Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data
2.2.1. Vegetation Index
2.2.2. Datasets of Effect Factors
2.2.3. Vegetation Types and DEM
2.3. Methods
2.3.1. Trends and Regression Analysis
2.3.2. Linear Mixed-Effect Model (LMM)
2.3.3. Structural Equation Model (SEM)
3. Results
3.1. Characteristics of Vegetation Variations in ACA
3.2. Response of Vegetation to Factors
3.3. Liner Mixed Effect of Factors on NDVI
3.4. SEM Results of Two Elevational Gradients
3.5. Lagging Response of Growing Season Vegetation to Winter Precipitation
4. Discussion
4.1. SEM Results of Different Vegetation Types
4.2. Other Effects on Vegetation in the Low-Elevation Gradient
4.3. Other Factors Affecting Vegetation in the High-Elevation Gradient
5. Conclusions
- (1)
- Growing season NDVI in ACA experienced greening at a rate of 0.0002 yr−1 from 1982 to 2015. In addition, an antiphase trend was observed with a boundary at an elevation of 300 m. Specifically, the eastern part of ACA is greening (elevations higher than 300 m), while the western part of ACA is browning (elevations lower than 300 m).
- (2)
- Based on the results of LMM, vegetation is mainly influenced by precipitation and soil water, and differences in elevation and vegetation types explain most residuals.
- (3)
- The results of SEM show that soil water plays a leading role in vegetation dynamics at an elevation lower than 300 m, while the area higher than 300 m is mainly influenced by precipitation. The temperature has an indirect effect on vegetation by affecting precipitation and soil water.
- (4)
- Growing season vegetation has a lagging response to winter precipitation in areas with an elevation lower than 300 m.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Zhao, Y.S. Principles and Methods of Remote Sensing Application Analysis; Science Press: Beijing, China, 2003; pp. 413–416. [Google Scholar]
- Zhao, X.; Tan, K.; Zhao, S.; Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 2011, 75, 946–952. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Bao, A.M.; Liu, T.; Zheng, G.X.; Jiang, L.L.; Guo, H.; Jiang, P.; Yu, T.; de Maeyer, P. Assessing vegetation stability to climate variability in Central Asia. J. Environ. Manag. 2021, 298, 113330. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Hu, Z.Y.; Chen, X.; Tiyip, T. Vegetation dynamics and its response to climate change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Guli, J.; Bao, A.M.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Wang, X.H.; Piao, S.L.; Ciais, P.; Li, J.S.; Friedlingstein, P.; Koven, C.; Chen, A.P. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.D.; Ma, Q.H.; Yu, H.Y.; Li, Y.B.; Li, L.; Qi, M.; Wu, W.J.; Zhang, F.; Wang, Y.H.; Zhou, G.S.; et al. Climate warming-induced drought constrains vegetation productivity by weakening the temporal stability of the plant community in an arid grassland ecosystem. Agr. Forest Meteorol. 2021, 307, 108526. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Zhang, Y.; Pan, N.Q.; Zeng, Z.Z.; Tian, H.Q.; Lyu, Y.H.; Chen, Y.Z.; Ciais, P.; Wang, Y.P.; et al. Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth. Sci. Bull. 2021, 66, 1462–1471. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, Y.N.; Sun, F.; Li, Z. Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecol. Indic. 2021, 129, 107912. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wu, X.C.; Chen, Y.H.; Chen, A.P.; Schwalm, C.R.; Kimball, J.S. Divergent Response of Vegetation Growth to Soil Water Availability in Dry and Wet Periods Over Central Asia. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG005912. [Google Scholar] [CrossRef]
- Yao, J.Q.; Hu, W.F.; Chen, Y.N.; Huo, W.; Zhao, Y.; Mao, W.Y.; Yang, Q. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Sci. Total Environ. 2019, 660, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhang, T.; Frauenfeld, O.W.; Wang, S.; Qiao, L.; Du, R.; Mu, C. Northern Hemisphere Greening in Association With Warming Permafrost. J. Geophys. Res. Biogeosci. 2020, 125, 2742. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.S. Vegetation green-up date is more sensitive to permafrost degradation than climate change in spring across the northern permafrost region. Glob. Chang. Biol. 2022, 28, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chen, J.H.; Zhang, X.J.; Feng, S.; Chen, F.H. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci. 2015, 58, 676–684. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Huang, W.; Chang, S.Q.; Xie, C.L.; Zhang, Z.P. Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation. Adv. Clim. Chang. Res. 2017, 8, 12–17. [Google Scholar] [CrossRef]
