The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data
Abstract
:1. Introduction
- (i)
- The optical properties of the water are vertically homogeneous and parallel to the surface;
- (ii)
- The surface of the lake is not disturbed by the wind;
- (iii)
- Suspended or dissolved, organic or inorganic particulate matter is no present or is minimal;
- (iv)
- The ice bottom is homogenous and gently sloping;
- (v)
- lake bottom has homogenous albedo.
2. Data and Methods
2.1. Characteristics of the Study Area
2.2. Collection of Experimental Data
2.2.1. Spectral Data
2.2.2. Bathymetric Data
2.2.3. Water Laboratory Analysis
2.3. Methods
2.3.1. Partial Least Squares Regression (PLSR)
2.3.2. Physical Model
3. Results
3.1. Supraglacial Lake Water Spectral Signatures
3.2. SGL Depth Retrieval by the PLSR Model
3.3. SGL Depth Retrieval by the Physically Based Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hutchinson, G.E. A Treatise on Limnology. In Geography, Physics, and Chemistry; John Wiley & Sons, Inc.: New York, NY, USA, 1957; Volume 1. [Google Scholar]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.S.; Steiner, J.; Willis, I.; Buri, P.; Immerzeel, W.W.; Chesnokova, A.; Pellicciotti, F. Pond Dynamics and Supraglacial-Englacial Connectivity on Debris-Covered Lirung Glacier, Nepal. Front. Earth Sci. 2017, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Baťka, J. Factors of formation and development of supraglacial lakes and their quantification: A review. AUC Geogr. 2016, 51, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.J.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A. Glacial Lakes in the Himalayas: A Review on Formation and Expansion Processes. Glob. Environ. Res. 2012, 16, 23–30. [Google Scholar]
- Liu, Q.; Mayer, C.; Liu, S. Distribution and recent variations of supraglacial lakes on detritic-type glaciers in the Khan Tengri-Tomur Mountains, Central Asia. Cryosphere Discuss. 2013, 7, 4545–4584. [Google Scholar] [CrossRef]
- Emmer, A.; Loarte, E.; Klimeš, J.; Vilímek, V. Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology 2015, 228, 345–355. [Google Scholar] [CrossRef]
- Vilímek, V.; Klimeš, J.; Červená, L. Glacier-related landforms and glacial lakes in Huascarán National Park, Peru. J. Maps 2016, 12, 193–202. [Google Scholar] [CrossRef]
- Sneed, W.A.; Hamilton, G.S. Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophys. Res. Lett. 2007, 34, L03501. [Google Scholar] [CrossRef] [Green Version]
- Das, S.B.; Joughin, I.; Behn, M.D.; Howat, I.M.; King, M.A.; Lizarralde, D.; Bhatia, M.P. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 2008, 320, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Langley, E.S.; Leeson, A.A.; Stokes, C.R.; Jamieson, S.S.R. Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier. Geophys. Res. Lett. 2016, 43, 8563–8571. [Google Scholar] [CrossRef]
- Banwell, A.F.; Caballero, M.; Arnold, N.S.; Glasser, N.F.; Cathles, L.M.; MacAyeal, D.R. Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: A comparative study. Ann. Glaciol. 2014, 55, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pope, A.; Scambos, T.A.; Moussavi, M.; Tedesco, M.; Willis, M.; Shean, D.; Grigsby, S. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. Cryosphere 2016, 10, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Wiseman, S.; Warren, C.R. Rapid growth of a supraglacial lake, Ngozumpa Glacier, Khumbu Himal, Nepal. In Debris-Covered Glaciers, Proceedings of the Seattle Workshop, Seattle, WA, USA, 13–15 September 2000; Nakawo, M., Raymond, C.F., Fountain, A., Eds.; IAHS Press: Wallingford, UK, 2000; Volume 264, pp. 177–185. [Google Scholar]
- Everett, A.; Murray, T.; Selmes, N.; Rutt, I.C.; Luckman, A.; James, T.D.; Reeve, D.E. Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf. 2016, 121, 1819–1833. [Google Scholar] [CrossRef] [Green Version]
- McMillan, M.; Nienow, P.; Shepherd, A.; Benham, T.; Sole, A. Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet. Earth Planet. Sci. Lett. 2007, 262, 484–492. [Google Scholar] [CrossRef]
- Leeson, A.A.; Shepherd, A.; Sundal, A.V.; Johansson, A.M.; Selmes, N.; Briggs, K.; Fettweis, X. A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol. 2013, 59, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, S.; Shepherd, A.; Mcmillan, M.; Nienow, P. Seasonal evolution of supraglacial lake volume from aster imagery. Ann. Glaciol. 2009, 50, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Box, J.; Ski, K. Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics. J. Glaciol. 2007, 53, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens. Environ. 2009, 113, 2164–2171. [Google Scholar] [CrossRef]
- Ignéczi, Á.; Sole, A.J.; Livingstone, S.J.; Leeson, A.A.; Fettweis, X.; Selmes, N.; Briggs, K. Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century. Geophys. Res. Lett. 2016, 43, 9729–9738. [Google Scholar] [CrossRef]
