Long-Term Spatiotemporal Characteristics and Impact Factors of Land Surface Temperature of Inhabited Islands with Different Urbanization Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Retrieving LST with Mono-Window Algorithm
2.3. Identifying Land Cover Types with SVM Classification
2.4. Measuring the Spatial Heterogeneity of LST
2.5. Analyzing the Thermal Landscape Pattern with Geographic Distribution and Landscape Metrics
2.6. Exploring the Impact Factors of LST with Spearman’s Rho
3. Results
3.1. Spatiotemporal Characteristics of LST in the Two Inhabited Island
3.1.1. Retrieve Results and Spatial Heterogeneity of LST
3.1.2. Spatiotemporal Characteristics of the Thermal Effect
3.2. Impact Factors of LST in the Inhabited Islands
3.2.1. Land Cover Types and Their Effects on LST
3.2.2. Comprehensive Analysis of Multiple Factors of LST
3.2.3. Further Analysis of the Effect of the Marine Environment on LST
4. Discussion
4.1. Differences in STE of Inhabited Islands with Various Urbanization Levels
4.2. Comparison of the Impact Factors of LST between Island Cities and Inland Cities
4.3. Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Path/Row | Type | Data | AT * | NSAT * (°C) | RH * (%) | WV * (m/s) |
---|---|---|---|---|---|---|
119/43 | Landsat TM | 20001206 | 0.66 | 16.70 | 73 | 2.60 |
20031215 | 0.88 | 14.40 | 73 | 2.80 | ||
20061207 | 0.58 | 15.80 | 65 | 3.00 | ||
20101208 | 0.89 | 14.80 | 65 | 2.50 | ||
Landsat OLI/TIRS | 20141213 | 0.86 | 13.90 | 64 | 2.90 | |
20171221 | 0.92 | 15.38 | 61 | 3.28 | ||
20201111 | 0.81 | 21.60 | 63 | 3.70 |
References
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- United Nations (UN). World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022. [Google Scholar]
- United Nations (UN). World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Yao, Y.; Chen, X.; Qian, J. Research progress on the thermal environment of the urban surfaces. Acta Ecol. Sin. 2018, 8, 1134–1147. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Laaidi, K.; Zeghnoun, A.; Dousset, B.; Bretin, P.; Vandentorren, S.; Giraudet, E.; Beaudeau, P. The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environ. Health Perspect. 2012, 120, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Kestens, Y.; Brand, A.; Fournier, M.; Goudreau, S.; Kosatsky, T.; Maloley, M.; Smargiassi, A. Modelling the variation of land surface temperature as determinant of risk of heat-related health events. Int. J. Health Geogr. 2011, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2015, 31, 745–760. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xie, M.; Feng, Q.; Li, Z.; Chu, L.; Liu, Q. Heat risk of residents in different types of communities from urban heat-exposed areas. Sci. Total Environ. 2021, 768, 145052. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Renard, F.; Alonso, L.; Fitts, Y.; Hadjiosif, A.; Comby, J. Evaluation of the Effect of Urban Redevelopment on Surface Urban Heat Islands. Remote Sens. 2019, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Chen, J.; Li, Q.; Huang, D. Dramatic uneven urbanization of large cities throughout the world in recent decades. Nat. Commun. 2020, 11, 5366. [Google Scholar] [CrossRef] [PubMed]
- Balsa-Barreiro, J.; Li, Y.; Morales, A.; Pentland, A.S. Globalization and the shifting centers of gravity of world’s human dynamics: Implications for sustainability. J. Clean. Prod. 2019, 239, 117923. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London; London Harvey and Dorton: London, UK, 1833; Volume 2, pp. 1818–1820. [Google Scholar]
- Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Ulpiani, G. On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework. Sci. Total Environ. 2021, 751, 141727. [Google Scholar] [CrossRef]
- Feng, Y.; Du, S.; Myint, S.W.; Shu, M. Do Urban Functional Zones Affect Land Surface Temperature Differently? A Case Study of Beijing, China. Remote Sens. 2019, 11, 1802. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Turner, B.L. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, J.; He, C. A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: Spatial scale dependence, temporal variations, and bioclimatic modulation. Landsc. Ecol. 2016, 31, 1139–1153. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y.; Zhang, J. Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102131. [Google Scholar] [CrossRef]
