Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques
Abstract
1. Introduction
2. Case Studies
2.1. Physical and Climatic Setting
2.2. Study Sites
3. Materials and Methods
3.1. Data Collection
3.2. Data Processing
4. Results
4.1. Long-Term Morphological Evolution of the Investigated Sites
4.2. Short-Term Evolution of the Investigated Sites: Multitemporal Analysis of GNSS Coordinates and Photogrammetric Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, D.R. Process Domains and the River Continuum. J. Am. Water Resour. Assoc. 1999, 35, 397–410. [Google Scholar] [CrossRef]
- Borgatti, L.; Soldati, M. Landslides and Climatic Change. In Geomorphological Hazards and Disaster Prevention; Alcántara-Ayala, I., Goudie, A.S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 87–95. [Google Scholar] [CrossRef]
- Crozier, M.J. Landslide Geomorphology: An Argument for Recognition, with Examples from New Zealand. Geomorphology 2010, 120, 3–15. [Google Scholar] [CrossRef]
- Carlini, M.; Chelli, A.; Vescovi, P.; Artoni, A.; Clemenzi, L.; Tellini, C.; Torelli, L. Tectonic Control on the Development and Distribution of Large Landslides in the Northern Apennines (Italy). Geomorphology 2016, 253, 425–437. [Google Scholar] [CrossRef]
- Cendrero, A.; Remondo, J.; Beylich, A.A.; Cienciala, P.; Forte, L.M.; Golosov, V.N.; Gusarov, A.V.; Kijowska-Strugała, M.; Laute, K.; Li, D.; et al. Denudation and Geomorphic Change in the Anthropocene; a Global Overview. Earth-Sci. Rev. 2022, 233, 104186. [Google Scholar] [CrossRef]
- Micu, M.; Micu, D.; Soldati, M. Mass Movements in Changing Mountainous Environments. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 371–388. [Google Scholar] [CrossRef]
- Picco, L.; Tonon, A.; Ravazzolo, D.; Rainato, R.; Lenzi, M.A. Monitoring River Island Dynamics Using Aerial Photographs and Lidar Data: The Tagliamento River Study Case. Appl. Geomat. 2015, 7, 163–170. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The Partitioning of the Total Sediment Load of a River into Suspended Load and Bedload: A Review of Empirical Data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Mao, L.; Cavalli, M.; Comiti, F.; Marchi, L.; Lenzi, M.; Arattano, M. Sediment Transfer Processes in Two Alpine Catchments of Contrasting Morphological Settings. J. Hydrol. 2009, 364, 88–98. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G.; Lenzi, M. Three Decades of Monitoring in the Rio Cordon Instrumented Basin: Sediment Budget and Temporal Trend of Sediment Yield. Geomorphology 2017, 291, 45–56. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Oxford, UK, 2005; 398p. [Google Scholar] [CrossRef]
- Van Asch, T.; Buma, J.; Van Beek, L. A View on Some Hydrological Triggering Systems in Landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Schuerch, P.; Densmore, A.L.; McArdell, B.W.; Molnar, P. The Influence of Landsliding on Sediment Supply and Channel Change in a Steep Mountain Catchment. Geomorphology 2006, 78, 222–235. [Google Scholar] [CrossRef]
- Brardinoni, F.; Mao, L.; Recking, A.; Rickenmann, D.; Turowski, J.M. Morphodynamics of Steep Mountain Channels. Earth Surf. Process. Landf. 2015, 40, 1560–1562. [Google Scholar] [CrossRef]
- Teng, T.-Y.; Huang, J.-C.; Lee, T.-Y.; Chen, Y.-C.; Jan, M.-Y.; Liu, C.-C. Investigating Sediment Dynamics in a Landslide-Dominated Catchment by Modeling Landslide Area and Fluvial Sediment Export. Water 2020, 12, 2907. [Google Scholar] [CrossRef]
- Scorpio, V.; Cavalli, M.; Steger, S.; Crema, S.; Marra, F.; Zaramella, M.; Borga, M.; Marchi, L.; Comiti, F. Storm Characteristics Dictate Sediment Dynamics and Geomorphic Changes in Mountain Channels: A Case Study in the Italian Alps. Geomorphology 2022, 403, 108173. [Google Scholar] [CrossRef]
