Examining Spatio-Temporal Dynamics of Ecological Quality in the Pan-Third Pole Region in the Past 20 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Construction of the Index System
2.3. Calculation Method of Ecological Index
2.3.1. Standardization of Indicators
2.3.2. Calculation of the Ecological Quality Index
2.3.3. Calculation of the Ecological Change Index
3. Results
3.1. Analysis of Ecological Quality Level Changes in the Pan-Third Pole Region
3.2. Analysis of Ecological Changes in the Pan-Third Pole Regions
3.3. Analysis of Influencing Factors of Ecological Quality Changes in the Pan-Third Pole Regions
3.3.1. Impact of Ecosystem Changes on Ecological Quality Changes
3.3.2. Impact of Human Activity Changes on Ecological Quality Changes
4. Discussion
4.1. Natural Background Was the Basis for Ecological Quality Changes
4.2. Increased Human Activity Was an Important Cause of Ecological Quality Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maity, S.; Das, S.; Pattanayak, J.M.; Bera, B.; Shit, P.K. Assessment of ecological environment quality in Kolkata urban agglomeration, India. Urban Ecosyst. 2022, 25, 1137–1154. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.; Hobbs, R.J.; Montague-Drake, R.; Alexandra, J.; Bennett, A.; Burgman, M.; Cale, P.; Calhoun, A.; Cramer, V.; Cullen, P.; et al. A checklist for ecological management of landscapes for conservation. Ecol. Lett. 2008, 11, 78–91. [Google Scholar] [CrossRef]
- Khan, A.; Chatterjee, S. Numerical simulation of urban heat island intensity under urban–suburban surface and reference site in Kolkata, India. Model. Earth Syst. Environ. 2016, 2, 71. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Cadenasso, M.L. People, landscape, and urban heat island: Dynamics among neighborhood social conditions, land cover and surface temperatures. Landsc. Ecol. 2016, 31, 2507–2515. [Google Scholar] [CrossRef]
- Gazi, A.A.; Mondal, I. Urban heat island and its effect on dweller of Kolkata metropolitan area using geospatial techniques. Int. J. Comput. Sci. Eng. 2018, 6, 741–753. [Google Scholar] [CrossRef]
- Talebmorad, H.; Koupai, J.A.; Eslamian, S.; Mousavi, S.F.; Akhavan, S.; Askari, K.O.A.; Singh, V.P. Evaluation of the impact of climate change on reference crop evapotranspiration in Hamedan-Bahar plain. Int. J. Hydrol. Sci. Technol. 2021, 11, 333–347. [Google Scholar] [CrossRef]
- Yao, T.; Chen, F.; Cui, P.; Ma, Y.; Xu, B.; Zhu, L.; Zhang, F.; Wang, W.; Ai, L.; Yang, X. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 2017, 32, 924–931. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Airiken, M.; Zhang, F.; Chan, N.W.; Kung, H.T. Assessment of spatial and temporal ecological environment quality under land use change of urban agglomeration in the North Slope of Tianshan, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 12282–12299. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Y.; Wang, S.; Watson, A.E.; He, H.; Ye, H.; Ouyang, X.; Li, Y. Pixel-scale historical-baseline-based ecological quality: Measuring impacts from climate change and human activities from 2000 to 2018 in China. J. Environ. Manag. 2022, 313, 114944. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Gan, Z.; Han, Y.; Li, J.; Huang, J. Assessment of dominating aerosol properties and their long-term trend in the Pan-Third Pole region: A study with 10-year multi-sensor measurements. Atmos. Environ. 2020, 239, 117738. [Google Scholar] [CrossRef]
- Fang, K.; Xu, A.; He, J.; Fang, C.; Liu, Q. Integrated assessment and division management of sustainable development in the Belt and Road countries. Chin. Sci. B Chin. 2020, 66, 2441–2454. [Google Scholar] [CrossRef]
- Gao, J.; Yao, T.D.; Masson-Delmotte, V.; Steen-Larsen, H.C.; Wang, W.C. Collapsing glaciers threaten Asia’s water supplies. Nature 2019, 565, 19–21. [Google Scholar] [CrossRef] [Green Version]
- NRC (National Research Council). Himalayan Glaciers: Climate Change, Water Resources, and Water Security; The National Academies Press: Washington, DC, USA, 2012; p. 156. ISBN 978-0-309-26098-5.
