Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques
Abstract
:1. Introduction
2. Case Studies
2.1. Physical and Climatic Setting
2.2. Study Sites
3. Materials and Methods
3.1. Data Collection
3.2. Data Processing
4. Results
4.1. Long-Term Morphological Evolution of the Investigated Sites
4.2. Short-Term Evolution of the Investigated Sites: Multitemporal Analysis of GNSS Coordinates and Photogrammetric Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, D.R. Process Domains and the River Continuum. J. Am. Water Resour. Assoc. 1999, 35, 397–410. [Google Scholar] [CrossRef]
- Borgatti, L.; Soldati, M. Landslides and Climatic Change. In Geomorphological Hazards and Disaster Prevention; Alcántara-Ayala, I., Goudie, A.S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 87–95. [Google Scholar] [CrossRef]
- Crozier, M.J. Landslide Geomorphology: An Argument for Recognition, with Examples from New Zealand. Geomorphology 2010, 120, 3–15. [Google Scholar] [CrossRef]
- Carlini, M.; Chelli, A.; Vescovi, P.; Artoni, A.; Clemenzi, L.; Tellini, C.; Torelli, L. Tectonic Control on the Development and Distribution of Large Landslides in the Northern Apennines (Italy). Geomorphology 2016, 253, 425–437. [Google Scholar] [CrossRef]
- Cendrero, A.; Remondo, J.; Beylich, A.A.; Cienciala, P.; Forte, L.M.; Golosov, V.N.; Gusarov, A.V.; Kijowska-Strugała, M.; Laute, K.; Li, D.; et al. Denudation and Geomorphic Change in the Anthropocene; a Global Overview. Earth-Sci. Rev. 2022, 233, 104186. [Google Scholar] [CrossRef]
- Micu, M.; Micu, D.; Soldati, M. Mass Movements in Changing Mountainous Environments. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 371–388. [Google Scholar] [CrossRef]
- Picco, L.; Tonon, A.; Ravazzolo, D.; Rainato, R.; Lenzi, M.A. Monitoring River Island Dynamics Using Aerial Photographs and Lidar Data: The Tagliamento River Study Case. Appl. Geomat. 2015, 7, 163–170. [Google Scholar] [CrossRef]
- Turowski, J.M.; Rickenmann, D.; Dadson, S.J. The Partitioning of the Total Sediment Load of a River into Suspended Load and Bedload: A Review of Empirical Data. Sedimentology 2010, 57, 1126–1146. [Google Scholar] [CrossRef]
- Mao, L.; Cavalli, M.; Comiti, F.; Marchi, L.; Lenzi, M.; Arattano, M. Sediment Transfer Processes in Two Alpine Catchments of Contrasting Morphological Settings. J. Hydrol. 2009, 364, 88–98. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G.; Lenzi, M. Three Decades of Monitoring in the Rio Cordon Instrumented Basin: Sediment Budget and Temporal Trend of Sediment Yield. Geomorphology 2017, 291, 45–56. [Google Scholar] [CrossRef]
- Brierley, G.; Fryirs, K. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Oxford, UK, 2005; 398p. [Google Scholar] [CrossRef]
- Van Asch, T.; Buma, J.; Van Beek, L. A View on Some Hydrological Triggering Systems in Landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Schuerch, P.; Densmore, A.L.; McArdell, B.W.; Molnar, P. The Influence of Landsliding on Sediment Supply and Channel Change in a Steep Mountain Catchment. Geomorphology 2006, 78, 222–235. [Google Scholar] [CrossRef]
- Brardinoni, F.; Mao, L.; Recking, A.; Rickenmann, D.; Turowski, J.M. Morphodynamics of Steep Mountain Channels. Earth Surf. Process. Landf. 2015, 40, 1560–1562. [Google Scholar] [CrossRef]