- Chen, F.H.; Huang, W. Multi-scale climate variations in the arid Central Asia. Adv Clim Chang. Res. 2017, 8, 1–2. [Google Scholar] [CrossRef]
- Xie, T.T.; Huang, W.; Chang, S.Q.; Zheng, F.; Chen, J.H.; Chen, J.; Chen, F.H. Moisture sources of extreme precipitation events in arid Central Asia and their relationship with atmospheric circulation. Int. J. Climatol. 2021, 41, 497. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Fensholt, R.; Wang, K.; Vitkovskaya, I.; Tian, F. Climate Contributions to Vegetation Variations in Central Asian Drylands: Pre- and Post-USSR Collapse. Remote Sens. 2015, 7, 2449–2470. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.; Chen, Y.; Xu, J.; Li, Z.; Li, Y.; Kayumba, P.M. Water Deficit May Cause Vegetation Browning in Central Asia. Remote Sens. 2022, 14, 2574. [Google Scholar] [CrossRef]
- Zhao, R.; Liu, X.; Dong, J.; Zhao, G.; Manevski, K.; Andersen, M.N.; Tang, Q. Human activities modulate greening patterns: A case study for southern Xinjiang in China based on long time series analysis. Environ. Res. Lett. 2022, 17, 44012. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Li, W.; Li, F.; Xin, Q. Ecological Responses to Climate Change and Human Activities in the Arid and Semi-Arid Regions of Xinjiang in China. Remote Sens. 2022, 14, 3911. [Google Scholar] [CrossRef]
- Gao, M.; Piao, S.; Chen, A.; Yang, H.; Liu, Q.; Fu, Y.H.; Janssens, I.A. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 2019, 10, 2970. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Zhang, J.; Zhu, L. Article Title Variations in Growing Season NDVI and Its Sensitivity to Climate Change Responses to Green Development in Mountainous Areas. Front. Environ. Sci. 2021, 9, 8450. [Google Scholar] [CrossRef]
- Shi, Y.F.; Shen, Y.P.; Kang, E.; Li, D.L.; Ding, Y.J.; Zhang, G.W.; Hu, R.J. Recent and Future Climate Change in Northwest China. Climatic Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Peng, D.D.; Zhou, T.J. Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos. 2017, 122, 9060–9075. [Google Scholar] [CrossRef]
- Yao, J.Q.; Chen, Y.N.; Guan, X.F.; Zhao, Y.; Chen, J.; Mao, W.Y. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Chen, D.; Li, J.; Wang, S.; Zhou, Q.; Yin, G.; Guo, M. “Dry gets drier, wet gets wetter”: A case study over the arid regions of central Asia. Int. J. Climatol. 2019, 39, 1072–1091. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wang, J.; Jin, L.; Zhang, Q.; Li, J.; Chen, J. Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China 2009, 3, 42–50. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Climatic Chang. 2013, 117, 149–162. [Google Scholar] [CrossRef]
- Geng, L.; Che, T.; Wang, X.; Wang, H. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote Sens. 2019, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Schneider, U.; Becker, A.; Finger, P.; Rustemeier, E.; Ziese, M. GPCC Full Data Monthly Product Version 2020 at 0.25: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historical Data. Glob. Precip. Climatol. Cent. (GPCC) Dtsch. Wetterd. 2020, 1–13. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data. 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S). Clim. Data Store (CDS) 2019, 146, 1999–2049. [Google Scholar]
- Deng, Y.H.; Wang, S.J.; Bai, X.Y.; Luo, G.J.; Wu, L.H.; Chen, F.; Wang, J.F.; Li, C.J.; Yang, Y.J.; Hu, Z.Y.; et al. Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agr. Forest Meteorol. 2020, 292–293, 108103. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.H.; Piao, S.L.; Xu, B.D.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nature Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.P.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Brownrigg, R.; Haley, M.; Huang, W. NCAR Command Language (NCL); UCAR/NCAR-Computational and Information Systems Laboratory (CISL), 2012; Available online: https://www.ncl.ucar.edu/ (accessed on 13 October 2022).
