Image Segmentation Parameters. Photogramm. Eng. Remote Sens. 2012, 78, 1029–1044. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Novelli, A.; Nemamoui, A.; Aguilar, F.J.; García-Lorca, A.; González-Yebra, O. Optimizing Multiresolution Segmentation for Extracting Plastic Greenhouses from Worldview-3 Imagery. In Proceedings of the International Conference on Intelligent Interactive Multimedia Systems and Services, Vilamoura, Portugal, 21–23 June 2017; Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–40. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Jiménez-Lao, R.; Nemmaoui, A.; Aguilar, F.J.; Koc-San, D.; Tarantino, E.; Chourak, M. Evaluation of the Consistency of Simultaneously Acquired Sentinel-2 and Landsat 8 Imagery on Plastic Covered Greenhouses. Remote Sens. 2020, 12, 2015. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Jiménez-Lao, R.; Aguilar, F.J. Evaluation of Object-Based Greenhouse Mapping Using WorldView-3 VNIR and SWIR Data: A Case Study from Almería (Spain). Remote Sens. 2021, 13, 2133. [Google Scholar] [CrossRef]
- DigitalGlobe. Worldview-3 Data Sheet. 2014. Available online: http://satimagingcorp.s3.amazonaws.com/site/pdf/WorldView3-DS-WV3-Web.pdf (accessed on 20 September 2022).
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 Products Specification Document. 2021. Available online: https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Products-Specification-Document (accessed on 21 September 2022).
- Scheffler, D.; Hollstein, A.; Diedrich, H.; Segl, K.; Hostert, P. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sens. 2017, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, A.; Stein, A. Existential uncertainty of spatial objects segmented from satellite sensor imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2518–2521. [Google Scholar] [CrossRef] [Green Version]
- Weidner, U. Contribution to the assessment of segmentation quality for remote sensing applications. In Proceedings of the 21st Congress for the International Society for Photogrammetry and Remote Sensing, Beijing, China, 3–11 July 2008. [Google Scholar]
- Levine, M.D.; Nazif, A. An experimental rule-based system for testing low level segmentation strategies. In Multicomputers and Image Processing: Algorithms and Programs; Academic Press: New York, NY, USA, 1982; pp. 149–160. [Google Scholar]
- Janssen, L.L.F.; Molenaar, M. Terrain objects, their dynamics and their monitoring by the integration of GIS and remote sensing. IEEE Trans. Geosci. Remote Sens. 1995, 33, 749–758. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Xiao, P.; He, G.; Zhu, L. Segmentation quality evaluation using region-based precision and recall measures for remote sensing images. ISPRS J. Photogramm. Remote Sens. 2015, 102, 73–84. [Google Scholar] [CrossRef]
- Liu, Y.; Bian, L.; Meng, Y.; Wang, H.; Zhang, S.; Yang, Y.; Shao, X.; Wang, B. Discrepancy measures for selecting optimal combination of parameter values in object-based image analysis. ISPRS J. Photogramm. Remote Sens. 2012, 68, 144–156. [Google Scholar] [CrossRef]