- Beylich, A.A.; Brardinoni, F. Sediment Sources, Source-to-Sink Fluxes and Sedimentary Budgets. Geomorphology 2013, 188, 1–2. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis)Connectivity in Catchment Sediment Cascades: A Fresh Look at the Sediment Delivery Problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Cavalli, M.; Vericat, D.; Pereira, P. Mapping Water and Sediment Connectivity. Sci. Total Environ. 2019, 673, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Steger, S.; Scorpio, V.; Comiti, F.; Cavalli, M. Data-Driven Modelling of Joint Debris Flow Release Susceptibility and Connectivity. Earth Surf. Process. Landf. 2022, 47, 2740–2764. [Google Scholar] [CrossRef]
- Corsini, A.; Marchetti, M.; Soldati, M. Holocene Slope Dynamics in the Area of Corvara in Badia (Dolomites, Italy): Chronology and Paleoclimatic Significance of Some Landslides. Geogr. Fis. Dinam. Quat. 2001, 24, 127–139. [Google Scholar]
- Li, J.; Cao, Z.; Cui, Y.; Borthwick, A.G. Barrier Lake Formation due to Landslide Impacting a River: A Numerical Study Using a Double Layer-Averaged Two-Phase Flow Model. Appl. Math. Model. 2020, 80, 574–601. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Cui, Y.; Fan, X.; Yang, W.; Huang, W.; Borthwick, A. Hydro-Sediment-Morphodynamic Processes of the Baige Landslide-Induced Barrier Lake, Jinsha River, China. J. Hydrol. 2021, 596, 126134. [Google Scholar] [CrossRef]
- Parenti, C.; Rossi, P.; Soldati, M.; Grassi, F.; Mancini, F. Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics. Geosciences 2022, 12, 293. [Google Scholar] [CrossRef]
- Benda, L.; Hassan, M.A.; Church, M.; May, C.L. Geomorphology of Steepland Headwaters: The Transition from Hillslopes to Channels. J. Am. Water Resour. Assoc. 2005, 41, 835–851. [Google Scholar] [CrossRef]
- Płaczkowska, E. Slope-Fluvial System Structure in the Western Tatra Mountains (Poland): Slope-to-Channel Transition. Arct. Antarct. Alp. Res. 2017, 49, 569–583. [Google Scholar] [CrossRef]
- Krapesch, G.; Hauer, C.; Habersack, H. Scale Orientated Analysis of River Width Changes due to Extreme Flood Hazards. Nat. Hazards Earth Syst. Sci. 2011, 11, 2137–2147. [Google Scholar] [CrossRef]
- Lucía, A.; Comiti, F.; Borga, M.; Cavalli, M.; Marchi, L. Dynamics of Large Wood during a Flash Flood in Two Mountain Catchments. Nat. Hazards Earth Syst. Sci. 2015, 15, 1741–1755. [Google Scholar] [CrossRef]
- Nardi, L.; Rinaldi, M. Spatio-Temporal Patterns of Channel Changes in Response to a Major Flood Event: The Case of the Magra River (Central-Northern Italy). Earth Surf. Process. Landf. 2015, 40, 326–339. [Google Scholar] [CrossRef]
- Thompson, C.J.; Fryirs, K.; Croke, J. The Disconnected Sediment Conveyor Belt: Patterns of Longitudinal and Lateral Erosion and Deposition During a Catastrophic Flood in the Lockyer Valley, South East Queensland, Australia. River Res. Appl. 2015, 32, 540–551. [Google Scholar] [CrossRef]
- Scorpio, V.; Crema, S.; Marra, F.; Righini, M.; Ciccarese, G.; Borga, M.; Cavalli, M.; Corsini, A.; Marchi, L.; Surian, N.; et al. Basin-Scale Analysis of the Geomorphic Effectiveness of Flash Floods: A Study in the Northern Apennines (Italy). Sci. Total Environ. 2018, 640, 337–351. [Google Scholar] [CrossRef]
- Newson, M.D.; Sear, D. The Role of Geomorphology in Monitoring and Managing River Sediment Systems. Water Environ. J. 1997, 11, 264–270. [Google Scholar] [CrossRef]
- Righini, M.; Surian, N.; Wohl, E.; Marchi, L.; Comiti, F.; Amponsah, W.; Borga, M. Geomorphic Response to an Extreme Flood in Two Mediterranean Rivers (Northeastern Sardinia, Italy): Analysis of Controlling Factors. Geomorphology 2017, 290, 184–199. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P.; Buytaert, W.; Matgen, P.; Pappenberger, F. A Data Assimilation Approach to Discharge Estimation from Space. Hydrol. Process. 2009, 23, 3641–3649. [Google Scholar] [CrossRef]