- Cui, X.F.; Graf, H.F. Recent land cover changes on the Tibetan Plateau: A review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Kumar, R.; Sam, L. Analysing Geospatial Techniques for Land Degradation Studies in Hindu Kush-Himalaya. In Environmental Change in the Himalayan Region, 1st ed.; Saikia, A., Thapa, P., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2019; pp. 117–135. ISBN 978-3-030-03361-3. [Google Scholar]
- Lei, J.; Ge, Y.; Gao, X.; Yang, Y. Ecologic problems and hazards risks: Challenges and countermeasure for promoting green belt and road. Bull. Chin. Acad. Sci. 2021, 36, 125–129. [Google Scholar] [CrossRef]
- Feng, Y.; He, S.; Li, G. Interaction between urbanization and the eco-environment in the Pan-Third Pole region. Sci. Total Environ. 2021, 789, 148011. [Google Scholar] [CrossRef]
- UN (United Nations). Transforming our World: The 2030 Agenda for Sustainable Development; UN (United Nations): New York, NY, USA, 2015. [Google Scholar]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270. [Google Scholar] [CrossRef]
- UN-Habitat (Ed.) World Cities Report 2022: Envisaging the Future of Cities; UN-Habitat: Nairobi, Kenya, 2022; p. 422. ISBN 978-92-1-132894-3. [Google Scholar]
- Yang, S.; Lu, Y.; Weng, Y.; Wei, L. Dynamic monitoring of ecological and environmental quality of the Nanliu River basin, supported by Google Earth Engine. J. Agric. Resour. Environ. 2021, 38, 1112–1121. [Google Scholar] [CrossRef]
- Strobel, C.J.; Buffum, H.W.; Benyi, S.J.; Paul, J.F. Environmental monitoring and assessment program: Current status of Virginian Province (US) estuaries. Environ. Monit. Assess. 1999, 56, 1–25. [Google Scholar] [CrossRef]
- OECD (Organization for Economic Cooperation and Development). OECD Environmental Indicators; OECD Publications: Paris, France, 2001; ISBN 92-64-18718-9. [Google Scholar]
- OECD (Organization for Economic Cooperation and Development). Towards Sustainable Development; OECD Publications: Paris, France, 1998; ISBN 92-64-16080-9. [Google Scholar]
- OECD (Organization for Economic Cooperation and Development). Environmental Indicators for Agriculture; OECD Publications: Paris, France, 1999; ISBN 92-64-17134-7. [Google Scholar]
- Hammond, A.; Adriaanse, A.H.; Rodenburg, E.; Bryant, D.; Woodward, R. Environmental Indicators: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development; World Resources Institute: Washington, DC, USA, 1995; p. 43. ISBN 1-56973-026-1. [Google Scholar]
- Wang, Q.; Yuan, X.; Ma, C.; Zhang, Z.; Zuo, J. Research on the impact assessment of urbanization on air environment with urban environmental entropy model: A case study. Stoch. Environ. Res. Risk A 2011, 26, 443–450. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Vacik, H. Evaluating sustainable forest management strategies with the Analytic Network Process in a Pressure-State-Response framework. J. Environ. Manag. 2008, 88, 1–10. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Ning, L.; Wang, J.; Fen, Q. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 14. [Google Scholar] [CrossRef]
- SEPA (State Environmental Protection Administration). Technical Criterion for Eco-Environmental Status Evaluation; SEPA (State Environmental Protection Administration): Beijing, China, 2015.
