Long-Term Ice Conditions in Yingkou, a Coastal Region Northeast of the Bohai Sea, between 1951/1952 and 2017/2018: Modeling and Observations
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site
2.2. Sources of Data
2.2.1. Meteorological Data
2.2.2. Sea Ice Observation by Coastal Radar
2.2.3. Bohai Sea Ice Index (BoSI)
2.3. Thermodynamic Ice Model
2.4. Statistical Methods
2.5. Large-Scale Climate Indexes
3. Results and Analyses
3.1. Model Validation
3.2. Long-Term Trends of Meteorological Parameters
3.3. Sea-Ice-Mass Balance
3.3.1. Maximum Ice Thickness
3.3.2. Bohai Sea Ice Phenology
3.3.3. Sea-Ice Thickness
3.4. Large-Scale Atmospheric Circulation
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rind, D.; Healy, R.; Parkinson, C.; Martinson, D. The role of sea ice in 2 × CO2 climate model sensitivity: Part I. The total influence of sea ice thickness and extent. J. Clim. 1995, 8, 449–463. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Nichols, T.; Berkes, F.; Jolly, D.; Snow, N.B. Community of Sachs Harbour. Climate change and sea ice: Local observations from the Canadian Western Arctic. Arctic 2004, 57, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yue, Q.; Bi, X. Field test system for investigating dynamic ice forces on jacket structures and platform safety guarantee in the Bohai Sea. Ocean. Eng. 2014, 78, 52–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, B.; Feng, X. Response of the Sea Ice Conditions in the Bohai Sea to the Global Climate Change in the Last Over Half Century. Mar. Sci. Bull. Tianjin Chin. Ed. 2007, 26, 96. [Google Scholar]
- Wu, H.D. Bohai sea ice design and operation conditions. China Ocean. Press Beijing 2001, 27–36. (In Chinese) [Google Scholar]
- Vihma, T.; Haapala, J. Geophysics of sea ice in the Baltic Sea: A review. Prog. Oceanogr. 2009, 80, 129–148. [Google Scholar] [CrossRef]
- Gu, W. Research on the sea-ice disaster risk in Bohai Sea based on the remote sensing. J. Catastrophol. 2008, 23, 10–14. [Google Scholar]
- Yuan, S.; Liu, C.; Liu, X.; Chen, Y.; Zhang, Y. Research advances in remote sensing monitoring of sea ice in the Bohai sea. Earth Sci. Inform. 2021, 4, 1729–1743. [Google Scholar] [CrossRef]
- Liu, C.; Chao, J.; Gu, W.; Xu, Y.; Xie, F. Estimation of sea ice thickness in the Bohai Sea using a combination of VIS/NIR and SAR images. GIScience Remote Sens. 2015, 52, 115–130. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Yang, J. Monitoring the spatiotemporal evolution of sea ice in the Bohai Sea in the 2009–2010 winter combining MODIS and meteorological data. Estuaries Coasts 2012, 35, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wu, Y.; Zhang, Q. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea: A CART decision tree method. Int. J. Remote Sens. 2015, 36, 1661–1674. [Google Scholar] [CrossRef]
- Ouyang, L.; Hui, F.; Zhu, L.; Cheng, X.; Cheng, B.; Shokr, M.; Zhao, J.; Ding, M.; Zeng, T. The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016. International Journal of Digital Earth 2017, 12, 893–909. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, C.; Liu, X. Practical model of sea ice thickness of Bohai Sea based on MODIS data. Chin. Geogr. Sci. 2018, 28, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Gu, W.; Liu, C.; Xie, F. Towards a semi-empirical model of the sea ice thickness based on hyperspectral remote sensing in the Bohai Sea. Acta Oceanol. Sin. 2017, 36, 80–89. [Google Scholar] [CrossRef]
- Li, N.; Gu, W.; Maki, T.; Hayakawa, S. Relationship between sea ice thickness and temperature in Bohai Sea of China. J. Fac. Agric. Kyushu Univ. 2005, 50, 165–173. [Google Scholar] [CrossRef]
- Gong, D.Y.; Kim, S.J.; Ho, C.H. Arctic Oscillation and ice severity in the Bohai Sea, East Asia. Int. J. Climatol. J. R. Meteorol. Soc. 2007, 27, 1287–1302. [Google Scholar] [CrossRef]
- Yan, Y.; Uotila, P.; Huang, K.; Gu, W. Variability of sea ice area in the Bohai Sea from 1958 to 2015. Sci. Total Environ. 2020, 709, 136164. [Google Scholar] [CrossRef]