- Du, J.; He, Z.B.; Piatek, K.B.; Chen, L.F.; Lin, P.F.; Zhu, X. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agr. Forest Meteorol. 2019, 269–270, 71–77. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Heinrich, I.; Rahman, M.; Vlam, M.; Zwartsenberg, S.A.; van der Sleen, P. Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Glob. Chang. Biol. 2020, 26, 4028–4041. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, F.; Liu, X.J.; Kunz, M.; Barry, K.E.; Bongers, F.J.; Bruelheide, H.; Fichtner, A.; Härdtle, W.; Li, S.; Pfaff, C.-T.; et al. Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Sci. Adv. 2021, 7, eabk1643. [Google Scholar] [CrossRef]
- Reich, P.B.; Sendall, K.M.; Stefanski, A.; Rich, R.L.; Hobbie, S.E.; Montgomery, R.A. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 2018, 562, 263–267. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org (accessed on 17 November 2022).
- Bates, D. lme4: Linear Mixed-Effects Models Using S4 Classes. R Package Version 0.999375-33. 2010. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 17 November 2022).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.C.; Huang, P.H.; Weng, L.J. Selecting Path Models in SEM: A Comparison of Model Selection Criteria. Structural Equation Modeling. A Multidiscip. J. 2017, 24, 855–869. [Google Scholar] [CrossRef]
- Kline, R.B. Software review: Software programs for structural equation modeling: Amos, EQS, and LISREL. J. Psychoeduc. Assess. 1998, 16, 343–364. [Google Scholar] [CrossRef]
- Arbuckle, J.L. Amos, Version 24.0; Computer Program; IBM SPSS: Chicago, IL, USA, 2019.
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Soft. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wang, Y.Y.; Teng, H.F.; Wang, N.; Li, D.L.; Peng, J.; Biswas, A.; Shi, Z. Dynamics of Vegetation Greenness and Its Response to Climate Change in Xinjiang over the Past Two Decades. Remote Sens. 2021, 13, 4063. [Google Scholar] [CrossRef]
- Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Holdridge, L.R. Determination of World Plant Formations from Simple Climatic Data. Science 1947, 105, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Classification of natural communities. Bot. Rev 1962, 28, 1–239. [Google Scholar] [CrossRef]
- Walter, H.; Box, E. Global classification of natural terrestrial ecosystems. Plant Ecol. 1976, 32, 75–81. [Google Scholar] [CrossRef]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Burrell, A.L.; Evans, J.P.; de Kauwe, M.G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef]
- Maestre, F.T.; Benito, B.M.; Berdugo, M.; Concostrina-Zubiri, L.; Delgado-Baquerizo, M.; Eldridge, D.J.; Guirado, E.; Gross, N.; Kéfi, S.; Le Bagousse-Pinguet, Y.; et al. Biogeography of global drylands. New Phytol. 2021, 231, 540–558. [Google Scholar] [CrossRef] [PubMed]
- Hickler, T.; Eklundh, L.; Seaquist, J.W.; Smith, B.; Ardö, J.; Olsson, L.; Sykes, M.T.; Sjöström, M. Precipitation controls Sahel greening trend. Geophys. Res. Lett. 2005, 32, 193. [Google Scholar] [CrossRef]
- Mo, K.; Chen, Q.W.; Chen, C.; Zhang, J.Y.; Wang, L.; Bao, Z.X. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in northwest China. J. Hydrol. 2019, 574, 138–147. [Google Scholar] [CrossRef]