- Teng, T.-Y.; Huang, J.-C.; Lee, T.-Y.; Chen, Y.-C.; Jan, M.-Y.; Liu, C.-C. Investigating Sediment Dynamics in a Landslide-Dominated Catchment by Modeling Landslide Area and Fluvial Sediment Export. Water 2020, 12, 2907. [Google Scholar] [CrossRef]
- Scorpio, V.; Cavalli, M.; Steger, S.; Crema, S.; Marra, F.; Zaramella, M.; Borga, M.; Marchi, L.; Comiti, F. Storm Characteristics Dictate Sediment Dynamics and Geomorphic Changes in Mountain Channels: A Case Study in the Italian Alps. Geomorphology 2022, 403, 108173. [Google Scholar] [CrossRef]
- Beylich, A.A.; Brardinoni, F. Sediment Sources, Source-to-Sink Fluxes and Sedimentary Budgets. Geomorphology 2013, 188, 1–2. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis)Connectivity in Catchment Sediment Cascades: A Fresh Look at the Sediment Delivery Problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- Cavalli, M.; Vericat, D.; Pereira, P. Mapping Water and Sediment Connectivity. Sci. Total Environ. 2019, 673, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Steger, S.; Scorpio, V.; Comiti, F.; Cavalli, M. Data-Driven Modelling of Joint Debris Flow Release Susceptibility and Connectivity. Earth Surf. Process. Landf. 2022, 47, 2740–2764. [Google Scholar] [CrossRef]
- Corsini, A.; Marchetti, M.; Soldati, M. Holocene Slope Dynamics in the Area of Corvara in Badia (Dolomites, Italy): Chronology and Paleoclimatic Significance of Some Landslides. Geogr. Fis. Dinam. Quat. 2001, 24, 127–139. [Google Scholar]
- Li, J.; Cao, Z.; Cui, Y.; Borthwick, A.G. Barrier Lake Formation due to Landslide Impacting a River: A Numerical Study Using a Double Layer-Averaged Two-Phase Flow Model. Appl. Math. Model. 2020, 80, 574–601. [Google Scholar] [CrossRef]
- Li, J.; Cao, Z.; Cui, Y.; Fan, X.; Yang, W.; Huang, W.; Borthwick, A. Hydro-Sediment-Morphodynamic Processes of the Baige Landslide-Induced Barrier Lake, Jinsha River, China. J. Hydrol. 2021, 596, 126134. [Google Scholar] [CrossRef]
- Parenti, C.; Rossi, P.; Soldati, M.; Grassi, F.; Mancini, F. Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics. Geosciences 2022, 12, 293. [Google Scholar] [CrossRef]
- Benda, L.; Hassan, M.A.; Church, M.; May, C.L. Geomorphology of Steepland Headwaters: The Transition from Hillslopes to Channels. J. Am. Water Resour. Assoc. 2005, 41, 835–851. [Google Scholar] [CrossRef]
- Płaczkowska, E. Slope-Fluvial System Structure in the Western Tatra Mountains (Poland): Slope-to-Channel Transition. Arct. Antarct. Alp. Res. 2017, 49, 569–583. [Google Scholar] [CrossRef]
- Krapesch, G.; Hauer, C.; Habersack, H. Scale Orientated Analysis of River Width Changes due to Extreme Flood Hazards. Nat. Hazards Earth Syst. Sci. 2011, 11, 2137–2147. [Google Scholar] [CrossRef]
- Lucía, A.; Comiti, F.; Borga, M.; Cavalli, M.; Marchi, L. Dynamics of Large Wood during a Flash Flood in Two Mountain Catchments. Nat. Hazards Earth Syst. Sci. 2015, 15, 1741–1755. [Google Scholar] [CrossRef]
- Nardi, L.; Rinaldi, M. Spatio-Temporal Patterns of Channel Changes in Response to a Major Flood Event: The Case of the Magra River (Central-Northern Italy). Earth Surf. Process. Landf. 2015, 40, 326–339. [Google Scholar] [CrossRef]
- Thompson, C.J.; Fryirs, K.; Croke, J. The Disconnected Sediment Conveyor Belt: Patterns of Longitudinal and Lateral Erosion and Deposition During a Catastrophic Flood in the Lockyer Valley, South East Queensland, Australia. River Res. Appl. 2015, 32, 540–551. [Google Scholar] [CrossRef]