- Mäkynen, M.; Karvonen, J.; Cheng, B.; Hiltunen, M.; Eriksson, P. Operational Service for Mapping the Baltic Sea Landfast Ice Properties. Remote Sens. 2020, 12, 4032. [Google Scholar] [CrossRef]
- Karvonen, J.; Cheng, B.; Vihma, T.; Arkett, M.; Carrieres, T. A method for sea ice thickness and concentration analysis based on SAR data and a thermodynamic model. Cryosphere 2012, 6, 1507–1526. [Google Scholar] [CrossRef] [Green Version]
- Yang, G. Bohai Sea ice conditions. J. Cold Reg. Eng. 2000, 14, 54–67. [Google Scholar] [CrossRef]
- Li, Z.J.; Kang, J.C.; Pan, Y.B. Characteristics of the Bohai Sea and Arctic sea ice fabrics and crystals. Acta Oceanol. Sin. 2003, 25, 48–53. [Google Scholar]
- Bai, S.; Liu, Q.Z.; Li, H.; Wu, H.D. Sea ice in the Bohai sea of China. Mar. Forecast. 1999, 3, 45–52. [Google Scholar]
- Wang, J.X.; Zhao, Z.J.; Shang, K.Z.; Wang, J.; Lei, G.G. Spatial and temporal distribution of cloud covers in the Bohai Sea region. J. Lanzhou Univ. Nat. Sci. 2019, 55, 125–130, 140. [Google Scholar]
- Dong, X. China’s first shore-based ice radar station has been built. J. Glaciol. Geocryol. 1989, 11, 260. (In Chinese) [Google Scholar]
- Ma, Y.; Guan, P.; Xu, N.; Xu, Y.; Yuan, S.; Liu, Y.; Xu, F. Determination of the sea ice parameters for the reliability design of the marine structures in Liaodong Bay. Ocean. Eng. 2019, 3, 136–142. (In Chinese) [Google Scholar]
- Yuan, S.; Shi, W.Q.; Liu, X.; Xu, N.; Chen, W. Erratum to: Ice type extraction of rough ice in the eastern coast of Liaodong bay with shore-based radar. Nat. Hazards 2015, 76, 1263–1273. [Google Scholar] [CrossRef]
- Yuan, S.; Liu, Y.Q.; Liu, X.Q. Basic characteristics of sea ice in the Bayuquan region based on the data of shore-based radar. Mar. Sci. Bull. 2017, 36, 528–531. (In Chinese) [Google Scholar]
- Launiainen, J.; Cheng, B. Modelling of ice thermodynamics in natural water bodies. Cold Reg. Sci. Technol. 1998, 27, 153–178. [Google Scholar] [CrossRef]
- Cheng, B.; Vihma, T.; Launiainen, J. Modelling of the superimposed ice formation and sub-surface melting in the Baltic Sea. Geophysica 2003, 39, 31–50. [Google Scholar]
- Cheng, B.; Vihma, T.; Pirazzini, R.; Granskog, M.A. Modelling of superimposed ice formation during the spring snowmelt period in the Baltic Sea. Ann. Glaciol. 2006, 44, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Zhang, Z.; Vihma, T.; Johansson, M.; Bian, L.; Li, Z.; Wu, H. Model experiments on snow and ice thermodynamics in the Arctic Ocean with CHINARE 2003 data. J. Geophys. Res. 2008, 113, C09020. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Leppäranta, M.; Cheng, B.; Li, Z. Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A Dyn. Meteorol. Oceanogr. 2012, 64, 17202. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Vihma, T.; Rontu, L.; Kontu, A.; Pour, H.K.; Duguay, C.; Pulliainen, J. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 21564. [Google Scholar] [CrossRef]
- Maykut, G.A.; Untersteiner, N. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 1971, 76, 1550–1575. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cheng, B.; Vihma, T.; Heil, P.; Hui, F.; Shu, Q.; Zhang, L.; Yang, Q. Fast ice prediction system (fips) for land-fast sea ice at prydz bay, east antarctica: An operational service for chinare. Ann. Glaciol. 2020, 61, 271–283. [Google Scholar] [CrossRef]
- Cheng, B.; Vihma, T.; Palo, T.; Palo, T.; Nicolaus, M.; Gerland, S.; Rontu, L.; Haapala, J.; Perovich, D. Observation and modelling of snow and sea ice mass balance and its sensitivity to atmospheric forcing during spring and summer 2007 in the Central Arctic. Adv. Pol. Sci. 2021, 32, 309–323. [Google Scholar]