- Wang, H.; Zhang, X.; Qiao, M.; Miao, Y. Assessment and dynamic analysis of the eco-environmental quality in the Ili River Basin based on GIS. Arid. Land Geogr. 2008, 31, 215–221. [Google Scholar] [CrossRef]
- Pan, T.; Kuang, W.; Hamdi, R.; Zhang, C.; Zhang, S.; Li, Z.; Chen, X. City-level comparison of urban land-cover configurations from 2000–2015 across 65 countries within the global belt and road. Remote Sens. 2019, 11, 1515. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yu, S.; Guo, H.; Wang, C.; Zhang, Z.; Xu, R. Assessing 40 years of spatial dynamics and patterns in megacities along the Belt and Road region using satellite imagery. Int. J. Digit. Earth 2021, 14, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Qin, Y.; Du, X.; He, J.; Fan, X. Ecosystem health and environmental geography in the belt and road regions. Int. J. Environ. Res. Public Health 2022, 19, 5843. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Liu, Y. Partitioned responses of ecosystem services and their tradeoffs to human activities in the Belt and Road region. J. Clean. Prod. 2020, 276, 123205. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Zhang, Y.; Wang, L.; Jia, H.; Zhou, Q.; Yu, B.; Zhang, M.; Lin, Z.; Chen, F. Disaster assessment for the “Belt and Road” region based on SDG landmarks. Big Earth Data 2022, 6, 3–17. [Google Scholar] [CrossRef]
- Jing, C.; Tao, H.; Jiang, T.; Wang, Y.; Zhai, J.; Cao, L.; Su, B. Population, urbanization and economic scenarios over the Belt and Road region under the shared socioeconomic pathways. J. Geogr. Sci. 2020, 30, 68–84. [Google Scholar] [CrossRef]
- Du, Z.; Xiao, C.; Wang, Y.; Liu, S.; Li, S. Dust provenance in Pan-third pole modern glacierized regions: What is the regional source? Environ. Pollut. 2019, 250, 762–772. [Google Scholar] [CrossRef]
- Yang, Q.; Zhu, M.; Wang, C.; Zhang, X.; Liu, B.; Wei, X.; Pang, G.; Du, C.; Yang, L. Study on a soil erosion sampling survey in the Pan-Third Pole region based on higher-resolution images. Int. Soil. Water Conse. 2020, 8, 440–451. [Google Scholar] [CrossRef]
- Xie, R.; Zhao, C. Spatio-temporal differentiation of ecological environment vulnerability in Karst trough region based on grid scale. J. Yangtze River Sci. Res. Inst. 2018, 35, 48–53. [Google Scholar]
- Guo, B.; Kong, W.; Jiang, L.; Fan, Y. Analysis of spatial and temporal changes and its driving mechanism of ecological vulnerability of alpine ecosystem in Qinghai Tibet Plateau. Ecol. Sci. 2018, 37, 96–106. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, L.; Zhang, X. Discussion on the method of ecotope comprehensive evaluation for Tibet Plateau ecological shelter zone. Bull. Surv. Mapp. 2018, 9, 112–116. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, Z.; Shen, W. A new method that can improve regional eco-environmental evaluation-combining GIS with AHP. Resour. Environ. Yangtza Basin 2003, 12, 163–168. [Google Scholar]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019, 25, 811–826. [Google Scholar] [CrossRef]
- Cai, W.; Han, B.; Lu, F.; Ouyang, Z. Comprehensive evalution of the eco-environment in the four global bay areas. Acta. Ecologica. Sinica. 2020, 40, 8392–8402. [Google Scholar] [CrossRef]
- Wei, W.; Guo, Z.; Xie, B.; Zhou, J.; Li, C. Spatiotemporal evolution of environment based on integrated remote sensing indexes in arid inland river basin in Northwest China. Environ. Sci. Pollut. Res. Int. 2019, 26, 13062–13084. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Tian, H.; Shi, H.; Dong, J.; Song, C.; Li, X.; Du, G.; Hou, Y.; Lu, D.; et al. Cropland redistribution to marginal lands undermines environmental sustainability. Natl. Sci. Rev. 2022, 9, nwab091. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’Brien, G. Environment, economy and society: Fitting them together into sustainable development. Sustain. Dev. 2002, 10, 187–196. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Wang, J.; Han, Q.; Du, Y. Coordinated development of the economy, society and environment in urban China: A case study of 285 cities. Environ. Dev. Sustain. 2022, 24, 12917–12935. [Google Scholar] [CrossRef]