- Scorpio, V.; Crema, S.; Marra, F.; Righini, M.; Ciccarese, G.; Borga, M.; Cavalli, M.; Corsini, A.; Marchi, L.; Surian, N.; et al. Basin-Scale Analysis of the Geomorphic Effectiveness of Flash Floods: A Study in the Northern Apennines (Italy). Sci. Total Environ. 2018, 640, 337–351. [Google Scholar] [CrossRef]
- Newson, M.D.; Sear, D. The Role of Geomorphology in Monitoring and Managing River Sediment Systems. Water Environ. J. 1997, 11, 264–270. [Google Scholar] [CrossRef]
- Righini, M.; Surian, N.; Wohl, E.; Marchi, L.; Comiti, F.; Amponsah, W.; Borga, M. Geomorphic Response to an Extreme Flood in Two Mediterranean Rivers (Northeastern Sardinia, Italy): Analysis of Controlling Factors. Geomorphology 2017, 290, 184–199. [Google Scholar] [CrossRef]
- Neal, J.; Schumann, G.; Bates, P.; Buytaert, W.; Matgen, P.; Pappenberger, F. A Data Assimilation Approach to Discharge Estimation from Space. Hydrol. Process. 2009, 23, 3641–3649. [Google Scholar] [CrossRef]
- Bishop, M.P.; James, L.A.; Shroder, J.F.; Walsh, S.J. Geospatial Technologies and Digital Geomorphological Mapping: Concepts, Issues and Research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Calcaterra, S.; Cesi, C.; Di Maio, C.; Gambino, P.; Merli, K.; Vallario, M.; Vassallo, R. Surface Displacements of Two Landslides Evaluated by GPS and Inclinometer Systems: A Case Study in Southern Apennines, Italy. Nat. Hazards 2012, 61, 257–266. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Allievi, J. Damage to Buildings in Large Slope Rock Instabilities Monitored with the PSInSAR™ Technique. Remote Sens. 2013, 5, 4753–4773. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A.; Hübl, J. Unmanned Aerial Vehicle (UAV)-Based Monitoring of a Landslide: Gallenzerkogel Landslide (Ybbs-Lower Austria) Case Study. Environ. Monit. Assess. 2017, 190, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nikolakopoulos, K.; Kavoura, K.; Depountis, N.; Kyriou, A.; Argyropoulos, N.; Koukouvelas, I.; Sabatakakis, N. Preliminary Results from Active Landslide Monitoring Using Multidisciplinary Surveys. Eur. J. Remote Sens. 2017, 50, 280–299. [Google Scholar] [CrossRef]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Kasprak, A.; Sear, D.; Vericat, D. Morphodynamic Signatures of Braiding Mechanisms as Expressed Through Change in Sediment Storage in a Gravel-Bed River. J. Geophys. Res. Earth Surf. 2013, 118, 759–779. [Google Scholar] [CrossRef]
- Pirot, G.; Straubhaar, J.; Renard, P. Simulation of Braided River Elevation Model Time Series with Multiple-Point Statistics. Geomorphology 2014, 214, 148–156. [Google Scholar] [CrossRef]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, Satellite InSAR, and GBInSAR Remote Sensing Monitoring to Improve the Understanding of a Large Landslide in High Alpine Environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K.; Koukouvelas, I.; Lampropoulou, P. Repeated UAV Campaigns, GNSS Measurements, GIS, and Petrographic Analyses for Landslide Mapping and Monitoring. Minerals 2021, 11, 300. [Google Scholar] [CrossRef]
- Castagnetti, C.; Bertacchini, E.; Corsini, A.; Rivola, R. A Reliable Methodology for Monitoring Unstable Slopes: The Multi-Platform and Multi-Sensor Approach. In Proceedings of the SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications V, Amsterdam, The Netherlands, 23–25 September 2014; Volume 9245, p. 92450J. [Google Scholar] [CrossRef]
- Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System Techniques in Landslide Monitoring. Eng. Geol. 2000, 55, 167–192. [Google Scholar] [CrossRef]
- Zeybek, M.; Şanlıoğlu, İ.; Genç, A. Landslide Monitoring with GNSS Measurements and Prediction with Linear Regression Model: A Case Study Taşkent (Konya, Turkey) Landslide. In Proceedings of the Digital Proceeding of the ISDS’2014, Side, Turkey, 10–14 May 2014. [Google Scholar]
- Mantovani, M.; Bossi, G.; Dykes, A.P.; Pasuto, A.; Soldati, M.; Devoto, S. Coupling Long-Term GNSS Monitoring and Numerical Modelling of Lateral Spreading for Hazard Assessment Purposes. Eng. Geol. 2021, 296, 106466. [Google Scholar] [CrossRef]
- Eyo, E.; Musa, T.A.; Omar, K.M.; Idris, K.M.; Bayrak, T.; Onuigbo, I.C.; Opaluwa, Y.D. Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review. J. Teknol. 2014, 71, 71–78. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H. Slope Inclinometers for Landslides. Landslides 2008, 5, 339–350. [Google Scholar] [CrossRef]
- Lane, S.N.; James, T.D.; Crowell, M.D. Application of Digital Photogrammetry to Complex Topography for Geomorphological Research. Photogramm. Rec. 2000, 16, 793–821. [Google Scholar] [CrossRef]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining Nadir and Oblique UAV Imagery to Reconstruct Quarry Topography: Methodology and Feasibility Analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef]
- Chudý, F.; Slámová, M.; Tomaštík, J.; Prokešová, R.; Mokroš, M. Identification of Micro-Scale Landforms of Landslides Using Precise Digital Elevation Models. Geosciences 2019, 9, 117. [Google Scholar] [CrossRef]
- Cignetti, M.; Godone, D.; Wrzesniak, A.; Giordan, D. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy. Sensors 2019, 19, 2364. [Google Scholar] [CrossRef] [PubMed]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; De Michele, M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote Sensing for Assessing Landslides and Associated Hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Meng, Q.; Li, W.; Raspini, F.; Xu, Q.; Peng, Y.; Ju, Y.; Zheng, Y.; Casagli, N. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides 2021, 18, 251–265. [Google Scholar] [CrossRef]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Prog. Phys. Geogr. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 895–902. [Google Scholar] [CrossRef]
- James, M.; Robson, S.; D’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV Topographic Surveys Processed with Structure-from-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef]
- Casella, V.; Chiabrando, F.; Franzini, M.; Manzino, A.M. Accuracy Assessment of a UAV Block by Different Software Packages, Processing Schemes and Validation Strategies. ISPRS Int. J. Geo-Inf. 2020, 9, 164. [Google Scholar] [CrossRef]
- Pessoa, G.G.; Carrilho, A.C.; Miyoshi, G.T.; Amorim, A.; Galo, M. Assessment of UAV-Based Digital Surface Model and the Effects of Quantity and Distribution of Ground Control Points. Int. J. Remote Sens. 2021, 42, 65–83. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Ferrer-González, E.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Rossi, P.; Mancini, F. Influence of AGL Flight and Off-Nadir Images on UAV-SfM Accuracy in Complex Morphology Terrains. Geocarto Int. 2022, 37, 12892–12912. [Google Scholar] [CrossRef]