- Zhai, M.; Cheng, B.; Leppäranta, M.; Hui, F.; Li, X.; Demchev, D.; Lei, R.; Cheng, X. The seasonal cycle and break-up of Landfast Sea ice along the northwest coast of Kotelny Island, East Siberian Sea. J. Glaciol. 2021, 1–13. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Kahla, N.B.; Shamimuzzaman, M. Analyzing the trend of rainfall in Air region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and distended fluctuation analysis. Theor. Appl. Climatol. 2021, 143, 823–841. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rathnam, E.V. Analysis and prediction of groundwater level trends using four variations of Mann Kendall tests and ARIMA modelling. J. Geol. Soc. India 2019, 94, 281–289. [Google Scholar] [CrossRef]
- Ashraf, M.S.; Ahmad, I.; Khan, N.M.; Zhang, F.; Bilal, A.; Guo, J. Stream flow Variations in Monthly, Seasonal, Annual and Extreme Values Using Mann-Kendall, Spearmen’s Rho and Innovative Trend Analysis. Water Resour. Manag. 2021, 35, 243–261. [Google Scholar] [CrossRef]
- Wei, L.; Deng, X.; Cheng, B.; Vihma, T.; Hannula, H.-R.; Qin, T.; Pulliainen, J. The impact of meteorological conditions on snow and ice thickness in an Arctic lake. Tellus A Dyn. Meteorol. Oceanogr. 2016, 68, 31590. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J.; Shi, L.; Cheng, B.; Similä, M.; Mäkynen, M.; Vihma, T. Bohai sea ice parameter estimation based on thermodynamic ice model and earth observation data. Remote Sens. 2017, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wu, Y.; Zhang, Q. Forecasting the evolution of the sea ice in the Liaodong Bay using meteorological data. Cold Reg. Sci. Technol. 2016, 125, 21–30. [Google Scholar] [CrossRef]
- Zhang, F. Sea ice in China. Navig. China 1982, 2, 66–75. (In Chinese) [Google Scholar]
- Bai, X.; Wang, J.; Liu, Q.Z.; Wang, D.; Liu, Y. Severe ice conditions in the Bohai Sea, China, and mild ice conditions in the great lakes during the 2009/10 winter: Links to El Nino and a strong negative arctic oscillation. J. Appl. Meteorol. Clim. 2011, 50, 1922–1935. [Google Scholar] [CrossRef]
- Yan, Y.; Shao, D.D.; Gu, W.; Liu, C.; Li, Q.; Chao, J.; Tao, J.; Xu, Y. Multidecadal anomalies of Bohai Sea ice cover and potential climate driving factors during 1988–2015. Environ. Res. Lett. 2017, 12, 094014. [Google Scholar] [CrossRef]
- Overland, J.E.; Dethloff, K.; Francis, J.A.; Hall, R.J.; Hanna, E.; Kim, S.-J.; Screen, J.A.; Shepherd, T.G.; Vihma, T. Nonlinear response of mid-latitude weather to the changing arctic. Nat. Clim. Chang. 2016, 6, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, T. Early 20th century warming in the arctic: A review. Pol. Sci. 2011, 5, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Cao, J.F.; Yang, Y.J.; Tianjin, C.C. Variation of wind speed and its influencing factors around the Bohai coastal areas from 1971 to 2012. J. Meteorol. Environ. 2015, 31, 82–88. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.Y.; Ding, Y.H.; He, J.H.; Jun, Y. An updating analysis of the climate change in china in recent 50 years. Acta Meteorol. Sin. 2004, 2, 228–236. [Google Scholar]
- Johansson, A.M.; Malnes, E.; Gerland, S.; Cristea, A.; Doulgeris, A.P.; Divine, D.V.; Pavlova, O.; Lauknes, T.R. Consistent ice and open water classification combining historical synthetic aperture radar satellite images from ERS-1/2, Envisat ASAR, RADARSAT-2 and Sentinel-1A/B. Ann. Glaciol. 2020, 61, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Muckenhuber, S.; Nilsen, F.; Korosov, A.; Sandven, S. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. Cryosphere 2016, 10, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Gu, W.; Chao, J.; Li, L.; Yuan, S.; Xu, Y. Spatio-temporal characteristics of the sea-ice volume of the Bohai Sea, China, in winter 2009/10. Ann. Glaciol. 2013, 54, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cheng, B.; Wang, K.; Gerland, S.; Pavlova, O. Modelling snow ice and superimposed ice formation in an Arctic fjord. Polar Res. 2015, 34, 20828. [Google Scholar] [CrossRef] [Green Version]
Surface Heat and Mass Balance | In Snow and Ice Temperature | Ice-Bottom Heat and Mass Balance | |
---|---|---|---|
Equation | |||