- Bishop, M.P.; James, L.A.; Shroder, J.F.; Walsh, S.J. Geospatial Technologies and Digital Geomorphological Mapping: Concepts, Issues and Research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Calcaterra, S.; Cesi, C.; Di Maio, C.; Gambino, P.; Merli, K.; Vallario, M.; Vassallo, R. Surface Displacements of Two Landslides Evaluated by GPS and Inclinometer Systems: A Case Study in Southern Apennines, Italy. Nat. Hazards 2012, 61, 257–266. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Allievi, J. Damage to Buildings in Large Slope Rock Instabilities Monitored with the PSInSAR™ Technique. Remote Sens. 2013, 5, 4753–4773. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A.; Hübl, J. Unmanned Aerial Vehicle (UAV)-Based Monitoring of a Landslide: Gallenzerkogel Landslide (Ybbs-Lower Austria) Case Study. Environ. Monit. Assess. 2017, 190, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nikolakopoulos, K.; Kavoura, K.; Depountis, N.; Kyriou, A.; Argyropoulos, N.; Koukouvelas, I.; Sabatakakis, N. Preliminary Results from Active Landslide Monitoring Using Multidisciplinary Surveys. Eur. J. Remote Sens. 2017, 50, 280–299. [Google Scholar] [CrossRef]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Kasprak, A.; Sear, D.; Vericat, D. Morphodynamic Signatures of Braiding Mechanisms as Expressed Through Change in Sediment Storage in a Gravel-Bed River. J. Geophys. Res. Earth Surf. 2013, 118, 759–779. [Google Scholar] [CrossRef]
- Pirot, G.; Straubhaar, J.; Renard, P. Simulation of Braided River Elevation Model Time Series with Multiple-Point Statistics. Geomorphology 2014, 214, 148–156. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, Satellite InSAR, and GBInSAR Remote Sensing Monitoring to Improve the Understanding of a Large Landslide in High Alpine Environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I.; Lampropoulou, P. Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals 2021, 11, 300. [Google Scholar] [CrossRef]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Rivola, R. A Reliable Methodology for Monitoring Unstable Slopes: The Multi-Platform and Multi-Sensor Approach. In Proceedings of the SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications V, Amsterdam, The Netherlands, 23–25 September 2014; Volume 9245, p. 92450J. [Google Scholar] [CrossRef]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ.; Genç, A. Landslide Monitoring with GNSS Measurements and Prediction with Linear Regression Model: A Case Study Taşkent (Konya, Turkey) Landslide. In Proceedings of the Digital Proceeding of the ISDS’2014, Side, Turkey, 10–14 May 2014. [Google Scholar]
- Mantovani, M.; Bossi, G.; Dykes, A.P.; Pasuto, A.; Soldati, M.; Devoto, S. Coupling Long-Term GNSS Monitoring and Numerical Modelling of Lateral Spreading for Hazard Assessment Purposes. Eng. Geol. 2021, 296, 106466. [Google Scholar] [CrossRef]
- Eyo, E.; Musa, T.A.; Omar, K.M.; Idris, K.M.; Bayrak, T.; Onuigbo, I.C.; Opaluwa, Y.D. Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review. J. Teknol. 2014, 71, 71–78. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H. Slope Inclinometers for Landslides. Landslides 2008, 5, 339–350. [Google Scholar] [CrossRef]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining Nadir and Oblique UAV Imagery to Reconstruct Quarry Topography: Methodology and Feasibility Analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Prokešová, R.; Mokroš, M. Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences 2019, 9, 117. [Google Scholar] [CrossRef]