- Moussavi, M.S.; Abdalati, W.; Pope, A.; Scambos, T.; Tedesco, M.; MacFerrin, M.; Grigsby, S. Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery. Remote Sens. Environ. 2016, 183, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Miles, K.E.; Willis, I.C.; Benedek, C.L.; Williamson, A.G.; Tedesco, M. Toward monitoring surface and subsurface lakes on the Greenland ice sheet using sentinel-1 SAR and landsat-8 OLI imagery. Front. Earth Sci. 2017, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Steiner, N. In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. Cryosphere 2011, 5, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.-L.; Colgan, W.; Lv, Q.; Steffen, K.; Abdalati, W.; Stroeve, J.; Gallaher, D.; Bayou, N. A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ. 2012, 123, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Shugar, D.H.; Burr, A.; Haritashya, U.K.; Kargel, J.S.; Watson, C.S.; Kennedy, M.C.; Bevington, A.R.; Betts, R.A.; Harrison, S.; Strattman, K. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Chang. 2020, 10, 939–945. [Google Scholar] [CrossRef]
- Baťka, J.; Vilímek, V.; Štefanová, E.; Cook, S.J.; Emmer, A. Glacial Lake Outburst Floods (GLOFs) in the Cordillera Huayhuash, Peru: Historic Events and Current Susceptibility. Water 2020, 12, 2664. [Google Scholar] [CrossRef]
- Schröder, L.; Neckel, N.; Zindler, R.; Humbert, A. Perennial Supraglacial Lakes in Northeast Greenland Observed by Polarimetric SAR. Remote Sens. 2020, 12, 2798. [Google Scholar] [CrossRef]
- Dirscherl, M.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach. Remote Sens. 2020, 12, 1203. [Google Scholar] [CrossRef] [Green Version]
- Moussavi, M.; Pope, A.; Halberstadt, A.R.W.; Trusel, L.D.; Cioffi, L.; Abdalati, W. Antarctic Supraglacial Lake Detection Using Landsat 8 and Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes. Remote Sens. 2020, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.G.; Neil, S.A.; Alison, F.B.; Ian, C.; Willis, A. Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland. Remote Sens. Environ. 2017, 196, 113–133. [Google Scholar] [CrossRef]
- Fitzpatrick, A.A.W.; Hubbard, A.L.; Box, J.E.; Quincey, D.J.; van As, D.; Mikkelsen, A.P.B.; Doyle, S.H.; Dow, C.F.; Hasholt, B.; Jones, G.A. A decade (2002−2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. Cryosphere 2014, 8, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.G.; Banwell, A.F.; Willis, I.C.; Arnold, N.S. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. Cryosphere 2018, 12, 3045–3065. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Birnbaum, G.; Oppelt, N. Mapping the Bathymetry of Melt Ponds on Arctic Sea Ice Using Hyperspectral Imagery. Remote Sens. 2020, 12, 2623. [Google Scholar] [CrossRef]
- Fricker, H.A.; Arndt, P.; Brunt, K.M.; Datta, R.T.; Fair, Z.; Jasinski, M.F.; Kingslake, J.; Magruder, L.A.; Moussavi, M.; Pope, A.; et al. ICESat-2 meltwater depth estimates: Application to surface melt on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 2021, 48, e2020GL090550. [Google Scholar] [CrossRef]
- Datta, R.T.; Wouters, B. Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery. Cryosphere 2021, 15, 5115–5132. [Google Scholar] [CrossRef]
- Lai, W.; Lee, Z.; Wang, J.; Wang, Y.; Garcia, R.; Zhang, H. A Portable Algorithm to Retrieve Bottom Depth of Optically Shallow Waters from Top-Of-Atmosphere Measurements. J. Remote Sens. 2022, 2022, 16. [Google Scholar] [CrossRef]
- Studinger, M.; Manizade, S.S.; Linkswiler, M.A.; Yungel, J.K. High-resolution imaging of supraglacial hydro-logical features on the Greenland Ice Sheet with NASA’s Airborne Topographic Mapper (ATM) instrument suite. Cryosphere 2022, 16, 3649–3668. [Google Scholar] [CrossRef]
- Philpot, W.D. Bathymetric mapping with passive multispectral imagery. Appl. Opt. 1989, 28, 1569. [Google Scholar] [CrossRef]
- Sneed, W.A.; Hamilton, G.S. Validation of a method for determining the depth of glacial melt ponds using satellite imagery. Ann. Glaciol. 2011, 52, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D.; Sundman, L.K. Effects of optically shallow bottoms on upwelling radiances: Inhomogeneous and sloping bottoms. Limnol. Oceanogr. 2003, 48, 329–336. [Google Scholar] [CrossRef]
- Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnol. Ocean. 1994, 39, 1689–1703. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum 380-700 nm of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.; Baker, K.S. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 1981, 20, 177. [Google Scholar] [CrossRef] [PubMed]
- Morriss, B.F.; Hawley, R.L.; Chipman, J.W.; Andrews, L.C.; Catania, G.A.; Hoffman, M.J.; Lüthi, M.P.; Neumann, T.A. A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere 2013, 7, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef] [Green Version]
- Gege, P. The water color simulator WASI: An integrating software tool for analysis and simulation of optical in situ spectra. Comput. Geosci. 2004, 30, 523–532. [Google Scholar] [CrossRef]
- Bernardo, N.; do Carmo, A.; Park, E.; Alcântara, E. Retrieval of Suspended Particulate Matter in Inland Waters with Widely Differing Optical Properties Using a Semi-Analytical Scheme. Remote Sens. 2019, 11, 2283. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Voinesco, A.; Hoelzle, M. Implications of climate change on Glacier d e la Plain Morte, Switzerland. Geogr. Helv. 2013, 68, 227–237. [Google Scholar] [CrossRef]
- Hählen, N. Ausbruch Gletschersee Faverges, Oberingenieurkreis I, Civil Engineering Office of the Canton of Bern, Report, Gemeinde Lenk, 2012.