- Moore, G.W.; Jones, J.A.; Bond, B.J. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment. Hydrol. Process. 2011, 25, 3701–3710. [Google Scholar] [CrossRef]
- Dye, D.G.; Tucker, C.J. Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Johansson, M.; Callaghan, T.V.; Bosiö, J.; Åkerman, H.J.; Jackowicz-Korczynski, M.; Christensen, T.R. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden. Environ. Res. Lett. 2013, 8, 35025. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, W.B.; Zhang, M.J.; Wang, F.T.; Li, H.L. Observed changes in streamflow at the headwaters of the Urumqi River, eastern Tianshan, central Asia. Hydrol. Process. 2009, 24, 217–224. [Google Scholar] [CrossRef]
Estimate | p Value | ||
---|---|---|---|
Fixed Effect | (Intercept) | −4.28 × 10−2 | 8.61 × 10−1 |
Tmp | −7.84 × 10−3 | 3.44 × 10−1 | |
Pre | 2.44 × 10−1 | <2 × 10−16 *** | |
Soil W | 4.37 × 10−1 | <2 × 10−16 *** | |
Snow C | 2.66 × 10−1 | <2 × 10−16 *** | |
Tmp: Pre | 2.77 × 10−2 | 1.18 × 10−7 *** | |
Pre: Soil W | 6.03 × 10−2 | <2 × 10−16 *** | |
Tmp: Soil W | 1.83 × 10−2 | 3.07 × 10−3 ** | |
Temp: Soil C | 1.31 × 10−1 | <2 × 10−16 *** | |
Soil W: Snow C | −1.32 × 10−1 | <2 × 10−16 *** | |
Groups Name | Variance | Std.Dev. | |
Random Effect | Elevation gradients | 0.25 | 0.50 |
Vegetation types | 0.18 | 0.43 | |
Residual | 0.24 | 0.50 |
Growing Season (Elevation < 300 m: Apr~Oct, Elevation > 300 m: May~Sep) | Year | Growing Season NDVI with Tmp, Snow C, Soil W, and Winter Pre | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Direct | Indirect | Total | Direct | Indirect | Total | Direct | Indirect | ||
Elevation <300 m | Tmp | −0.44 | 0.09 | −0.52 | −0.37 | 0.23 | −0.59 | −0.44 | −0.10 | −0.33 |
Pre | 0.35 | 0.17 | 0.18 | 0.49 | 0.36 | 0.13 | 0.41 | 0.22 | 0.19 | |
Snow C | 0.30 | 0.15 | 0.15 | 0.44 | 0.31 | 0.13 | 0.30 | 0.16 | 0.14 | |
Soil W | 0.64 | 0.64 | 0.00 | 0.45 | 0.45 | 0.00 | 0.58 | 0.58 | 0.00 | |
Elevation >300 m | Tmp | −0.08 | 0.24 | −0.32 | 0.02 | 0.07 | −0.06 | −0.08 | 0.12 | −0.20 |
Pre | 0.69 | 0.41 | 0.28 | 0.67 | 0.50 | 0.18 | 0.51 | 0.26 | 0.25 | |
Snow C | −0.30 | −0.34 | 0.04 | −0.18 | −0.41 | 0.24 | −0.42 | −0.41 | 0.01 | |
Soil W | 0.63 | 0.63 | 0.00 | 0.50 | 0.50 | 0.00 | 0.73 | 0.73 | 0.00 |
Total Effect | Direct Effect | Indirect Effect | |
---|---|---|---|
Tmp | −0.53 | −0.24 | −0.29 |
Pre | 0.28 | 0.28 | 0 |
Winnter Pre | 0.33 | 0.33 | 0 |
Snow C | 0.23 | 0.23 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Huang, W.; Xie, T.; Li, C.; Deng, Y.; Chen, J.; Liu, Y.; Ma, S. Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia. Remote Sens. 2022, 14, 5922. https://doi.org/10.3390/rs14235922
Yang Y, Huang W, Xie T, Li C, Deng Y, Chen J, Liu Y, Ma S. Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia. Remote Sensing. 2022; 14(23):5922. https://doi.org/10.3390/rs14235922
Chicago/Turabian StyleYang, Yujie, Wei Huang, Tingting Xie, Chenxi Li, Yajie Deng, Jie Chen, Yan Liu, and Shuai Ma. 2022. "Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia" Remote Sensing 14, no. 23: 5922. https://doi.org/10.3390/rs14235922
APA StyleYang, Y., Huang, W., Xie, T., Li, C., Deng, Y., Chen, J., Liu, Y., & Ma, S. (2022). Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia. Remote Sensing, 14(23), 5922. https://doi.org/10.3390/rs14235922