- Cignetti, M.; Godone, D.; Wrzesniak, A.; Giordan, D. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy. Sensors 2019, 19, 2364. [Google Scholar] [CrossRef] [PubMed]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Raspini, F.; Xu, Q.; Peng, Y.; Ju, Y.; Zheng, Y.; Casagli, N. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides 2021, 18, 251–265. [Google Scholar] [CrossRef]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Prog. Phys. Geogr. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 895–902. [Google Scholar] [CrossRef]
- James, M.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy Assessment of a UAV Block by Different Software Packages, Processing Schemes and Validation Strategies. ISPRS Int. J. Geo-Inf. 2020, 9, 164. [Google Scholar] [CrossRef]
- Pessoa, G.G.; Carrilho, A.C.; Miyoshi, G.T.; Amorim, A.; Galo, M. Assessment of UAV-Based Digital Surface Model and the Effects of Quantity and Distribution of Ground Control Points. Int. J. Remote Sens. 2021, 42, 65–83. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Ferrer-González, E.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Rossi, P.; Mancini, F. Influence of AGL Flight and Off-Nadir Images on UAV-SfM Accuracy in Complex Morphology Terrains. Geocarto Int. 2022, 37, 12892–12912. [Google Scholar] [CrossRef]
- Baum, R.; Messerich, J.; Fleming, R.W. Surface Deformation as a Guide to Kinematics and Three-Dimensional Shape of Slow-Moving, Clay-Rich Landslides, Honolulu, Hawaii. Environ. Eng. Geosci. 1998, 4, 283–306. [Google Scholar] [CrossRef]
- Abellan, A.; Derron, M.-H.; Jaboyedoff, M. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef]
- Okyay, U.; Telling, J.; Glennie, C.L.; Dietrich, W.E. Airborne Lidar Change Detection: An Overview of Earth Sciences Applications. Earth-Sci. Rev. 2019, 198, 102929. [Google Scholar] [CrossRef]
- Kakavas, M.P.; Nikolakopoulos, K.G. Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis. Geosciences 2021, 11, 256. [Google Scholar] [CrossRef]
- Puniach, E.; Gruszczyński, W.; Ćwiąkała, P.; Matwij, W. Application of UAV-Based Orthomosaics for Determination of Horizontal Displacement Caused by Underground Mining. ISPRS J. Photogramm. Remote Sens. 2021, 174, 282–303. [Google Scholar] [CrossRef]
- Mugnai, F.; Masiero, A.; Angelini, R.; Cortesi, I. Integrating UAS Photogrammetry and Digital Image Correlation for Monitoring of Large Landslides. Preprints 2022, 2022010248. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; Moussa, A.; Foroutan, M.; El-Sheimy, N.; Habib, A. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications. Sensors 2017, 17, 2378. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.T. Remote Sensing Applications for Landslide Monitoring and Investigation in Western Canada. Remote Sens. 2021, 13, 366. [Google Scholar] [CrossRef]
- Kharroubi, A.; Poux, F.; Ballouch, Z.; Hajji, R.; Billen, R. Three Dimensional Change Detection Using Point Clouds: A Review. Geomatics 2022, 2, 457–485. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Nourbakhshbeidokhti, S.; Kinoshita, A.M.; Chin, A.; Florsheim, J.L. A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance. Remote Sens. 2019, 11, 586. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna. Available online: https://geoportale.regione.emilia-romagna.it/ (accessed on 1 May 2023).
- Bettelli, G.; De Nardo, M.T. Geological Outlines of the Emilia Apennines (Northern Italy) and Introduction to the Formations Surrounding the Landslides which Resumed Activity in the 1994–1999 period. Quad. Geol. Appl. 2001, 8, 1–26. [Google Scholar]
- Cerrina Feroni, A.; Martelli, L.; Martinelli, P.; Ottria, G.; Catanzariti, R. Carta Geologico-Strutturale dell’Appennino Emiliano-Romagnolo alla Scala 1:250,000, (Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli, CNR, Istituto di Geoscienze e Georisorse, Pisa), S.EL.CA., Firenze. 2002. Available online: https://geodata.mit.edu/catalog/mit-q2c4ny27r5jey (accessed on 6 June 2023).