- Baum, R.; Messerich, J.; Fleming, R.W. Surface Deformation as a Guide to Kinematics and Three-Dimensional Shape of Slow-Moving, Clay-Rich Landslides, Honolulu, Hawaii. Environ. Eng. Geosci. 1998, 4, 283–306. [Google Scholar] [CrossRef]
- Abellan, A.; Derron, M.-H.; Jaboyedoff, M. “Use of 3D Point Clouds in Geohazards” Special Issue: Current Challenges and Future Trends. Remote Sens. 2016, 8, 130. [Google Scholar] [CrossRef]
- Okyay, U.; Telling, J.; Glennie, C.L.; Dietrich, W.E. Airborne Lidar Change Detection: An Overview of Earth Sciences Applications. Earth-Sci. Rev. 2019, 198, 102929. [Google Scholar] [CrossRef]
- Kakavas, M.P.; Nikolakopoulos, K.G. Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis. Geosciences 2021, 11, 256. [Google Scholar] [CrossRef]
- Puniach, E.; Gruszczyński, W.; Ćwiąkała, P.; Matwij, W. Application of UAV-Based Orthomosaics for Determination of Horizontal Displacement Caused by Underground Mining. ISPRS J. Photogramm. Remote Sens. 2021, 174, 282–303. [Google Scholar] [CrossRef]
- Mugnai, F.; Masiero, A.; Angelini, R.; Cortesi, I. Integrating UAS Photogrammetry and Digital Image Correlation for Monitoring of Large Landslides. Preprints 2022, 2022010248. [Google Scholar] [CrossRef]
- Al-Rawabdeh, A.; Moussa, A.; Foroutan, M.; El-Sheimy, N.; Habib, A. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications. Sensors 2017, 17, 2378. [Google Scholar] [CrossRef]
- Macciotta, R.; Hendry, M.T. Remote Sensing Applications for Landslide Monitoring and Investigation in Western Canada. Remote Sens. 2021, 13, 366. [Google Scholar] [CrossRef]
- Kharroubi, A.; Poux, F.; Ballouch, Z.; Hajji, R.; Billen, R. Three Dimensional Change Detection Using Point Clouds: A Review. Geomatics 2022, 2, 457–485. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Eltner, A.; Schneider, D. Analysis of Different Methods for 3D Reconstruction of Natural Surfaces from Parallel-Axes UAV Images. Photogramm. Rec. 2015, 30, 279–299. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Casagli, N.; Frodella, W.; Morelli, S.; Tofani, V.; Ciampalini, A.; Intrieri, E.; Raspini, F.; Rossi, G.; Tanteri, L.; Lu, P. Spaceborne, UAV and Ground-Based Remote Sensing Techniques for Landslide Mapping, Monitoring and Early Warning. Geoenviron. Disasters 2017, 4, 9. [Google Scholar] [CrossRef]
- Nourbakhshbeidokhti, S.; Kinoshita, A.M.; Chin, A.; Florsheim, J.L. A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance. Remote Sens. 2019, 11, 586. [Google Scholar] [CrossRef]
- Regione Emilia-Romagna. Available online: https://geoportale.regione.emilia-romagna.it/ (accessed on 1 May 2023).
- Bettelli, G.; De Nardo, M.T. Geological Outlines of the Emilia Apennines (Northern Italy) and Introduction to the Formations Surrounding the Landslides which Resumed Activity in the 1994–1999 period. Quad. Geol. Appl. 2001, 8, 1–26. [Google Scholar]
- Cerrina Feroni, A.; Martelli, L.; Martinelli, P.; Ottria, G.; Catanzariti, R. Carta Geologico-Strutturale dell’Appennino Emiliano-Romagnolo alla Scala 1:250,000, (Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli, CNR, Istituto di Geoscienze e Georisorse, Pisa), S.EL.CA., Firenze. 2002. Available online: https://geodata.mit.edu/catalog/mit-q2c4ny27r5jey (accessed on 6 June 2023).