- Luo, Y. Sustainability Associated Coastal Eco-environmental Problems and Coastal Science Development in China. Bull. Chin. Acad. Sci. 2016, 31, 1133–1142. [Google Scholar] [CrossRef]
- Lin, T.; Xue, X.; Shi, L.; Gao, L. Urban spatial expansion and its impacts on island ecosystem services and landscape pattern: A case study of the island city of Xiamen, Southeast China. Ocean Coast. Manag. 2013, 81, 90–96. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D.; Xing, W.; Wang, J. Island ecosystem health in the context of human activities with different types and intensities. J. Clean. Prod. 2021, 281, 125334. [Google Scholar] [CrossRef]
- Kier, G.; Kreft, H.; Lee, T.M.; Jetz, W.; Ibisch, P.L.; Nowicki, C.; Mutke, J.; Barthlott, W. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA 2009, 106, 9322–9327. [Google Scholar] [CrossRef] [Green Version]
- Kuo, N.-W.; Chen, P.-H. Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach. J. Clean. Prod. 2009, 17, 1324–1330. [Google Scholar] [CrossRef]
- Leoni, B.; Zanotti, C.; Nava, V.; Rotiroti, M.; Stefania, G.A.; Fallati, L.; Soler, V.; Fumagalli, L.; Savini, A.; Galli, P.; et al. Freshwater system of coral inhabited island: Availability and vulnerability (Magoodhoo Island of Faafu Atoll—Maldives). Sci. Total Environ. 2021, 785, 147313. [Google Scholar] [CrossRef]
- Xiamen Bureau of Statistics, Xiamen Investigation Team of National Bureau of Statistics. Yearbook of Xiamen Special Economic Zone; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Directorate General of Budget, Accounting and Statistics (DGBAS) of Executive Yuan. Statistical Yearbook; General Statistics Office of the Executive Yuan: Taiwan, China, 2020. [Google Scholar]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Hu, D.; Qiao, K.; Wang, X.; Zhao, L.; Ji, G. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 869–876. [Google Scholar] [CrossRef]
- Qin, Z.; Li, W.; Xu, B.; Chen, Z.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Nat. Resour. 2004, 28–32, 36, 41. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, T. Comparison Analyses of Equal Interval Method and Mean-standard Deviation Method Used to Delimitate Urban Heat Island. J. Geo-Inf. Sci. 2009, 11, 145–150. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Mitchell, A. The ESRI Guide to GIS Analysis; Esri Press: Redlands, CA, USA, 2005; Volume 2. [Google Scholar]
- McGarigal, K. Fragstats Help. 2015. Available online: https://ibis.geog.ubc.ca/courses/geob479/labs/fragstats.help.4.pdf (accessed on 20 October 2021).
- Spearman, C. The proof and measurement of association between two things. Int. J. Epidemiol. 2010, 39, 1137–1150. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Abirami, S. Aspect-based opinion ranking framework for product reviews using a Spearman’s rank correlation coefficient method. Inform. Sci. 2018, 460–461, 23–41. [Google Scholar] [CrossRef]
- Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef]
- Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [Google Scholar] [CrossRef]
- Ciazela, M.; Ciazela, J. Topoclimate Mapping Using Landsat ETM+ Thermal Data: Wolin Island, Poland. Remote Sens. 2021, 13, 2712. [Google Scholar] [CrossRef]
- Grigoraș, G.; Urițescu, B. Land Use/Land Cover changes dynamics and their effects on Surface Urban Heat Island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Hermosilla, T.; Palomar-Vázquez, J.; Balaguer-Beser, Á.; Balsa-Barreiro, J.; Ruiz, L.A. Using street based metrics to characterize urban typologies. Comput. Environ. Urban Syst. 2014, 44, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Dong, J.; Jones, L.; Liu, J.; Lin, T.; Zuo, J.; Ye, H.; Zhang, G.; Zhou, T. Modeling green roofs’ cooling effect in high-density urban areas based on law of diminishing marginal utility of the cooling efficiency: A case study of Xiamen Island, China. J. Clean. Prod. 2021, 316, 128277. [Google Scholar] [CrossRef]
- Hermosilla, T.; Ruiz, L.A.; Recio, J.A.; Balsa-Barreiro, J. Land-use mapping of Valencia city area from aerial images and LiDAR data. In Proceedings of the GEOProcessing 2012: The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services, Valencia, Spain, 30 January–4 February 2012; pp. 232–237. [Google Scholar]