- Abbate, E.; Bortolotti, V.; Passerini, P.; Sagri, M. Introduction to the Geology of the Northern Apennines. Sediment. Geol. 1970, 4, 207–249. [Google Scholar] [CrossRef]
- Soldati, M.; Tosatti, G. Case Histories of Lake-Forming Landslides in the Dragone Valley (Northern Apennines, Italy). In Landslides—Proceedings of the Seventh International Conference and Field Workshop on Landslides in Czech and Slovak Republics; Novosad, N., Wagner, P., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1993; pp. 287–292. [Google Scholar]
- Bertolini, G.; Canuti, P.; Casagli, N.; De Nardo, M.T.; Egidi, D.; Mainetti, M.; Pignone, R.; Pizziolo, M. Carta della Pericolosità Relativa da Frana della Regione Emilia-Romagna; SystemCart: Rome, Italy, 2002. [Google Scholar]
- Bertolini, G.; Guida, M.; Pizziolo, M. Landslides in Emilia-Romagna region (Italy): Strategies for Hazard Assessment and Risk Management. Landslides 2005, 2, 302–312. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Shuster, R.L., Eds.; Transportation Research Board; National Research Council: Washington, DC, USA, 1996. [Google Scholar]
- Ronchetti, F.; Borgatti, L.; Cervi, F.; Lucente, C.C.; Veneziano, M.; Corsini, A. The Valoria Landslide Reactivation in 2005–2006 (Northern Apennines, Italy). Landslides 2007, 4, 189–195. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B.; Barbano, A.; Munafò, M. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio. Rapporto 2015, 233, 2015. [Google Scholar]
- Bertolini, G.; Corsini, A.; Tellini, C. Fingerprints of Large-Scale Landslides in the Landscape of the Emilia Apennines. In Landscapes and Landforms of Italy. World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 215–224. [Google Scholar] [CrossRef]
- Mulas, M.; Ciccarese, G.; Ronchetti, F.; Truffelli, G.; Corsini, A. Slope Dynamics and Streambed Uplift during the Pergalla Landslide Reactivation in March 2016 and Discussion of Concurrent Causes (Northern Apennines, Italy). Landslides 2018, 15, 1881–1887. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Daniele, G.; Pizziolo, M. Historical Geospatial Database for Landslide Analysis: The Catalogue of Landslide Occurrences in the Emilia-Romagna Region (CLOCkER). Landslides 2018, 15, 811–822. [Google Scholar] [CrossRef]
- Ciccarese, G.; Mulas, M.; Alberoni, P.P.; Truffelli, G.; Corsini, A. Debris Flows Rainfall Thresholds in the Apennines of Emilia-Romagna (Italy) Derived by the Analysis of Recent Severe Rainstorms Events and Regional Meteorological Data. Geomorphology 2020, 358, 107097. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Busuioc, A.; Marletto, V.; Zinoni, F.; Cacciamani, C. Detection of Changes in the Summer Precipitation Time Series of the Region Emilia-Romagna, Italy. Theor. Appl. Climatol. 2000, 67, 193–200. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Lazzeri, M.; Cacciamani, C. Precipitation Fluctuations during the Winter Season from 1960 to 1995 over Emilia-Romagna, Italy. Theor. Appl. Climatol. 2002, 72, 221–229. [Google Scholar] [CrossRef]
- Pavan, V.; Tomozeiu, R.; Cacciamani, C.; Di Lorenzo, M. Daily Precipitation Observations over Emilia-Romagna: Mean Values and Extremes. Int. J. Climatol. 2008, 28, 2065–2079. [Google Scholar] [CrossRef]
- Agenzia Prevenzione Ambientale Energia Emilia-Romagna. Available online: https://www.arpae.it/ (accessed on 1 May 2023).