- Abbate, E.; Bortolotti, V.; Passerini, P.; Sagri, M. Introduction to the Geology of the Northern Apennines. Sediment. Geol. 1970, 4, 207–249. [Google Scholar] [CrossRef]
- Soldati, M.; Tosatti, G. Case Histories of Lake-Forming Landslides in the Dragone Valley (Northern Apennines, Italy). In Landslides—Proceedings of the Seventh International Conference and Field Workshop on Landslides in Czech and Slovak Republics; Novosad, N., Wagner, P., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1993; pp. 287–292. [Google Scholar]
- Bertolini, G.; Canuti, P.; Casagli, N.; De Nardo, M.T.; Egidi, D.; Mainetti, M.; Pignone, R.; Pizziolo, M. Carta della Pericolosità Relativa da Frana della Regione Emilia-Romagna; SystemCart: Rome, Italy, 2002. [Google Scholar]
- Bertolini, G.; Guida, M.; Pizziolo, M. Landslides in Emilia-Romagna region (Italy): Strategies for Hazard Assessment and Risk Management. Landslides 2005, 2, 302–312. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Shuster, R.L., Eds.; Transportation Research Board; National Research Council: Washington, DC, USA, 1996. [Google Scholar]
- Ronchetti, F.; Borgatti, L.; Cervi, F.; Lucente, C.C.; Veneziano, M.; Corsini, A. The Valoria Landslide Reactivation in 2005–2006 (Northern Apennines, Italy). Landslides 2007, 4, 189–195. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B.; Barbano, A.; Munafò, M. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio. Rapporto 2015, 233, 2015. [Google Scholar]
- Bertolini, G.; Corsini, A.; Tellini, C. Fingerprints of Large-Scale Landslides in the Landscape of the Emilia Apennines. In Landscapes and Landforms of Italy. World Geomorphological Landscapes; Soldati, M., Marchetti, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 215–224. [Google Scholar] [CrossRef]
- Mulas, M.; Ciccarese, G.; Ronchetti, F.; Truffelli, G.; Corsini, A. Slope Dynamics and Streambed Uplift during the Pergalla Landslide Reactivation in March 2016 and Discussion of Concurrent Causes (Northern Apennines, Italy). Landslides 2018, 15, 1881–1887. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Daniele, G.; Pizziolo, M. Historical Geospatial Database for Landslide Analysis: The Catalogue of Landslide Occurrences in the Emilia-Romagna Region (CLOCkER). Landslides 2018, 15, 811–822. [Google Scholar] [CrossRef]
- Ciccarese, G.; Mulas, M.; Alberoni, P.P.; Truffelli, G.; Corsini, A. Debris Flows Rainfall Thresholds in the Apennines of Emilia-Romagna (Italy) Derived by the Analysis of Recent Severe Rainstorms Events and Regional Meteorological Data. Geomorphology 2020, 358, 107097. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Busuioc, A.; Marletto, V.; Zinoni, F.; Cacciamani, C. Detection of Changes in the Summer Precipitation Time Series of the Region Emilia-Romagna, Italy. Theor. Appl. Climatol. 2000, 67, 193–200. [Google Scholar] [CrossRef]
- Tomozeiu, R.; Lazzeri, M.; Cacciamani, C. Precipitation Fluctuations during the Winter Season from 1960 to 1995 over Emilia-Romagna, Italy. Theor. Appl. Climatol. 2002, 72, 221–229. [Google Scholar] [CrossRef]
- Pavan, V.; Tomozeiu, R.; Cacciamani, C.; Di Lorenzo, M. Daily Precipitation Observations over Emilia-Romagna: Mean Values and Extremes. Int. J. Climatol. 2008, 28, 2065–2079. [Google Scholar] [CrossRef]
- Agenzia Prevenzione Ambientale Energia Emilia-Romagna. Available online: https://www.arpae.it/ (accessed on 1 May 2023).