- Yang, J.; Li, P.; He, Y. A multi-band approach to unsupervised scale parameter selection for multi-scale image segmentation. ISPRS J. Photogramm. Remote Sens. 2014, 94, 13–24. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Aguilar, F.J.; Nemmaoui, A.; Tarantino, E. AssesSeg—A Command Line Tool to Quantify Image Segmentation Quality: A Test Carried Out in Southern Spain from Satellite Imagery. Remote Sens. 2017, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Baatz, M.; Schäpe, M. Multiresolution Segmentation—An Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informations-Verarbeitung XII.; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Drǎguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Witharana, C.; Civco, D.L. Optimizing multi-resolution segmentation scale using empirical methods: Exploring the sensitivity of the supervised discrepancy measure Euclidean distance 2 (ED2). ISPRS J. Photogramm. Remote Sens. 2014, 87, 108–121. [Google Scholar] [CrossRef]
- Wang, H.; Lin, L.; Hu, H.; Chen, Q.; Li, Y.; Iwamoto, Y.; Han, X.H.; Chen, Y.W.; Tong, R. Patch-Free 3D Medical Image Segmentation Driven by Super-Resolution Technique and Self-Supervised Guidance. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Cham, Switzerland, 2021; pp. 131–141. [Google Scholar]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target detection. arXiv 2021, arXiv:2106.00487. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, P.; Woźniak, M. Image Enhancement-Based Detection with Small Infrared Targets. Remote Sens. 2022, 14, 3232. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, S. Effects of Atmospheric Correction and Image Enhancement on Effective Plastic Greenhouse Segments Based on a Semi-Automatic Extraction Method. ISPRS Int. J. Geo-Inf. 2022, 11, 585. [Google Scholar] [CrossRef]
- Mesner, N.; Oštir, K. Investigating the impact of spatial and spectral resolution of satellite images on segmentation quality. J. Appl. Remote Sens. 2014, 8, 083696. [Google Scholar] [CrossRef]
Scale Parameter | Total Object Number | Scores Granted by Interpreters | |||||
---|---|---|---|---|---|---|---|
Interpreter 1 | Interpreter 2 | Interpreter 3 | Interpreter 4 | Interpreter 5 | Interpreter 6 | ||
2 | 12,345 | 8 | 9 | 10 (worst) | 10 (worst) | 10 (worst) | 10 (worst) |
3 | 5441 | 5 | 8 | 9 | 9 | 7 | 9 |
4 | 3226 | 3 | 4 | 8 | 5 | 4 | 8 |
5 | 2188 | 1 (best) | 2 | 4 | 2 | 3 | 7 |
6 | 1603 | 2 | 1 (best) | 1 (best) | 1 (best) | 2 | 2 |
7 | 1283 | 4 | 3 | 2 | 4 | 1 (best) | 1 (best) |
8 | 1010 | 6 | 5 | 7 | 3 | 8 | 3 |
9 | 828 | 7 | 7 | 5 | 6 | 5 | 5 |
10 | 692 | 9 | 6 | 6 | 7 | 9 | 4 |
11 | 579 | 10 (worst) | 10 (worst) | 3 | 8 | 6 | 6 |
Scale Parameter | MED2 (0) | AFI (0) | D-Index (0) | ED3 (0) | F Measure (1) | Fitness (0) | M (1) | QR (0) | Median Score | Category |
---|---|---|---|---|---|---|---|---|---|---|
2 | 7.601 | 0.701 | 0.661 | 0.463 | 0.335 | 19.375 | 0.496 | 0.908 | 10.0 | |
3 | 2.695 | 0.448 | 0.592 | 0.407 | 0.400 | 8.367 | 0.604 | 0.807 | 8.5 | |
4 | 1.225 | 0.224 | 0.515 | 0.341 | 0.407 | 4.931 | 0.663 | 0.699 | 4.5 | Bronze |
5 | 0.741 | −0.031 | 0.453 | 0.297 | 0.393 | 3.453 | 0.677 | 0.622 | 2.5 | Silver |
6 | 0.638 | −0.309 | 0.416 | 0.272 | 0.376 | 2.690 | 0.674 | 0.577 | 1.5 | Gold |
7 | 0.749 | −0.550 | 0.392 | 0.258 | 0.361 | 2.249 | 0.661 | 0.549 | 2.5 | Silver |