- Köppen, W. Grundriß der Klimakunde, 2nd ed.; Walter de Gruyter and Co.: Berlin, Germany; Leipzig, Germany, 1931. [Google Scholar]
- Montgomery, D.R.; Buffington, J.M. Channel-Reach Morphology in Mountain Drainage Basins. GSA Bull. 1997, 109, 596–611. [Google Scholar]
- Surian, N.; Rinaldi, M.; Pellegrini, L. Linee Guida per l’analisi Geomorfologica Degli Alvei Fluviali e Delle loro Tendenze Evolutive; Cooperativa Libraria Editrice Università di Padova: Padova, Italy, 2009; 79p. [Google Scholar]
- Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. [Google Scholar] [CrossRef]









| Site | Length (m) | Max Width (m) | Elevation Difference (m) | Tip Length (m) | Average Slope Angle (°) |
|---|---|---|---|---|---|
| La Confetta landslide | 370 | 150 | 80 | 132 | 12.5 |
| Sasso Cervaro landslide | 530 | 60 | 170 | 60 | 18.7 |
| La Confetta channel reach | 120 | 13 | 2 | - | 0.9 |
| Sasso Cervaro channel reach | 60 | 18 | 5 | - | 4.7 |
| Type | Year | Source | Scale/Resolution |
|---|---|---|---|
| Aerial photos | 1954 | Regional Web Map Service | 1:66,000 |
| Aerial photos | 1977 | Regional Web Map Service | 1:15,000 |
| Orthophotos | 1988 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 1996 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 1998 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 2007 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 2008 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 2011 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 2018 | Regional Web Map Service | 1:10,000 |
| Orthophotos | 2020 | Regional Web Map Service | 1:10,000 |
| Drone orthophotos | 2021 | Drone photogrammetry processing | 3 cm (La Confetta site) 1 cm (Sasso Cervaro site) |
| Drone orthophotos | 2022 | Drone photogrammetry processing | 3 cm (La Confetta site) 1 cm (Sasso Cervaro site) |
| La Confetta | Sasso Cervaro | |||
|---|---|---|---|---|
| 2021 | 2022 | 2021 | 2022 | |
| UAV model | DJI Phantom4 rtk | Autel EVO2 | ||
| Camera | FC6310R (8.8 mm) | XT705 (10.57 mm) | ||
| Flight | entire landslide (parallel flightlines) landslide toe (gridded flightlines) | entire landslide (gridded flightlines) | ||
| Flight height (m) | −60 a.s.l. −40 a.s.l. | −60 a.s.l. −40 a.s.l. | 31.1 a.g.l. | 37.1 a.g.l. |
| Number of images | 765 | 720 | 3329 | 3433 |
| GSD (mm) | 15.4 | 15.3 | 8.5 | 9.2 |
| Number of GCPs | 10 | 9 | 13 | 14 |
| Processing parameters —relative orientation | High | High | ||
| Processing parameters —image matching | Ultrahigh | High | ||
| Number of points in dense cloud | 126,921,205 | 157,394,778 | 564,429,765 | 590,605,899 |
| Point cloud resolution (points/cm2) | 0.106 | 0.146 | 0.348 | 0.295 |
| GCPs discrepancy (cm) | 1.26 | 1.44 | 2.76 | 3.35 |
| DEM resolution (cm/pixel) | 3.07 | 2.62 | 1.69 | 1.84 |
| Significant changes at 95% (cm) | 3.7 | 8.5 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parenti, C.; Rossi, P.; Mancini, F.; Scorpio, V.; Grassi, F.; Ciccarese, G.; Lugli, F.; Soldati, M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sens. 2023, 15, 3563. https://doi.org/10.3390/rs15143563
Parenti C, Rossi P, Mancini F, Scorpio V, Grassi F, Ciccarese G, Lugli F, Soldati M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sensing. 2023; 15(14):3563. https://doi.org/10.3390/rs15143563
Chicago/Turabian StyleParenti, Carlotta, Paolo Rossi, Francesco Mancini, Vittoria Scorpio, Francesca Grassi, Giuseppe Ciccarese, Francesca Lugli, and Mauro Soldati. 2023. "Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques" Remote Sensing 15, no. 14: 3563. https://doi.org/10.3390/rs15143563
APA StyleParenti, C., Rossi, P., Mancini, F., Scorpio, V., Grassi, F., Ciccarese, G., Lugli, F., & Soldati, M. (2023). Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sensing, 15(14), 3563. https://doi.org/10.3390/rs15143563