- Köppen, W. Grundriß der Klimakunde, 2nd ed.; Walter de Gruyter and Co.: Berlin, Germany; Leipzig, Germany, 1931. [Google Scholar]
- Montgomery, D.R.; Buffington, J.M. Channel-Reach Morphology in Mountain Drainage Basins. GSA Bull. 1997, 109, 596–611. [Google Scholar]
- Surian, N.; Rinaldi, M.; Pellegrini, L. Linee Guida per l’analisi Geomorfologica Degli Alvei Fluviali e Delle loro Tendenze Evolutive; Cooperativa Libraria Editrice Università di Padova: Padova, Italy, 2009; 79p. [Google Scholar]
- Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. [Google Scholar] [CrossRef]
Site | Length (m) | Max Width (m) | Elevation Difference (m) | Tip Length (m) | Average Slope Angle (°) |
---|---|---|---|---|---|
La Confetta landslide | 370 | 150 | 80 | 132 | 12.5 |
Sasso Cervaro landslide | 530 | 60 | 170 | 60 | 18.7 |
La Confetta channel reach | 120 | 13 | 2 | - | 0.9 |
Sasso Cervaro channel reach | 60 | 18 | 5 | - | 4.7 |
Type | Year | Source | Scale/Resolution |
---|---|---|---|
Aerial photos | 1954 | Regional Web Map Service | 1:66,000 |
Aerial photos | 1977 | Regional Web Map Service | 1:15,000 |
Orthophotos | 1988 | Regional Web Map Service | 1:10,000 |
Orthophotos | 1996 | Regional Web Map Service | 1:10,000 |
Orthophotos | 1998 | Regional Web Map Service | 1:10,000 |
Orthophotos | 2007 | Regional Web Map Service | 1:10,000 |
Orthophotos | 2008 | Regional Web Map Service | 1:10,000 |
Orthophotos | 2011 | Regional Web Map Service | 1:10,000 |
Orthophotos | 2018 | Regional Web Map Service | 1:10,000 |
Orthophotos | 2020 | Regional Web Map Service | 1:10,000 |
Drone orthophotos | 2021 | Drone photogrammetry processing | 3 cm (La Confetta site) 1 cm (Sasso Cervaro site) |
Drone orthophotos | 2022 | Drone photogrammetry processing | 3 cm (La Confetta site) 1 cm (Sasso Cervaro site) |
La Confetta | Sasso Cervaro | |||
---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | |
UAV model | DJI Phantom4 rtk | Autel EVO2 | ||
Camera | FC6310R (8.8 mm) | XT705 (10.57 mm) | ||
Flight | entire landslide (parallel flightlines) landslide toe (gridded flightlines) | entire landslide (gridded flightlines) | ||
Flight height (m) | −60 a.s.l. −40 a.s.l. | −60 a.s.l. −40 a.s.l. | 31.1 a.g.l. | 37.1 a.g.l. |
Number of images | 765 | 720 | 3329 | 3433 |
GSD (mm) | 15.4 | 15.3 | 8.5 | 9.2 |
Number of GCPs | 10 | 9 | 13 | 14 |
Processing parameters —relative orientation | High | High | ||
Processing parameters —image matching | Ultrahigh | High | ||
Number of points in dense cloud | 126,921,205 | 157,394,778 | 564,429,765 | 590,605,899 |
Point cloud resolution (points/cm2) | 0.106 | 0.146 | 0.348 | 0.295 |
GCPs discrepancy (cm) | 1.26 | 1.44 | 2.76 | 3.35 |
DEM resolution (cm/pixel) | 3.07 | 2.62 | 1.69 | 1.84 |
Significant changes at 95% (cm) | 3.7 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parenti, C.; Rossi, P.; Mancini, F.; Scorpio, V.; Grassi, F.; Ciccarese, G.; Lugli, F.; Soldati, M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sens. 2023, 15, 3563. https://doi.org/10.3390/rs15143563
Parenti C, Rossi P, Mancini F, Scorpio V, Grassi F, Ciccarese G, Lugli F, Soldati M. Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sensing. 2023; 15(14):3563. https://doi.org/10.3390/rs15143563
Chicago/Turabian StyleParenti, Carlotta, Paolo Rossi, Francesco Mancini, Vittoria Scorpio, Francesca Grassi, Giuseppe Ciccarese, Francesca Lugli, and Mauro Soldati. 2023. "Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques" Remote Sensing 15, no. 14: 3563. https://doi.org/10.3390/rs15143563
APA StyleParenti, C., Rossi, P., Mancini, F., Scorpio, V., Grassi, F., Ciccarese, G., Lugli, F., & Soldati, M. (2023). Multitemporal Analysis of Slow-Moving Landslides and Channel Dynamics through Integrated Remote Sensing and In Situ Techniques. Remote Sensing, 15(14), 3563. https://doi.org/10.3390/rs15143563