- Strange, T.; Bayley, A. Sustainable Development; OECD Publication: Paris, France, 2008; ISBN 978-92-64-04778-5. [Google Scholar]
- Li, Y.; Zhu, X. The 2030 agenda for sustainable development and China’s belt and road initiative in Latin America and the Caribbean. Sustainability 2019, 11, 2297. [Google Scholar] [CrossRef] [Green Version]
- Dousa, M. European level of 2030 agenda for sustainable development. In Proceedings of the 10th International Conference on Sustainable Development, Ceske Budejovice, Czech Republic, 14–15 March 2019; pp. 24–33. [Google Scholar]
- Sun, X. China’s strategy to participating in the 2030 agenda for sustainable development. China Popul. Resour. Environ. 2016, 26, 1–7. [Google Scholar]
- Firoiu, D.; Ionescu, G.H.; Băndoi, A.; Florea, N.M.; Jianu, E. Achieving sustainable development goals (SDG): Implementation of the 2030 agenda in Romania. Sustainability 2019, 11, 2156. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Đurović, G.; Hanscom, L.; Knežević, J. Think globally, act locally: Implementing the sustainable development goals in Montenegro. Environ. Sci. Policy 2018, 84, 159–169. [Google Scholar] [CrossRef]
- Lesakova, P.; Bata, R.; Provaznikova, R. Implementation of the SDGs under Czech conditions and measuring selected indicators. In Proceedings of the 29th International Business Information Management Association Conference, Vienna, Austria, 3–4 May 2017; pp. 1076–1084. [Google Scholar]
- Xue, H.; Lan, X.; Zhang, Q.; Liang, H.; He, Z. Assessment of the green development level for participating countries in the Belt and Road initiative. Ann. Oper. Res. 2021, 307, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhai, T. Environmental challenges, opportunities, and policy implications to materialize China’s green belt and road initiative. Sustainability 2021, 13, 10428. [Google Scholar] [CrossRef]
Geographical Zone | Country (Abbreviation) |
---|---|
Europe (EU) (20 countries) | Albania (ALB); Belarus (BLR); Bosnia and Herzegovina (BIH); Bulgaria (BGR); Croatia (HRV); Czech Republic (CZE); Estonia (EST); Hungary (HUN); Latvia (LVA); Lithuania (LTU); Macedonia (MKD); Moldova (MDA); Montenegro (MNE); Poland (POL); Romania (ROU); Russia (RUS); Serbia (SRB); Slovakia (SVK); Slovenia (SVN); Ukraine (UKR) |
East Asia (EA) (13 countries) | Brunei (BRN); Cambodia (KHM); China (CHN); Indonesia (IDN); Laos (LAO); Malaysia (MYS); Mongolia (MNG); Myanmar (MMR); Philippines (PHL); Singapore (SGP); Thailand (THA); Timor-Leste (TLS); Vietnam (VNM) |
Central Asia (CA) (5 countries) | Kazakhstan (KAZ); Kyrgyzstan (KGZ); Tajikistan (TJK); Turkmenistan (TKM); Uzbekistan (UZB) |
South Asia (SA) (8 countries) | Afghanistan (AFG); Bangladesh (BGD); Bhutan (BTN); India (IND); Maldives (MDV); Nepal (NPL); Pakistan (PAK); Sri Lanka (LKA); |
Middle East (ME) (19 countries) | Armenia (ARM); Azerbaijan (AZE); Bahrain (BHR); Egypt (EGY); Georgia (GEO); Iran (IRN); Iraq (IRQ); Israel (ISR); Jordan (JOR); Kuwait (KWT); Lebanon (LBN); Oman (OMN); Palestinian (PSE); Qatar (QAT); Saudi Arabia (SAU); Syria (SYR); Turkey (TUR); United Arab Emirates (ARE); Yemen (YEM) |
Data Type | Name of Data | Resolution | Data Source |
---|---|---|---|
Remote sensing data | DMSP/OLS | 1 km, raster data | https://ngdc.noaa.gov/eog/download.html, 10 December 2021 |
MODIS data | 500 m, raster data | http://modis.gsfc.nasa.gov/, 10 December 2021 | |
Ecological and environmental data | ESA global land cover data | 300 m, raster data | https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form/, 10 December 2021 |