8 | 0.998 | −0.916 | 0.408 | 0.268 | 0.344 | 1.831 | 0.633 | 0.568 | 5.5 | |
9 | 1.318 | −1.411 | 0.423 | 0.283 | 0.326 | 1.596 | 0.606 | 0.591 | 5.5 | |
10 | 1.834 | −2.028 | 0.444 | 0.302 | 0.317 | 1.441 | 0.577 | 0.621 | 6.5 | |
11 | 2.279 | −2.740 | 0.469 | 0.325 | 0.307 | 1.332 | 0.543 | 0.657 | 7.0 |
Almería December | Almería June | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Percent | 16Bit | Percent | 16Bit | ||||||
WV3 | S2 | WV3 | S2 | WV3 | S2 | WV3 | S2 | ||
MED2 | 3 | 3 | 3 | 3 | 3 | 1 | 3 | 19 | |
AFI | 2 | 2 | 1 | 2 | 7 | ||||
D-index | 2 | 2 | 1 | 2 | 2 | 9 | |||
ED3 | 1 | 2 | 2 | 3 | 2 | 3 | 2 | 15 | |
F measure | 1 | 1 | |||||||
Fitness | 2 | 2 | 4 | ||||||
M | 2 | 2 | 3 | 3 | 2 | 12 | |||
QR | 2 | 2 | 1 | 2 | 2 | 9 | |||
Antalya February | Antalya July | Total | |||||||
Percent | 16Bit | Percent | 16Bit | ||||||
SPOT-7 | S2 | SPOT-7 | S2 | SPOT-7 | S2 | SPOT-7 | S2 | ||
MED2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 23 |
AFI | 2 | 2 | |||||||
D-index | 2 | 2 | 3 | 1 | 2 | 3 | 13 | ||
ED3 | 2 | 2 | 1 | 1 | 2 | 2 | 10 | ||
F measure | 0 | ||||||||
Fitness | 0 | ||||||||
M | 2 | 3 | 5 | ||||||
QR | 2 | 2 | 3 | 1 | 2 | 3 | 13 |
Factors and Interactions | p-Value |
---|---|
SS (Study Site) | 0.65 |
SR (Spatial resolution) | 0.06 |
RSS (Reflectance Storage Scale) | 0.00 |
Season | 0.06 |
RSS × Season | 0.65 |
SR × RSS | 0.01 |
SS × RSS | 0.20 |
SR × Season | 0.65 |
SS × Season | 0.20 |
SS × SR | 0.65 |
Factors and Interactions | p-Value | Partial η2 | Effect Size |
---|---|---|---|
RSS × Shp | 0.000 | 0.714 | Large |
SR | 0.000 | 0.584 | Large |
Shp | 0.000 | 0.362 | Large |
SR × RSS × Shp | 0.001 | 0.144 | Medium to large |
SR × Season | 0.00 | 0.129 | Medium |
Season × RSS × Shp | 0.00 | 0.127 | Medium |
SS | 0.01 | 0.075 | Medium |
SS × Season | 0.01 | 0.068 | Medium |
SS × SR × Season | 0.03 | 0.049 | Small to medium |
SR × Season × Format | 0.04 | 0.044 | Small to medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senel, G.; Aguilar, M.A.; Aguilar, F.J.; Nemmaoui, A.; Goksel, C. Unraveling Segmentation Quality of Remotely Sensed Images on Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from Supervised Evaluation Metrics. Remote Sens. 2023, 15, 494. https://doi.org/10.3390/rs15020494
Senel G, Aguilar MA, Aguilar FJ, Nemmaoui A, Goksel C. Unraveling Segmentation Quality of Remotely Sensed Images on Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from Supervised Evaluation Metrics. Remote Sensing. 2023; 15(2):494. https://doi.org/10.3390/rs15020494
Chicago/Turabian StyleSenel, Gizem, Manuel A. Aguilar, Fernando J. Aguilar, Abderrahim Nemmaoui, and Cigdem Goksel. 2023. "Unraveling Segmentation Quality of Remotely Sensed Images on Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from Supervised Evaluation Metrics" Remote Sensing 15, no. 2: 494. https://doi.org/10.3390/rs15020494
APA StyleSenel, G., Aguilar, M. A., Aguilar, F. J., Nemmaoui, A., & Goksel, C. (2023). Unraveling Segmentation Quality of Remotely Sensed Images on Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from Supervised Evaluation Metrics. Remote Sensing, 15(2), 494. https://doi.org/10.3390/rs15020494