- Lindner, F.; Weemstra, C.; Walter, F.; Hadziioannou, C. Towards monitoring the englacial fracture state using virtual-reflector seismology. Geophys. J. Int. 2018, 214, 825–844. [Google Scholar] [CrossRef]
- Pfannkuche, J.; Schmidt, A. Determination of suspended particulate matter concentration from turbidity measurements: Particle size effects and calibration procedures. Hydrol. Process. 2003, 17, 1951–1963. [Google Scholar] [CrossRef]
- YSI Incorporated. Environmental Monitoring Systems Operations Manual; Yellow Springs: Ohio, OH, USA, 2002; p. 220. [Google Scholar]
- Mevik, B.-H.; Wehrens, R. The pls Package: Principal Component and Partial Least Squares Regression in R. J. Stat. Softw. 2007, 18, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.G. Optical properties of ice and snow. Philos. Trans. R. Soc. 2019, 377, 20180161. [Google Scholar] [CrossRef]
Attenuation Coefficient (g) (m−1) | Bottom Albedo (Ad) | Deep Water Reflectance (R∞) | Method | Reference Publication |
---|---|---|---|---|
0.118 | 0.5639 | 0.038 | g: NA 1, Ad: lake ice 3, R∞: ocean 4 | Sneed and Hamilton [42] |
0.65 | 0.34 ± 0.062 | NA 1 | g = 2 K 2; Ad: lake ice 3 | Tedesco and Steiner [26] |
0.868 | 0.5 | 0.02 | Fitting (g); Ad: NA 4; R∞: ocean 4 | Morriss et al. [47] |
0.69 | 0.19 | 0.03 | Fitting (g, Ad, and R∞) | Moussavi et al. [24] |
0.73 | 0.28 | 0.03 | Fitting (g, Ad, and R∞) | Moussavi et al. [24] |
0.80 0.83 | 0.228 0.212 | 0.0375 0.047 | Fitting (g) | Pope et al. [14] |
All/Training Data Set | Testing Data Set | |||||
---|---|---|---|---|---|---|
Model | RMSE (m) | R2 | N Components | R2 | RMSE (m) | % Retrieval Depth |
PLSR model 1a (water with SPM data 1) | 0.871 | 0.53 | 5 | 0.659 | 0.56 | 13.2 |
PLSR model 1b (clean water data 2) | 0.155 | 0.96 | 7 | NA | NA | NA |
PLSR model 2 (limit 3.0 m depth, SPM data subset 3) | 0.163 | 0.93 | 7 | 0.186 | 0.93 | 4.2 |
All/Training Data Set | Testing Data Set | ||||
---|---|---|---|---|---|
Model | RMSE (m) | R2 | RMSE (m) | R2 | % Retrieval Depth |
Physical model 1 (original g parameter, full data 1) | 2.642 | 0.58 | NA 3 | NA 3 | NA 3 |
Physical model 2 (re-fitted g parameter, limit: 3.0 m, subset 2) | 0.232 | 0.87 | 0.293 | 0.82 | 3.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodský, L.; Vilímek, V.; Šobr, M.; Kroczek, T. The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data. Remote Sens. 2022, 14, 5988. https://doi.org/10.3390/rs14235988
Brodský L, Vilímek V, Šobr M, Kroczek T. The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data. Remote Sensing. 2022; 14(23):5988. https://doi.org/10.3390/rs14235988
Chicago/Turabian StyleBrodský, Lukáš, Vít Vilímek, Miroslav Šobr, and Tomáš Kroczek. 2022. "The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data" Remote Sensing 14, no. 23: 5988. https://doi.org/10.3390/rs14235988
APA StyleBrodský, L., Vilímek, V., Šobr, M., & Kroczek, T. (2022). The Effect of Suspended Particulate Matter on the Supraglacial Lake Depth Retrieval from Optical Data. Remote Sensing, 14(23), 5988. https://doi.org/10.3390/rs14235988