air pollution data | statistical data | https://www.nasa.gov/, 10 December 2021 | |
water pollution data | statistical data | domestic: https://www.cnemc.cn/, 10 December 2021 | |
Abroad: https://data.worldbank.org.cn/, 10 December 2021 | |||
Basic geographic data | administrative boundary | vector data | https://www.openstreetmap.org/, 10 December 2021 |
urban distribution | vector data | https://www.openstreetmap.org/, 10 December 2021 | |
urban impervious surface area | 250 m, raster data | https://doi.org/10.5281/zenodo.4766445, 10 December 2021 | |
Socio-economic data | population data | statistical data | https://www.un.org/en/developme/, 10 December 2021 |
road data | vector data | https://www.openstreetmap.org/, 10 December 2021 |
Primary Indicator | Weight | Secondary Indicator | Weight | Combined Weight | Direction of Influence |
---|---|---|---|---|---|
Ecosystem structure | 0.323 | Proportion of natural ecosystem area | 0.518 | 0.167 | Positive |
Proportion of urban impervious surface area | 0.482 | 0.156 | Negative | ||
Ecological health status | 0.307 | NPP | 0.494 | 0.152 | Positive |
NDVI | 0.506 | 0.155 | Positive | ||
Comprehensive environmental impact | 0.204 | Air pollution (PM2.5 concentration) | 0.500 | 0.102 | Negative |
Water pollution | 0.500 | 0.102 | Negative | ||
Social and economic vitality | 0.166 | Night light | 0.500 | 0.083 | Negative |
Road density | 0.500 | 0.083 | Negative |
Classification Ranges | |||||
---|---|---|---|---|---|
Quality Level | Excellent | Good | Moderate | Worse | Severe |
EQI | (0.8,1] | (0.6,0.8] | (0.4,0.6] | (0.2,0.4] | [0,0.2] |
Classification Ranges | |||
---|---|---|---|
Trend of Change | Improved | Stable | Degraded |
ECI | (0.01,1] | [−0.01,0.01] | [−1,−0.01) |
2000 | 2020 | |||||
---|---|---|---|---|---|---|
Severe | Worse | Moderate | Good | Excellent | Total | |
Severe | - | 0.05 | 0.04 | 0.04 | 0.00 | 0.13 |
Worse | 0.04 | - | 0.84 | 0.03 | 0.03 | 0.94 |
Moderate | 0.03 | 0.69 | - | 2.34 | 0.03 | 3.09 |
Good | 0.03 | 0.04 | 1.37 | - | 0.06 | 1.50 |
Excellent | 0.00 | 0.04 | 0.04 | 0.07 | - | 0.15 |
Total | 0.10 | 0.82 | 2.29 | 2.48 | 0.12 | 5.81 |
2000 | 2020 | ||||||
---|---|---|---|---|---|---|---|
Cropland | Woodland | Grassland | Water Body | Settlement | Desert | Total | |
Cropland | - | 0.728 | 0.469 | 0.065 | 0.162 | 0.067 | 1.491 |
Woodland | 0.711 | - | 0.528 | 0.363 | 0.010 | 0.074 | 1.686 |
Grassland | 0.574 | 0.573 | - | 0.101 | 0.020 | 0.311 | 1.579 |
Water body | 0.065 | 0.390 | 0.100 | - | 0.005 | 0.044 | 0.604 |
Settlement | 0.024 | 0.003 | 0.002 | 0.002 | - | 0.002 | 0.033 |
Desert | 0.090 | 0.070 | 0.453 | 0.029 | 0.009 | - | 0.651 |
Total | 1.464 | 1.764 | 1.552 | 0.560 | 0.206 | 0.498 | 6.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, G.; Chi, W.; Pan, T.; Dou, Y.; Kuang, W.; Guo, C.; Hao, R.; Bao, Y. Examining Spatio-Temporal Dynamics of Ecological Quality in the Pan-Third Pole Region in the Past 20 Years. Remote Sens. 2022, 14, 5473. https://doi.org/10.3390/rs14215473
Hong G, Chi W, Pan T, Dou Y, Kuang W, Guo C, Hao R, Bao Y. Examining Spatio-Temporal Dynamics of Ecological Quality in the Pan-Third Pole Region in the Past 20 Years. Remote Sensing. 2022; 14(21):5473. https://doi.org/10.3390/rs14215473
Chicago/Turabian StyleHong, Geer, Wenfeng Chi, Tao Pan, Yinyin Dou, Wenhui Kuang, Changqing Guo, Runmei Hao, and Yuhai Bao. 2022. "Examining Spatio-Temporal Dynamics of Ecological Quality in the Pan-Third Pole Region in the Past 20 Years" Remote Sensing 14, no. 21: 5473. https://doi.org/10.3390/rs14215473
APA StyleHong, G., Chi, W., Pan, T., Dou, Y., Kuang, W., Guo, C., Hao, R., & Bao, Y. (2022). Examining Spatio-Temporal Dynamics of Ecological Quality in the Pan-Third Pole Region in the Past 20 Years. Remote Sensing, 14(21), 5473. https://doi.org/10.3390/rs14215473