Variables | Meaning and Expression/Value |
---|---|
Constant coefficient | |
(0–70 °C) | |
(0–50 °C) | |
Effective at-satellite brightness temperature (K) calculated by the DN value for the quantized and calibrated standard product pixel of TM6/TIR10 image () | |
(for mid-latitude winter) | |
Internal parameter | |
Atmospheric transmittance obtained from https://atmcorr.gsfc.nasa.gov/ (accessed on 17 February 2021) | |
Ground emissivity consisting of the emissivity of representative terrestrial materials (water, soil, impervious surface, and vegetation) for band λ | |
) | |
Vegetation coverage | |
) | |
Primary Zoning | Detailed Zoning | Conditions * |
---|---|---|
Hot zone | High LST zone (HTZ) | |
Sub high LST zone (SHTZ) | ||
Normal zone | Medium LST zone (MTZ) | |
Cold zone | Sub low LST zone (SLTZ) | |
Low LST zone (LTZ) |
Characteristics | Metrics and Expression * | Meaning |
---|---|---|
Fragmentation | The larger the patch density (PD ≥ 0), the more broken the thermal landscape. | |
Aggregation | The larger the aggregation index (0 ≤ AI ≤ 1), the more concentrated the thermal landscape is in space. | |
Shape complexity | The larger the fractal dimension index (0 ≤ FRAC_MN ≤ 1), the more complex the path shape of the thermal landscape. | |
Area proportion | The larger the percentage of landscape (0 ≤ PLAND ≤ 100), the larger the area proportion of the patch type i. In this study, a moving window with a pixel size of 210 by 210 m was used to calculate PLANDi of each pixel position in the research area to generate a continuous raster layer of the land cover rate in space. |
Year | Xiamen Island | Kinmen Island | ||||
---|---|---|---|---|---|---|
PD | AI | FRAC_MN | PD | AI | FRAC_MN | |
2000 | 2.2649 | 85.9005 | 1.0573 | 1.2679 | 90.4604 | 1.0541 |
2003 | 1.5422 | 87.6945 | 1.0521 | 1.0010 | 90.8477 | 1.0624 |
2006 | 2.0362 | 87.7630 | 1.0483 | 2.0019 | 87.6046 | 1.0537 |
2010 | 1.6256 | 88.0171 | 1.0564 | 3.9298 | 84.0374 | 1.0513 |
2014 | 1.5974 | 89.3791 | 1.0515 | 1.0561 | 92.1826 | 1.0539 |
2017 | 1.9141 | 88.4897 | 1.0522 | 1.0044 | 91.8410 | 1.0555 |
2020 | 1.6607 | 88.9447 | 1.0509 | 1.3958 | 89.7056 | 1.0585 |
Average | 1.8059 | 88.0269 | 1.0527 | 1.6653 | 89.5256 | 1.0556 |
Year | Xiamen Island | Kinmen Island | ||||
---|---|---|---|---|---|---|
PLAND of Cooling Land | Coastal Distance | Elevation | PLAND of Cooling Land | Coastal Distance | Elevation | |
2000 | −0.62 ** | −0.14 ** | 0.00 | −0.70 ** | 0.20 ** | −0.05 ** |
2003 | −0.52 ** | −0.18 ** | 0.02 ** | −0.71 ** | 0.22 ** | 0.02 ** |
2006 | −0.36 ** | −0.08 ** | −0.02 ** | −0.60 ** | 0.10 ** | 0.00 |
2010 | −0.27 ** | −0.16 ** | −0.21 ** | −0.63 ** | 0.03 ** | −0.11 ** |
2014 | −0.49 ** | −0.18 ** | −0.22 ** | −0.77 ** | 0.25 ** | −0.06 ** |
2017 | −0.43 ** | −0.14 ** | −0.09 ** | −0.64 ** | 0.30 ** | 0.02 ** |
2020 | −0.56 ** | −0.19 ** | 0.08 ** | −0.73 ** | 0.28 ** | 0.06 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lin, T.; Sun, C.; Lin, M.; Zhan, Y.; Chen, Y.; Ye, H.; Yao, X.; Huang, Y.; Zhang, G.; et al. Long-Term Spatiotemporal Characteristics and Impact Factors of Land Surface Temperature of Inhabited Islands with Different Urbanization Levels. Remote Sens. 2022, 14, 4997. https://doi.org/10.3390/rs14194997
Zhang J, Lin T, Sun C, Lin M, Zhan Y, Chen Y, Ye H, Yao X, Huang Y, Zhang G, et al. Long-Term Spatiotemporal Characteristics and Impact Factors of Land Surface Temperature of Inhabited Islands with Different Urbanization Levels. Remote Sensing. 2022; 14(19):4997. https://doi.org/10.3390/rs14194997
Chicago/Turabian StyleZhang, Junmao, Tao Lin, Caige Sun, Meixia Lin, Yulin Zhan, Yuan Chen, Hong Ye, Xia Yao, Yiyi Huang, Guoqin Zhang, and et al. 2022. "Long-Term Spatiotemporal Characteristics and Impact Factors of Land Surface Temperature of Inhabited Islands with Different Urbanization Levels" Remote Sensing 14, no. 19: 4997. https://doi.org/10.3390/rs14194997
APA StyleZhang, J., Lin, T., Sun, C., Lin, M., Zhan, Y., Chen, Y., Ye, H., Yao, X., Huang, Y., Zhang, G., & Liu, Y. (2022). Long-Term Spatiotemporal Characteristics and Impact Factors of Land Surface Temperature of Inhabited Islands with Different Urbanization Levels. Remote Sensing, 14(19), 4997. https://doi.org/10.3390/rs14194997