Parameter | : downward solar radiation for all sky condition. : surface albedo; I(z): solar radiation penetrating below the surface layer; and : downward and upward longwave radiation under all sky conditions; : surface emissivity. and : turbulent sensible and latent heat fluxes; Fc is the conductive heat flux of the surface layer; Fm: surface melting of snow or ice; Tsfc: surface temperature | T: temperature; t: time; z: vertical coordinate below the surface; ρ: density; c: specific heat; k: thermal conductivity (function of Ti and si) q(z,t) is the absorbed solar radiation below surface layer. The subscripts s and i: snow and ice, respectively | hi: sea-ice thickness; Li: latent heat of fusion; Fw: Oceanic heat flux; |
HIGHTSI parameters values used for this study | Extinction coefficient of sea ice (ki)= 1.5 m−1 αs,I: parameterization (Briegleb, et al., 2004) = 0.97; | k0 = 2.03 W m−1 K−1 ρi = 910 kg m−3 ci = 2093 J kg−1 K−1. Sea ice salinity (si) = 1–6 ppm; | Oceanic heat flux (Fw)= 2 W/m2. Freezing point (Tf)= −1.4 °C Latent heat of freezing (Li)= 0.33 × 106 J kg−1 |
Input | Wind speed (Va); temperature (Ta); relative humidity (Rh); cloud cover (CN); solar radiation (parameterized). | ||
Output | Time series of ice thickness (hi), timing of maximum ice thickness, freeze-up and breakup dates |
Theil–Sen’s Slope (10 Years)−1 | p | |
---|---|---|
Ta (°C) | 0.33 | 0.00002 |
Va (m/s) | −0.05 | 0.04 |
Rh (%) | −0.59 | 0.03 |
Cn | 0.0089 | 0.00001 |
Season | Theil–Sen’s Slope (10 Years)−1 | p |
---|---|---|
December | 0.18 | 0.14 |
January | 0.37 | 0.002 |
February | 0.54 | 0.0001 |
March | 0.16 | 0.0002 |
Parameters | Theil–Sen’s Slope (Decade) | p |
---|---|---|
FS (days) | −3.72 | 0.0002 |
December (days) | −1.08 | 0.03 |
January (days) | −0.23 | 0.02 |
February (days) | −0.67 | 0.01 |
March (days) | −1.20 | 0.0006 |
Breakup date | −2.31 | 0.002 |
Decade | 1950s | 1960s | 1970s | 1980s | 1990s | 2000s | 2010s |
---|---|---|---|---|---|---|---|
Onset date of (Ⅱ) | 4 January | 3 January | 15 January | 11 January | 14 January | 14 January | 21 January |
Ending date of (Ⅱ) | 6 March | 8 March | 14 March | 2 March | 1 February | 23 February | 19 February |
Length of (Ⅱ) | 61 | 65 | 59 | 51 | 19 | 41 | 30 |
Parameters | Theil–Sen’s Slope (Decade) | p |
---|---|---|
Maximum ice thickness (cm) | −2.55 | 0.006 |
Average ice thickness (cm) | −0.76 | 0.008 |
BoSI | Ta | Va | Rh | Cn | Have | Hmax | |
---|---|---|---|---|---|---|---|
Arctic Oscillation (AO) | −0.53 | 0.55 | −0.22 | −0.04 | 0.07 | −0.32 | −0.40 |
Pacific/North American Pattern (PNA) | −0.03 | 0.06 | −0.23 | −0.08 | 0.16 | −0.01 | −0.01 |
North Atlantic Oscillation (NAO) | −0.47 | 0.52 | −0.17 | −0.23 | 0.12 | −0.29 | −0.37 |
Pacific Decadal Oscillation (PDO) | −0.17 | 0.19 | −0.04 | −0.19 | 0.04 | −0.14 | −0.10 |
El Nino-Southern Oscillation (ENSO) | −0.02 | 0.11 | 0.00 | 0.11 | 0.10 | −0.09 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Cheng, B.; Xu, N.; Yuan, S.; Shi, H.; Shi, W. Long-Term Ice Conditions in Yingkou, a Coastal Region Northeast of the Bohai Sea, between 1951/1952 and 2017/2018: Modeling and Observations. Remote Sens. 2022, 14, 182. https://doi.org/10.3390/rs14010182
Ma Y, Cheng B, Xu N, Yuan S, Shi H, Shi W. Long-Term Ice Conditions in Yingkou, a Coastal Region Northeast of the Bohai Sea, between 1951/1952 and 2017/2018: Modeling and Observations. Remote Sensing. 2022; 14(1):182. https://doi.org/10.3390/rs14010182
Chicago/Turabian StyleMa, Yuxian, Bin Cheng, Ning Xu, Shuai Yuan, Honghua Shi, and Wenqi Shi. 2022. "Long-Term Ice Conditions in Yingkou, a Coastal Region Northeast of the Bohai Sea, between 1951/1952 and 2017/2018: Modeling and Observations" Remote Sensing 14, no. 1: 182. https://doi.org/10.3390/rs14010182
APA StyleMa, Y., Cheng, B., Xu, N., Yuan, S., Shi, H., & Shi, W. (2022). Long-Term Ice Conditions in Yingkou, a Coastal Region Northeast of the Bohai Sea, between 1951/1952 and 2017/2018: Modeling and Observations. Remote Sensing, 14(1), 182. https://doi.org/10.3390/rs14010182